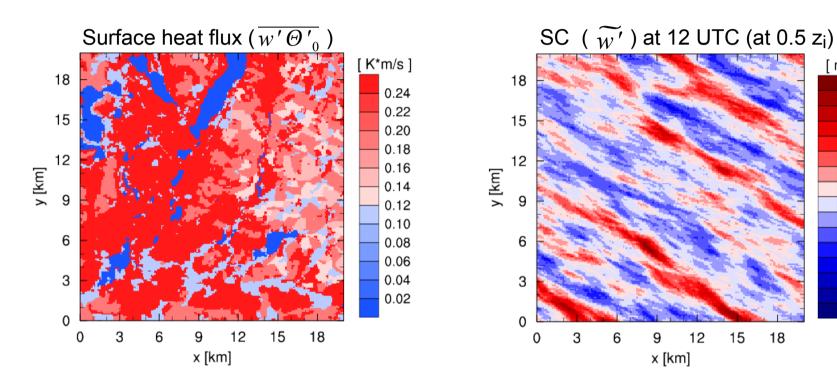
Correlations between thermal surface heterogeneities and secondary circulations during LITFASS-2003

An LES study

Björn Maronga*


Siegfried Raasch*

*Leibniz University of Hannover, Germany

19th AMS Symposium on Boundary Layers and Turbulence August 2 − 6, 2010 Keystone, Colorado, U.S.A.

Introduction (I): Secondary Circulations (SCs) and Heterogeneities

Previous simulation results as starting point:

- Complex SC patterns appear above realistic surface heterogeneities
- Roll-like SC patterns develop in case of higher background winds

m/s]

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

-0.20

-0.40

-0.60-0.80

-1.00

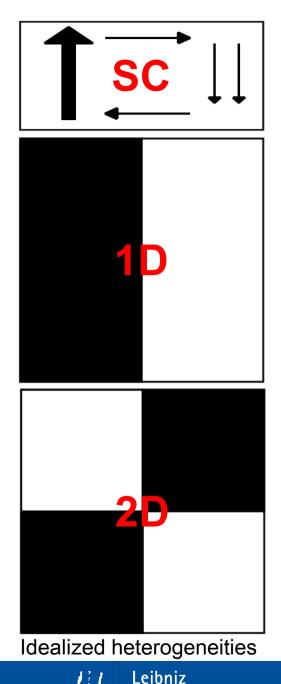
-1.20

-1.40

18

Introduction (II): Motivation and Hypothesis

Main questions:

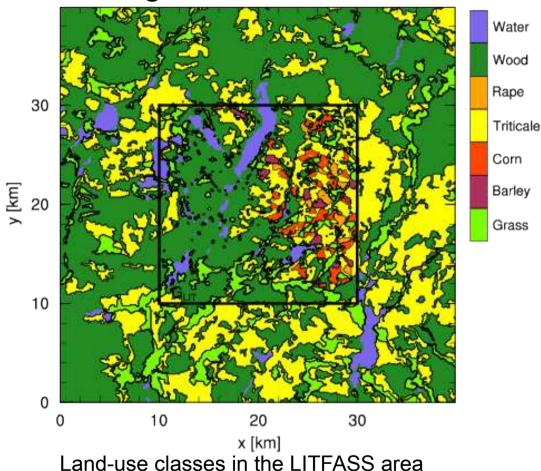

- 1. Can the SCs be linked to the heterogeneities?
- 2. Is it possible to estimate the SC patterns in advance?

Hypothesis (1): In case of roll patterns, there is a linear correlation between the streamwise-averaged underlying sensible surface heat flux and the vertical velocity of the SCs

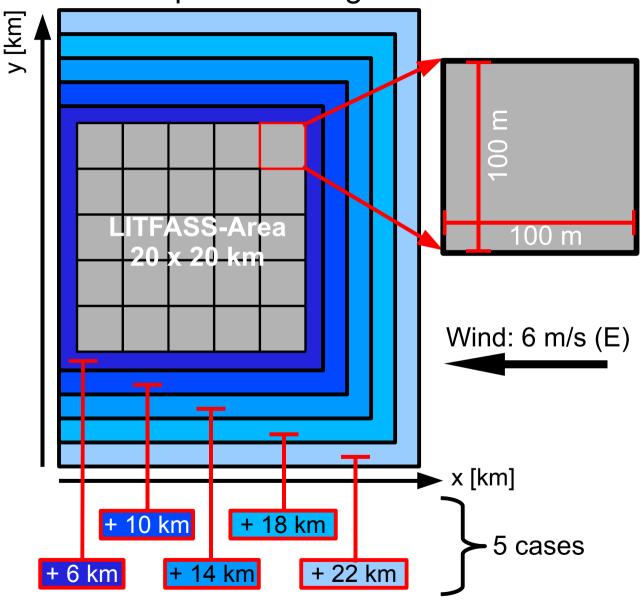
Roughly speaking: the flow sees a "smeared" sensible surface heat flux and SCs develop according to this heat flux

