

UNIVERSITY OF BAYREUTH

Department of Micrometeorology

Mesoscale Circulations and Energy and GaS Exchange Over the Tibetan Plateau

Documentation of the Micrometeorological Experiment, Nam Tso, Tibet 25^{th} of June – 08^{th} of August 2009

Tobias Biermann, Wolfgang Babel, Johannes Olesch, Thomas Foken

Work Report Nr. 41 Bayreuth, November 2009

Arbeitsergebnisse, Universität Bayreuth, Abt. Mikrometeorologie, Print, ISSN 1614-8916 Arbeitsergebnisse, Universität Bayreuth, Abt. Mikrometeorologie, Internet, ISSN 1614-8924 http://www.bayceer.uni-bayreuth.de/mm/

Eigenverlag: Universität Bayreuth, Abt. Mikrometeorologie Vervielfältigung: Druckerei der Universität Bayreuth Herausgeber: Prof. Dr. Thomas Foken

Universität Bayreuth, Abteilung Mikrometeorologie D-95440 Bayreuth

Die Verantwortung über den Inhalt liegt beim Autor.

Contents

1.	Desci	ription of the experiment	4
1.	.2.	TiP Project	4
1.	.3.	CEOP AEGIS	5
2.	Expe	rimental setup	7
2.	.2.	Measurement site	7
	2.2.1	. Turbulence measurement complex	11
	2.2.2	Radiation and Precipitation	13
	2.2.3	. Soil measurement complex	13
	2.2.4	. Water temperature	14
3.	Surfa	ace parameters	15
3.	.1.	Meteorological site characteristics and land use types	15
3.	.2.	Vegetation	18
3.	.3.	Soil properties	18
	3.3.1	. Soil moisture, bulk density and Porosity	18
	3.3.2	. Soil profile	20
4.	Weat	ther conditions	22
5.	Data.		24
5.	.2.	Data logging and structure	24
5.	.3.	Data availability	25
5.	.4.	Logbook EC Station	27
6.	DVD	OArchive	
7.	Litera	ature	29
8.	Appe	endix	30
А		Logger configuration	30
В	•	Licor Calibration	35

1. Description of the experiment

In the framework of the two projects, CEOP-AEGIS and TiP (SPP 1372), the Department of Micrometeorology of the University of Bayreuth set up an Eddy covariance measurement complex close to the Nam Tso Comprehensive Observation and Research Station of the Chinese Academy of Science (CAS), at Nam Tso, Tibet, China. The purpose of the experiment is to investigate the energy and matter exchange between the atmosphere and the underlying surface of the Tibetan Plateau, which is a basic requirement to understand Asian monsoon variability, effects of climate change and the role of the ecosystems under these conditions. Main aim of the experiment is the quality control of surface flux measurements and their upscaling to the grid scale of limited area models by footprint modeling. A second goal is the correct measurement of humidity in high altitudes. The acquired data will be used evaluate the output of the mesoscale ATHAM model, which is used to model atmospheric flow, clouds, precipitation and radiation of the area. The eddy-covariance measurements will also be used for ecological studies within TiP. The project is well connected with Chinese modeling efforts and German glacier and ecological projects within TiP. In the CEOP-AIGIS Project the data of radiation, turbulent fluxes and soil moisture, together with further stations operated by the CAS, will be used to improve data quality and footprint analysis for up-scaling on satellite grid elements.

1.2. TiP Project

The German Science Foundation (DFG) priority program 1372 TiP studies the Tibetan Plateau focusing on the three interlinked processes, plateau formation, climate evolution and human impact and Global Change. This study is motivated by the importance of the Tibetan Plateau on a global scale comparable to the importance of Antarctica and the Arctic. Its formation had a profound impact on the environmental evolution at regional and global scales and until today directly influences the habitat of billions of people. Moreover, the Tibetan Plateau, like the Polar Regions, proves to be particularly sensitive to anthropogenic Global Change. The different interactions and research areas of different subprojects are displayed in Figure 1-1. Within the project the key processes are analyzed with respect to their impact on ecosystems on three different time scales. The first being the Plateau formation, with the uplift dynamics and related climate change during the last millions to several tens of millions of years, he second being the Late Cenozoic climate evolution and environmental response during the last tens of thousands to hundreds of thousands of years with decadal to centennial resolution. And finally the phase of human impact and Global Change is analyzed focusing on the present stage, the past ~ 8000 years, and perspectives for the future, Figure 1-2.

Figure 1-1: Scheme of the different research areas covered in the TiP Project.

Figure 1-2: Time scales on which the importance of processes is analyzed within the TiP Project.

