Impacts of agricultural expansion on natural ecosystems of Lambwe Valley, Kenya

George O. K'Otuto
School of Agriculture & Food Security
Maseno University

AFRICAN SAVANNAH

- Savannah expanse
- Savannah importance
- Moist savannahs as hot spots for agroecosystems.
- ¾ of African savannahs under agroecosystems
- Savannah croplands altered ecosystem's structure
- Long grazing history vs current high livestock densities of African savannah.
- Grazing & cropping feedback into the local climate thro' Δ s in mass & energy balances at land surface

PROBLEM STATEMENT

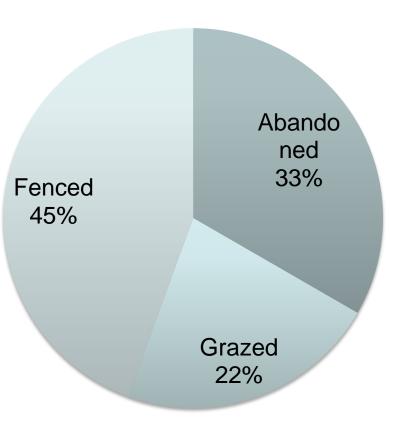
- Africa's high popⁿ growth rate (UN, 2009), poverty & technological backwardness.
- Savannah agroecosystems conversion expansive cropped, abandoned/fallow & (over)grazed lands.
- Scientific knowledge of agro-ecosystems' effects on the ecosystem structure & productivity for sustainable agro-utilization of this savannah.

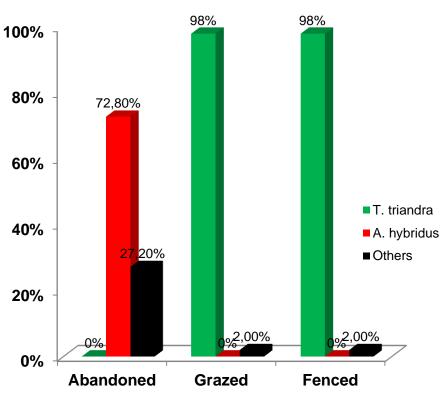
Clockwise from top left: cropped; abandoned; abandoned & grazed; grazed; Fenced; integrated

OBJECTIVES & HYPOTHESES

Objective

Identify & quantify effects of land uses (grazing & cropping) on the ecosystem productivity of a moist savannah.