Introduction (III): Idealized Surface Heterogeneities

- Thermal heterogeneities: temperature or heat flux
- Past LES studies mainly investigated idealized heterogeneities
- 1D: stripe-like or wave e.g. Avissar and Schmidt (1998), Patton et. al. (2005)
- **2D:** checkerboard e.g. Shen and Leclerc (1995), Raasch and Harbusch (2001), Courault et. al. (2007)
- SCs were obtained, depending on:
 - background wind speed and direction
 - amplitude of surface heating
 - size / wavelength of the patches
- Superimposed on the small-scale turbulent field

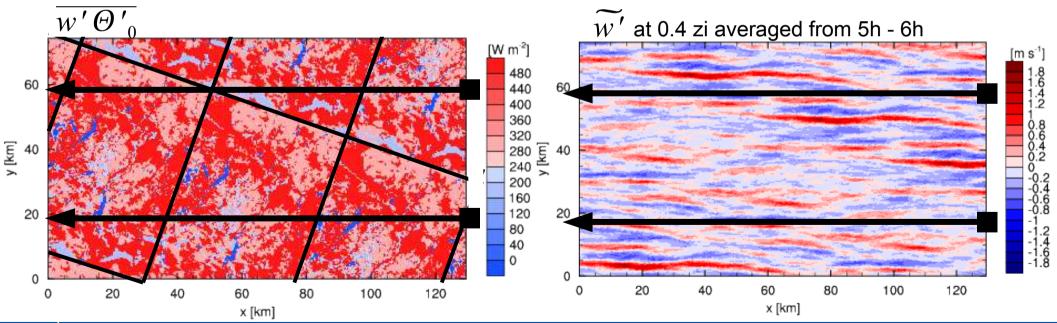


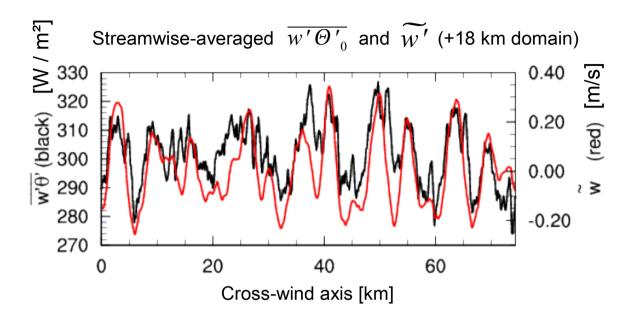
Introduction (IV): Real Heterogeneities during LITFASS-2003


- LITFASS Area (20km x 20km) in the south-east of Berlin, Germany
- LES with the aid of the model PALM (Raasch and Schröter, 1998)
- Follow-up study to Uhlenbrock (2006)
- Simulations require:
 - horizontal cyclic boundaries
 - special averaging (no phase average)

Ensemble-averaging:

$$\underbrace{w(x,y,z,t)}_{total} = \underbrace{\widetilde{w'}(x,y,z)}_{ensemble-average} + \underbrace{w''(x,y,z,t)}_{small-scale}$$


Model Setup and Driving Mechanism


- Setup:
 - Model domain up to44 km x 56 km
 - Vertical grid spacing: **50 m**
- Driving from measurements
 - $\overline{w'\Theta'_0}$ and $\overline{w'q'_0}$ (12 UTC)
 - Roughness length zo
- Initial profiles: neutral stratification with capping inversion (z_i ~ z_i (12 UTC))
- Simulation over 6h

Results (I): Correlation Analysis

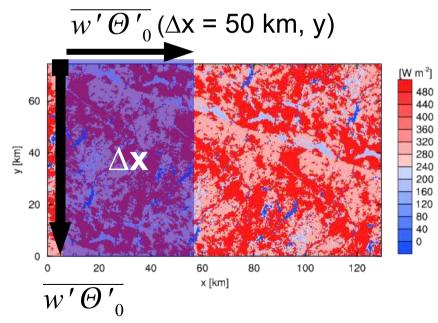
- 1. Averaging \widetilde{w}' from 5h 6h
- 2. Extending the fields to the distance a parcel of air passes during simulation time (here 126km in 6h), rotation
- 3. Streamwise averaging of $\overline{w'\Theta'_0}$ and $\overline{w'}$ at $z = 0.4 * z_i$ (along the rolls' axes)
- 4. Calculating the cross-correlation $\rho_{\overline{w'\Theta'_0}, \overline{w'}}$

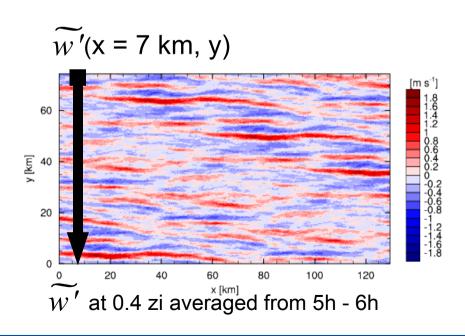
Results (II): Constant forcing

Buffer	$ ho_{\overline{w'\Theta'_0},\widetilde{w'}}$
6 km	0.49
10 km	0.42
14 km	0.60
18 km	0.69
22 km	0.71