1.3. CEOP AEGIS

CEOP-AEGIS is a collaborative research project with a medium-scale focus and financed by the European Commission under FP7 topic ENV.2007.4.1.4.2 "Improving observing systems for water resource management", and is coordinated by the Université Louis Pasteur, Strasbourg, France. It is motivated to support water resources management in South-East Asia. Currently only sparse observations are available lacking accuracy, spatial density and temporal frequency. Therefore an integrated use of satellite and ground observations is necessary to assist water resources management and to clarify the interactions between the land surface and the atmosphere over the Tibetan Plateau in the Asian monsoon system. CEOP-AEGIS aims at two goals, the first one being the construction of an observing system to monitor the plateau's water yield by a combination of ground measurements and satellite based observations and secondly the monitoring of climate relevant parameters as snow cover, vegetation cover, surface wetness and surface fluxes in order to analyze land-atmosphere interactions influencing the Asian Monsoon System. The duration of this project is 48 months and it builds upon 10 years of experimental and modeling research on the Tibetan Plateau carried out by a consortium of 17 partners from 8 countries. On the long-term the observing system, once established, is very likely to remain in operation beyond project completion. The timeseries of hydrological satellite data products will be the basis for an early warning system on droughts and on floods each.

2. Experimental setup

2.2. Measurement site

The measurement site is located at a small lake at the SE side of Nam Tso Lake, which is located at 4730 m a.s.l. and 150 km N of Lhasa, Figure 2-1. The small lake is in a distance of 280 m NW of the Nam Tso Station of the CAS, Figure 2-2. Its shore line stretches for about 1 km to each side of the site and in an angle of 232° against north. The coordinates of the site are N30°46.498' E90°57.612' and those of Nam Tso Station are N30° 46.44' E90° 57.72'. Most of the measurement site has a gentle slope of 8° to the second terrace while the shore line drops in a step angle into the lake. The Eddy Covariance (EC) Station, which is equipped with a CSAT3, KH 20 and LICOR 7500, is set up next to the step drop, facing WSW, nearly parallel to the shoreline. Additionally to the EC Station with a soil complex, a CNR1 Net Radiometer is set up as well as a rain gauge. The soil complex contains temperature measurements in 7 depths, heat flux measurements at 20 cm depth and water content measurements with TDR Probes in 3 depths. In the lake a float is measuring water temperature at approximately 30 cm depth. On overview of the setup is given in Figure 2-3. The whole area, which also includes a site for a tent, is fenced with a one meter high netting wire. Distances between the different devices and obstacles can be seen in Figure 2-4, Figure 2-5 and Table 2-1. The location of the measurement site in context to Nam Tso Station is plotted in Figure 2-6.

Figure 2-1: Map of the Autonomous Region Tibet and the PR China. The Black dot marking the Nam Tso Station, CAS. (modified from www.chinatouristmaps.com)

Figure 2-2: Location of the experimental site inside Tibet. The + marks the location of the EC Station and the **X** the location of the Nam Tso Station from CAS (modified from http://en.poehali.org/maps).

Figure 2-3: Map of the measurement site at Nam Tso.

Figure 2-4: Elevation profile of the measurement site.

Figure 2-5: Overview of the distances in relation to the EC Station as described in Table 2-1.

Obstacle	Label	Distance [m]	Angle against north [°]
EC Station – Fencepost 1 (Z1)	а	5.80	236
EC Station – Fencepost 2 (Z2)	b	7.40	160
EC Station – Soil complex	с	2.40	140
EC Station – Fencepost 3 (Z3)	d	11	146
EC Station – Fencepost 4 (Z4)	e	12	128
EC Station – Radiation	f, D	7,60	120
EC Station – Fencepost 5 (Z5)	g	14	110
EC Station – Fencepost 6 (Z6)	h	14	100
EC Station – Tent	i	11	75
EC Station rain gauge	j	5	72
EC Station – Fencepost 7 (Z7)	k	15	68
EC Station – Fencepost 8 (Z8)	1	15	60
EC Station – Fencepost 9 (Z9)	m	16	60
Water surface – Foot EC	А	1.33	-
EC Station – shore line	В	2.80	141
EC Station – step drop	С	1.60	-
Water surface – Radiation	Е	2.07	-
Radiation – shore line	F	10.40	141

Table 2-1: Distance on the measurement site, as shown in Figure 2-4 and Figure 2-5.

Figure 2-6: Map of the Nam Tso Station and the small lake, including distances between the main station and the measuring site.

2.2.1. Turbulence measurement complex

The following section will list the measurement devices which were used to equip the turbulence measurement complex. Figure 2-7 shows the orientation of the devices to each other and their orientation against North. An overview of the alignment and specifications of these devices are given in Table 2-2.

Figure 2-7: Setup of the turbulence measurement system.