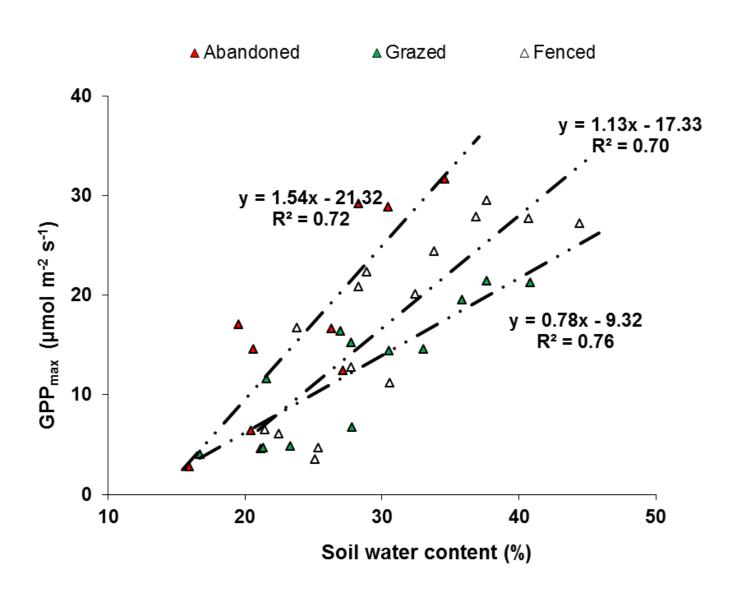

Hypotheses

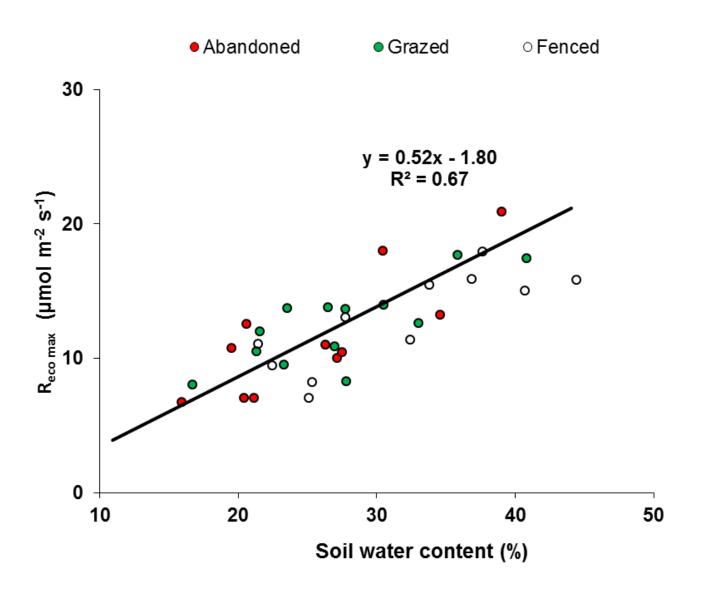

 Agro-ecosystems (grazing & croplands) have altered ecosystem structure & productivity.

RESULTS

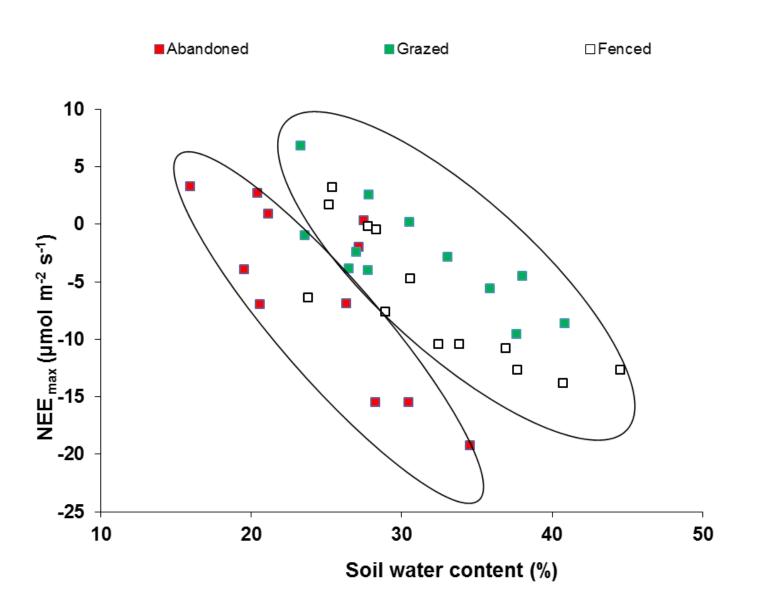
Dominant species

Species number




CO₂ exchange

Treatment	Grazed	Fenced	Abandoned	LSD (0.05)
Parameter				
NEE (μmolm ⁻² s ⁻¹)	0.49	-2.76	-1.35	1.05
Reco (µmolm ⁻² s ⁻¹)	11.35	12.85	11.06	0.75
GPP (µmolm ⁻² s ⁻¹)	11.08	15.67	12.47	1.55
$NEE_{max} (\mu molm^{-2} s^{-1})$	-1.81	-4.97	-4.77	1.45
$R_{eco\ max}\ (\mu molm^{-2}s^{-1})$	12.15	13.53	12.42	0.96
$GPP_{max} (\mu molm^{-2} s^{-1})$	13.96	18.49	17.19	1.92
Biomass normalised NEE max (µmolm -2 s -1 g -	-0.024	-0.014	-0.022	0.004
Biomass normalised R _{eco max} (µmolm ⁻² s ⁻¹ g	0.10	0.02	0.08	0.01
Biomass normalised GPP _{max} (µmolm ⁻² s ⁻¹ g ⁻¹	0.12	0.03	0.09	0.01


GPP_{max} - SWC

R_{ecomax} - SWC

NEE_{max}-SWC

Conclusions

- Ecosystem was a net C sink with a mean NEE of -0.81 μmol m⁻² s⁻¹ over the study period.
- Ppt & available SM largely determined ecosystem CO₂ exchange & biomass production in this moist savannah thus revealing its sensitivity to Δ in SWC.
- Great transformation of species in abandoned plots shows species alteration as a major consequence of on-going land use changes in the African savannah.
- Livestock grazing had lower biomass, GPP & NEE per unit area but higher biomass normalised NEE & GPP, underscoring possible stimulatory effects of grazing on this ecosystem.

Unanswered?

- Complexity of cropping- fallow system?
- Land preparation
- Cropped species
- Fallowing
- Fallowing & other land uses
- Grazing Complexity
- Grazing intensity
- Grazing species
- Insensitivity of R_{eco max} to land uses?

THANK

YOU