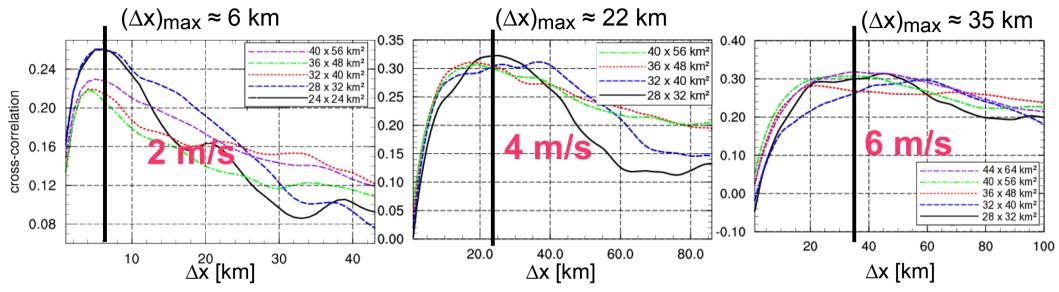
Correlations for different cases

- Slightly increasing with model domain
- Cross-correlations for all 5 cases:

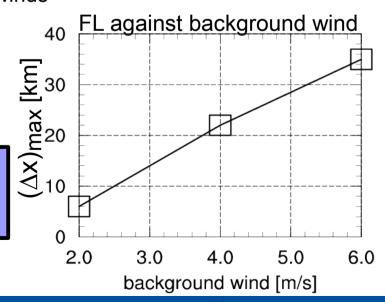

$$0.42 \le \rho_{\overline{w'\Theta'_0}, \widetilde{w'}} \le 0.71$$


Results (III): Determination of the Fetch Length

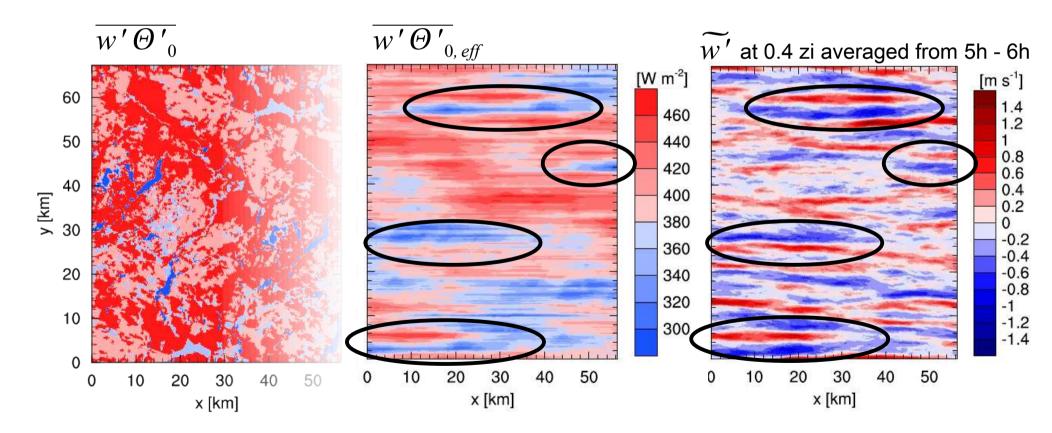
Hypothesis (2): The contribution of $\overline{w'\Theta'_0}$ to the locally observed circulation should be large for the near upstream region and should decrease with distance.


A fetch length **FL**, which gives information about the upstream fetch, can be calculated.

$$\overline{\rho}(\Delta x) = \frac{1}{N} \sum_{i=0}^{N} \rho(\widetilde{w}'(x_{i+1}, y), \overline{w'\Theta'_0}(\Delta x, y)) \qquad \forall \quad \Delta x = 1, 2, \dots, x_{max}$$


Results (IV): Determination of the Fetch Length

Cross-correlation against fetch lengths Δx for different background winds


 Simulations for 2 m/s, 4 m/s and 6 m/s were carried out for comparison

Result: $FL \equiv (\Delta x)_{max}$ increases with increasing background wind

Results (V): Effective Surface Heat Flux

- **Definition**: "effective surface heat flux": $\overline{w'\Theta'}_{0, eff}(i, j) = \frac{1}{FL} \sum_{k=0}^{FL-1} \overline{w'\Theta'}_{0}(i+k, j)$
- Upstream moving average of the surface heat flux

Conclusions

- Cross-correlation of streamwise-averaged $\overline{w'\Theta'_0}$ and $\overline{w'}$ showed **high correlations** ($\rho \leq 0.71$) and support the hypothesis that the flow sees a "smeared" surface heat flux which is causing the development of roll-like secondary circulations in case of higher wind speed
- Also valid for realistic simulations with a diurnal cycle (ρ = 0.48 at 12 UTC, not shown)
- The **upstream fetch length** (**FL**) of the flow due to the effect of advection could be determined. It is increasing with background wind
- The "effective surface heat flux" allows a rough a priori estimation of the secondary circulation patterns with the aid of the fetch length
- Further results from this study (not discussed here), e.g.:
 - Entrainment over heterogeneous surfaces is slightly decreased
 - Scalar quantities behave significantly different than \widetilde{w}' and show larger scale structures