Parameter	Device	SN	Calibration	Calibration	Height	Angle	Logger-
			factor	/Conversion	[m]	against	channel
						north	
Wind vector	CSAT3	1756		Calibration	2.97	236° (β)	SDM
and sonic				in device			
temp.							
Humidity	LI7500	75B-	Licor	Calibration	2.91	Sensor	SDM
		1200	Calibration	in device	Distance	Middle of	
			Appendix B		To CSAT	path-length	
					0.27 (a)	221° (χ)	
CO ₂	LI7500	75B-	Licor	Calibration	2.91		SDM
		1200	Calibration	in device	Distance		
			Appendix B		to CSAT		
					0.27 (a)		
Humidity	KH20	1649	V ₀ : 8127.6		2,90	243° (α)	SE 4
			mV		Distance		
			X: 1.50 cm		from		
			k _w : -0.1593		CSAT		
					0.24 (b)		
Humidity	HMP	T465		Conversion	3.01		Diff. 1
		0013		in Logger			
				mV to $g m^{-3}$			
Temperature	HMP	T465		Conversion	3.01		Diff. 1
		0013		in Logger			
				mV to °C			
Pressure	Vaisalla	Е	0-5V equals	Conversion	0.20		SE 3
		81000	500-	in Logger			
		5	1100 hPa	mV to hPa			
	1	1	1		1	1	1

Table 2-2: Instrumentation of EC Station

2.2.2. Radiation and Precipitation

The Radiation was measured separated from the turbulent quantities with a CNR1 Net Radiometer from Kipp & Zonen, mounted to a black pole southeast of the turbulence complex. The precipitation was measured with a weighing rain gauge Northeast of the turbulence complex.

Paramete	Device	SN	Calibration	Calibration/	Height	Angle	Logger-
r			factor	Conversion	[m]	against	channel
						north	
Radiation	CNR1	9901	10.82 x 10^6	Calibration in	1.99	156°	Diff. 8-14
		97	V/Wm ²	Logger			
Rain	Rain	0102	1 Pulse =		1 m		P 1
	Gauge	91	0.1 mm				

Table 2-3: Instrumentation of radiation and precipitation complex

2.2.3. Soil measurement complex

The soil complex was installed close to the turbulence complex. Figure 2-8 shows a scheme of the setup of the measurements while Table 2-4 contains calibration coefficients and more specifications concerning the used devices. A more detailed discussion of the soil properties can be found in chapter 3.3. The TDR probes had a wiring problem, one of the two grounds was not connected leading to spikes and offsets in the data, which needs to be filtered for that.

Figure 2-8: Soil profile with installation to measure water content, temperature and heat flux, including serial numbers and information about the horizons of the soil profile.

Parameter	Device	SN	Calibrati	Calibration	Height	Angle	Logger-	Name
			on	/Conversion	[m]	against	channel	in file
			factor			north		
SoilTmp1	Pt100	T2		Conversion	-0.025	235°	MUX 2	PT100_
				in Logger				a5
				mV to °C				
SoilTmp2	Pt100	T3		Conversion	-0.05	235°	MUX 3	PT100_
				in Logger				a10
				mV to °C				
SoilTmp3	Pt100	T4		Conversion	-0.10	235°	MUX 4	PT100_
				in Logger				a25
				mV to °C				
SoilTmp4	Pt100	T5		Conversion	-0.15	235°	MUX 5	PT100_
				in Logger				b2
				mV to °C				
SoilTmp5	Pt100	T6		Conversion	-0.20	235°	MUX 6	PT100_
				in Logger				b5
				mV to °C				
SoilTmp6	Pt100	T7		Conversion	-0.30	235°	MUX 7	PT100_
				in Logger				b10
				mV to °C				
SoilTmp7	Pt100	Т8		Conversion	-0.50	235°	MUX 8	PT100_
				in Logger				b25
				mV to °C				
Soil	TDR-	14073			-0.10	235°	SE 25	TDRa_
moisture	IMKO							1
Soil	TDR-	14072			-0.30	235°	SE 26	TDRa_
moisture	IMKO							2
Soil	TDR-	14074			-0.50	235°	SE 27	TDRb_
moisture	IMKO							1
Ground	HP3	69813	227μ V/m		-0.15	235°	MUX 9	HFTa_
heat flux			w/cm ²					10
Ground	HP3	65653	243µV/m		-0.15	235°	MUX10	HFTa_
heat flux			W/cm ²				1	30

Table 2-4: Instrumentation of soil pit

2.2.4. Water temperature

The water temperature was measured in about 30 cm depth with a Pt 100 installed underneath a float.

Parameter	Device	SN	Calibration	Conversion	Height	Logger-	Name in file
			factor	in Logger	[m]	channel	
Water	Pt100	T1		Conversion	-0.30	MUX 1	PT100_a2
Temp				in Logger			
				mV to °C			

Table 2-5: Water temperature measurements

3. Surface parameters

3.1. Meteorological site characteristics and land use types

A classification of land-use has already been worked out by Metzger et al. (2006), refining classified Landsat ETM images in the field. A re-evaluation in 2009 showed no significant changes to the existing maps near the site, therefore they are used unchanged. Preliminary analysis was performed in order to characterize wind field and footprint climatology of the measuring period from June, 25th to the 8th of August. Momentum flux and sensible heat flux were calculated with TK 2.1 (Version 090903) using a sector-wise planar fit rotation to account for the special flow field at the coastline: The two sectors were in clockwise direction $52^{\circ} - 232^{\circ}$ (land) and $232^{\circ} - 52^{\circ}$ (lake). Thereby, a sector of 7° - 97° was excluded from determination of the planar-fit coefficients due to flow distortion from the sensors. Figure 3-1 displays the wind direction and wind speed over the whole measurement period, showing that the wind came mainly from WSW - ENE for the land side and from NNW - SSO for the lake side. The footprint climatology was calculated using TERRAFEX. The underlying footprint model is a lagrangian stochastic forward trajectory model, as proposed in Göckede et al. (2004, 2006), who adapted the original model from Rannik et al, 2003. The diurnal distribution of wind directions over the period is displayed in a Hovmøller plot (Figure 3-2). The blue colors indicate wind coming from the lake; the green colors indicate a wind direction from land while the orange colors mark the wind directions where the wind might be influenced by obstacles on the site and the measurement devices. Beside the data gaps the figure shows a stable diurnal cycle over the whole period with prevailing winds from the lake, beginning from the late morning until the evening, then the regime changes to land winds at all other times. While land wind also might occur during daytime, lake wind during nighttime were very sparse. The footprint climatology for the whole period is displayed for all stratifications (Figure 3-3 a) and separately for unstable, stable and neutral conditions (Figure 3-3 b-d). In general, the footprint area (95% contribution) extends about 160 m WSW - ENE and 280m in NNW - SSO direction with more influence from the land due to more frequent wind from the respective directions (Figure 3-1). The measured fluxes from land almost stem from the nearby areas with taller and denser grass (grass+), the influence of the more disturbed meadow (grass-) is below 20% and occurs mainly under stable conditions. Contributions from the lake dominate under unstable stratification, but situations with stable stratification over the lake never occurred.

Figure 3-1: Wind rose displaying the wind direction and wind speed over the whole measurement period from 26.06 till 08.08.09.

Figure 3-2: Wind distribution for the measuring period. In blue the sector with wind directions from the lake, in green the sector with wind from land and in orange the sector with influence from the sensors.

Figure 3-3: Footprint climatology of the turbulence complex at Nam Tso, marked by the black cross, including an overview of the land use types surrounding the station. The solid line enclosed 80% and the dashed line 95% of the data. The footprints are calculated for a combination of all cases (a), for the stratification regime unstable (b) neutral (c) and stable (d).

3.2.Vegetation

The vegetation cover on the first terrace were the experiment was set up is at most places very dense and covers about 95% of the surface, only interrupted by burrows of picas (*Ochotona curzoniae*) and occasionally some gravel and sand. The vegetation in the footprint of the EC Station is mostly *Kobresia pygmeae*, which covered together with some other Kobresia species about 80% of the surface. Additionally following species were found: *Potentilla saundersiana, Potentilla spec., Potentilla bifurca, Potentilla anserina, Leontopodium pusillum, Lanea tibetica, Oxytropis spec, Astragalus spec, Pedicularis spec, Primula spec, Gentiana spec, Aster flaccidus, Taraxacum spec, Arenaria bryophylla, Oxytropis moorocroftii, Carex mooreroftii.* The height of the vegetation was 3 cm at the start of the experiment at the 25th of June and 7 cm on the 18th of July. From 27th of July till 8th of August the average height of the vegetation was10 cm while on July, 27, the tallest stems had a height of 25cm and on August 8, of 42 cm. On the upper terraces the vegetation became sparser with increasing distance the lake, and the height did not increase above 10 cm.

3.3.Soil properties

3.3.1. Soil moisture, bulk density and Porosity

During the excavation of the pit for the soil measurements, soil cores, 100 cm³, were taken as a reference to the installed TDR-Probes in order to estimate the soil water content and the bulk density. The average values for the horizon from 08 to 12 cm depth were $\rho = 0.88$ (std. = 0.13) and volumetric water content $\theta_v = 0.25$ (std. = 0.03), for the horizon from 18 to 22 cm depth ρ was 0.88 (std. = 0.19) and the volumetric water content was 0.22(std. = 0.04), from 28 to 32 cm depth ρ was 0.98 (std. = 0.09) and the volumetric water content $_v = 0.20$ (std. = 0.01) and from 51 to 55 cm depth ρ was 1.03 (std. = 0.09) and the volumetric water content was 0.48 (std. = 0.02). Figure 3-4 displays the average profile of the bulk density and the volumetric water content, the individual soil core results are documented in the Table 3-1 and Table 3-2 for June 25th and August 8th, respectively. The results from core 8 were not used for the averaging since they seem to be wrong, due to some loss of soil or other mistakes.

Figure 3-4: Profile of soil bulk density and volumetric water content at Nam Tso lake from June 25th 2009.

depth [cm]	Number of soil core cylinder	weight cylinder [g] Nam Tso	weight cylinder [g] Lhasa	weight moist [g]	weight dry [g]	vol. water content [%]	grav. water content [%]	Porosity	Bulk density [g cm ⁻³]
08-12	25	118.1	118.4	235.3	215.0	0.21	0.08	0.64	0.97
08-12	50	117.4	117.8	243.5	219.0	0.25	0.09	0.62	1.01
08-12	22	118.1	118.4	221.7	194.0	0.28	0.11	0.71	0.76
08-12	34	117.8	118.1	223.6	196.8	0.27	0.10	0.70	0.79
18-22	10	117.9	118.2	209.1	188.2	0.21	0.08	0.74	0.70
18-22	18	118.3	118.5	238.8	218.8	0.20	0.08	0.62	1.00
18-22	13	118.3	118.5	256.2	228.0	0.28	0.11	0.59	1.10
18-22	16	118.4	118.7	211.4	192.8	0.19	0.07	0.72	0.74
28-32	39	117.6	117.9	223.6	205.7	0.18	0.07	0.67	0.88
28-32	49	118.7	119.0	238.0	216.6	0.22	0.08	0.63	0.98
28-32	6	117.5	117.8	246.2	226.3	0.20	0.08	0.59	1.09
28-32	12	117.5	117.8	244.1	222.7	0.21	0.08	0.62	1.00
51-55	38	117.7	118.0	267.3	219.5	0.48	0.18	0.62	1.02
51-55	17	117.4	117.7	277.3	227.5	0.50	0.19	0.59	1.10
51-55	32	117.3	117.5	258.0	213.4	0.45	0.17	0.64	0.96
51-55	7	117.3	117.7	268.0	220.7	0.48	0.18	0.61	1.03

Table 3-1: Soil water content estimated with soil cores, 100 cm³ June 25, 2009.

Figure 3-5: Profile of soil bulk density and volumetric water content at Nam Tso lake from August 8th 2009

depth [cm]	Number of soil core cylinder	weight cylinder [g]	weight moist [g]	weight dry [g]	vol. water content [%]	grav. water content [%]	Porosity	Bulk density [g cm ⁻³]
10-14	47	118.0	231.8	200.8	0.31	0.12	0.69	0.83
10-14	23	118.6	254.7	219.6	0.35	0.13	0.62	1.01
10-14	20	118.4	252.9	219.0	0.34	0.13	0.62	1.01
30-34	26	118.4	246.0	224.5	0.22	0.08	0.60	1.06
30-34	3	119.3	235.3	214.5	0.21	0.08	0.64	0.95
30-34	8	117.9	236.8	230.4	0.06	0.02	0.58	1.13
51-55	33	117.7	265.6	215.2	0.50	0.19	0.63	0.98
51-55	21	118.8	251.9	218.0	0.34	0.13	0.63	0.99
51-55	4	119.2	265.2	232.5	0.33	0.12	0.57	1.13

Table 3-2: Soil water content estimated with soil cores, 100 cm³, August 8, 2009

3.3.2. Soil profile

Also during the installation of the soil measurement field more information about the soil properties were estimated. The excavated soil pit had a depth of 60 cm. The rooting depth of the grass was nearly 60 cm, and at the bottom of the pit water was accumulating. The profile could be separated into three horizons. The first horizon with the most organic content stretches from 0-16 cm depth, the second stretches from 16-40 cm with a high amount of sand and sandy loam and the third with a great amount of loam and clay from 40-60 cm. At 60 cm water accumulates on top of a layer of hard clay. Table 3-3 summarizes the soil characteristics as recorded in the field, using the "Bodenkundliche Kartieranleitung KA 5" and Figure 3-6 gives an impression of the profile.

depth [cm]	Signature after KA5	Description	color
0-16	SU2	High organic fraction,	brown
	Coherence 1	sandy	
	Plasticity 0		
16-40	SU3	sandy, with a slight	grey/brown
	Coherence 1	fraction of loam	
	Plasticity 0		
40-60	TU2	loam, higher fraction of	grey/orange spots
	Coherence 5	clay towards the bottom	
	Plasticity 5		

Table 3-3: Soil profile at the measurement site, characterized after KA 5.

Figure 3-6: Soil profile at Nam Tso site, depth 60cm.

4. Weather conditions

From 29.06.2009 till 06.07.2009 every night rain around midnight and strong winds.

Date	Weather condition
29.06.2009	- Heavy rain during the night
30.06.2009	- 12:19 o'clock short rain event
01.07.2009	- In the morning cloudy with short light intense rain events
	- From noon on the weather became friendlier
	- In the afternoon a mix of clouds and sunshine
02.07.2009	- Most of the day sunshine storm in the late afternoon and night
03.07.2009	Sunny day, strong wind in the afternoon and evening
04.07.2009	- From 19:36 o'clock thunderstorm around the station but not at the lake
	- Mix of clouds and sunshine during the day
05.07.2009	- Mostly sunny, strong wind
06.07.2009	- Up till 16:00 o'clock mix from clouds and sun, afterwards thunderstorm
	till about 17:30
07.07.2009	- Rain in the morning from around 6:00 o'clock till 8:30, than up till 16:00
	o'clock the weather improved, but afterwards thunderstorm in the
	mountains and bad weather and wind around the station
	- No thunderstorm in the night nearly clear sky only short light rain/snow
	events
08.07.2009	- Heavy rain in the morning till about 9 o'clock afterwards sunny
09.07.2009	- Rain until noon, afterwards sunny
10.07.2009	- Rain in morning (all night) till noon afterwards thunderstorm from Lake
	evening nice
11.07.2009	- No rain, very hot and calm
12.07.2009	- Nice day no rain
13.07.2009	- Rain before 7:00 o'clock afterwards cloudy
14.07.2009	- Rain during night, nice day
15.07.2009	- fair weather, strong wind
16.07.2009	- fair weather till about 7:00 o'clock afterwards short hail/rain event
	(strong)
17.07.2009	- Heavy thunderstorm in the mountains and over the lake
18.07.2009	- Sunny weather till 18 o'clock and afterwards thunderstorm for about 1,5
	hours
19.07.2009	- fair weather, with passing clouds, quite sunny day
20.07.2009	- fair weather, with passing clouds, quite sunny day
21.07.2009	- Rain at 13 and 16 o'clock

Date	Weather condition
22.07.2009	- morning sunny, rain over big lake, heavy rain at 17 o'clock, and hail
	storm at 20.40 till 20.56 o'clock
23.07.2009	- rain during night and in the morning with strong wind
24.07.2009	- light rain and strong wind in the morning
25.07.2009	- 19.00 till 23.00 o'clock heavy thunderstorm with hail
26.07.2009	
27.07.2009	- weather starts to get worse
28.07.2009	- cloudy all day
29.07.2009	- rain till noon, thunderstorm in the evening
30.07.2009	- heavy thunderstorm at 3.00 till 4.00 o'clock in the morning
31.07.2009	
01.08.2009	
02.08.2009	
03.08.2009	
04.08.2009	- fair weather, with passing clouds
05.08.2009	- fair weather, with passing clouds
06.08.2009	- fair weather, with passing clouds
07.08.2009	- snow in the morning
08.08.2009	- rain from 11.00 till 13.00 o'clock

Additionally Weather maps can be found in the DVD Archive; Nr. 494 under "A_Documentation", "3_weather_maps".

5. Data

5.2. Data logging and structure

Data was collected with high and low frequency. The used logger program was "TIBET_VOITSUMRA_090508_FINAL_2.CR3". The logging time was Beijing Standard Time, which is UTC/GMT +8 hours and has no daylight savings time in 2009.

Table 5-1: Overview of logged parameter, their Units, the measurement devices and the structure of the stored data.

Parameter	Unit	Device	File name	Stored in	Frequency
Wind	$m s^{-1}$	CSat3	NamCoHxxxx	B_1	20Hz
components					
Sonic	° C	CSat3	NamCoHxxxx	B_1	20Hz
temperature					
CO ₂	mmol m ⁻³	Licor 7500	NamCoHxxxx	B_1	20Hz
H ₂ O	mmol m ⁻³	Licor 7500	NamCoHxxxx	B_1	20Hz
H ₂ O	mmol m ⁻³	KH 20	NamCoHxxxx	B_1	20Hz
Inclination	mV	Inclinometer	NamCoHxxxx	B_1	20Hz
H ₂ O	mmol m ⁻³	HMP 45	NamCoLxxxx	B_2	5 min
Temperature	°C	HMP 45	NamCoLxxxx	B_2	5 min
Pressure	hPa	Vaisalla PS	NamCoLxxxx	B_2	5 min
Precipitation	counts	Rain gauge	rain_xxxxxx	B_4	5 min
Net radiation	$W m^{-2}$	CNR 1	rad_xxxxx	B_5	10 sec (from
					29.06.09,
					before 5min)
Soil heat flux	$W m^{-2}$	HFP	pt_xxxxxx	B_6	5 min
Soil	° C	Pt 100	pt_xxxxxx	B_6	5 min
temperature					
Soil moisture	mV	TDR	tdr_xxxxx	B_6	1 sec

5.3.Data availability

Filename	Begin Time	End Time	remark	
NamCoH0001	"2009-06-25 14:17:22.35"	"2009-06-25 15:45:20.65"	only 1h than gap of 5 h	
NamCoH0002	"2009-06-25 22:57:52.2"	"2009-06-26 17:02:33.1"		
NamCoH0003	"2009-06-26 17:02:33.15"	"2009-06-26 19:01:37.55"		
NamCoH0004	"2009-06-26 19:12:48.3"	"2009-06-29 08:19:08.5"	10 min gap	
NamCoH0005	"2009-06-29 08:19:08.55"	"2009-06-29 08:45:09.85"		
NamCoH0006	"2009-06-29 08:49:59.4"	"2009-06-30 07:24:35.5"		
NamCoH0007	"2009-06-30 07:24:34.55"	"2009-06-30 12:11:49.45"		
NamCoH0008	"2009-06-30 12:43:14.08"	"2009-07-02 20:26:12.15"	30 min gap	
NamCoH0009	"2009-07-02 20:26:54.8"	"2009-07-05 17:40:31.4"	30 sec gap	
NamCoH0010	"2009-07-05 17:40:31.41"	"2009-07-08 10:36:31.65"		
NamCoH0011	"2009-07-08 10:36:31.7"	"2009-07-11 11:47:40.45"		
NamCoH0012	"2009-07-11 11:47:40.5"	"2009-07-14 17:04:32.8"	gap: "2009-07-13 01:13:56.9" - "2009-07-14 17:04:32.8"	
NamCoH0013	"2009-07-14 17:04:32.85"	"2009-07-14 23:59:59.95"		
NamCoH0014	"2009-07-15 00:00:00"	"2009-07-15 23:59:59.95"		
NamCoH0015	"2009-07-16 00:00:00"	"2009-07-15 23:59:59.95"		
NamCoH0016	"2009-07-17 00:00:00"	"2009-07-17 23:59:59.95"		
NamCoH0017	"2009-07-18 00:00:00"	"2009-07-18 12:36:56.55"		
NamCoH0018	"2009-07-18 12:36:56.6"	"2009-07-20 10:29:42.7"	gap: "2009-07-20 10:29:42.75" - "2009-07-21 15:44:25.7"	
NamCoH0019	"2009-07-21 15:44:25.7"	"2009-07-22 20:35:05.35"	gaps: 2000-07-21 16:31:13 - 20:45:46; 20:53:29 - 21:14:37; 23:02:40 - 2009- 07-22 08:38:14	
NamCoH0020	"2009-07-22 20:35:05.35"	"2009-07-23 18:48:30.35"		
NamCoH0021	"2009-07-23 18:48:30.4"	"2009-07-24 11:18:15.25"		
NamCoH0022	"2009-07-24 11:18:15.3"	"2009-07-26 14:37:49.35"		
NamCoH0023	"2009-07-26 14:37:49.4"	"2009-07-28 14:01:38.35"		
NamCoH0024	"2009-07-28 14:01:38.4"	"2009-07-29 17:16:10.8"		
NamCoH0025	"2009-07-29 17:16:10.85"	"2009-08-03 09:23:41.45"		
NamCoH0026	"2009-08-03 09:23:41.5"	"2009-08-06 20:33:15.7"		
NamCoH0027	"2009-08-06 20:33:15.75"	"2009-08-09 16:25:37.7"		

Table 5-2: File structure high frequency data

Filename	Begin Time	End Time
NamCoL0001	176, 1120	176,02310
NamCoL0002	177, 1050	178,0000
NamCoL0003	178,0000	179,0000
NamCoL0004	179,0000	180,0000
NamCoL0005	180,0000	181,0000
NamCoL0006	181,0000	182,0000
NamCoL0007	182,0000	183,0000
NamCoL0008	183,0020	184,0000
NamCoL0009	184,0000	185,0000
NamCoL0010	185,0000	186,0000
NamCoL0011	186,0000	187,0000
NamCoL0012	187,0000	188,0000
NamCoL0013	188,0000	189,0000
NamCoL0014	189,0000	190,0000
NamCoL0015	190,0000	191,0000
NamCoL0016	191,0000	192,0000
NamCoL0017	192,0000	193,0000
NamCoL0018	193,0000	194,0000
NamCoL0019	194,0000	195,0000
NamCoL0020	195,0000	195, 1705
NamCoL0021	199, 1240	200,0000
NamCoL0022	200,0000	200, 2315
NamCoL0023	201, 0855	202,0000
NamCoL0024	202,0000	202, 2305
NamCoL0025	203, 0840	204,0000
NamCoL0026	204,0000	205,0000
NamCoL0027	205,0000	205, 1120
NamCoL0028	207, 1440	208,0000
NamCoL0029	208,0000	209,0000
NamCoL0030	209,0000	210,0000
NamCoL0031	210,0000	211,0000
NamCoL0032	211,0000	212,0000
NamCoL0033	212,0000	213,0000
NamCoL0034	213,0000	213, 1205
NamCoL0035	214, 1340	214, 1355
NamCoL0036	215, 0925	216,0000
NamCoL0037	216, 1935	217,0000
NamCoL0038	217,0000	218,0000
NamCoL0039	218,0000	218, 2035

Table 5-3: File structure low frequency data

The radiation, precipitation data and the data from the soil complex are stored as daily files, but there might be gaps in the time stamp.

5.4.Logbook EC Station

Table 5-4: Logbook of EC Station, dates and remarks for data loss and disturbance of measurement

Date	remark				
25.06.09	Test of rain gauge, no rain that day				
29.06.09	New Logger program, loss of data, 9 o'clock running again				
30.06.09	Power off, system shut down from 07:28 till 8:00, card change, at 9:00 Prayer flags,				
	Logger shut down from 11:45 till 11:50 due to change of power supply, from 12:19 till				
	12:50 problems with card change, disturbance of fetch at 20:51				
01.07.09	Adjustment of lines from EC complex				
02.07.09	20: 26 card change, Power off at 21:23 o'clock at the station, system running				
05.07.09	New adjustment of lines for EC complex (18 o'clock), card change				
06.07.09	Check of alignment of CSAT at 14:55 o'clock				
08.07.09	At 10 o'clock check of lines for EC station				
10.07.09	In the morning (8.30) only logger battery, than power off, restart at 11:40 o'clock				
11.07.09	New adjustment of lines for EC complex and radiation (2 turns) (11:42 o'clock), card				
	change				
14.07.09	17 o'clock card change				
15.07.09	Power out during night, restarted at 8:30 o'clock				
18.07.09	Card change at 12:37 o'clock, between 15:50 and 16:05 o'clock bracing of EC Station				
	renewed, same at 16:59 o'clock for the radiation				
20.07.09	Power off during the night, restart at 9:00 o'clock				
21.07.09	Power off during the night, restart at 8:35 o'clock, power was off at 20:50 restart but went				
	off again, than restart at 9.05 o'clock, shut down at 10.00 again, at 20:50 check of bracings				
22.07.09	Restart at 8:30 o'clock, start of solar solstice till about 10 o'clock				
	At 20.33 o'clock inclinometer test, at 20.35 o'clock card change				
23.07.09	11 o'clock work on power, restart of system 16 o'clock				
24.07.09	11.19 o'clock card change and mast shaking, 11.26 o'clock exchange of 12V PS, Power of				
	at 21 o'clock				
25.07.09	Power off in the morning, restart at 8.30 o'clock failed, broken fuse at solar panel				
26.07.09	14.40 o'clock, only on logger battery since fuse of solar panel broken, exchanged, card				
	change				
28.07.09	14.04 o'clock card change, 14.20 o'clock fixing of bracing				
29.07.09	17.20 o'clock card change				
07.08.09	Disassembling of system				
08.08.09	Disassembling of system				

6. DVD Archive

The raw data and additional information can be found in the DVD archive of the Department of micrometeorology, University of Bayreuth, on DVD Nr. 494.

Figure 6-1: Structure of the DVD Nr 494 (Data collected at Nam Tso in 2009).

7. Literature

Ad-hoc-AG Boden (2005), Bodenkundliche Kartieranleitung, 5 Aufl., pp. 438, Hannover

Göckede M., Markkanen T., Hasager C. B., Foken T. (2006): Update of a footprint-based approach for the characterization of complex measurement sites. *Boundary Layer Meteorology 118*, 635-655

Göckede M., Rebmann C., Foken T. (2004): A combination of quality assessment tools for eddy covariance measurements with footprint modeling for the characterization of complex sites. *Agricultural And Forest Meteorology* 127, 175-188

Metzger, S.; Ma, Y.; Markkanen, T.; Göckede, M.;Li, M .& Foken, T. (2006) Quality Assessment of Tibetan Plateau Eddy Covariance Measurements Utilizing Footprint Modeling. *Advances in Earth Science*, 21, 1260-1268

Rannik, U.; Markkanen, T.; Raittila, J.; Hari, P. & Vesala, T. (2003) Turbulence statistics inside and over forest: Influence on footprint prediction *Boundary-Layer Meteorology*, *109*, 163-189

http://en.poehali.org/maps http://www.ceop-aegis.org/ http://www.tip.uni-tuebingen.de/ www.chinatouristmaps.com

8. Appendix

A. Logger configuration

CR3000 Logger configuration S/N Logger: 3545 Experiment: Tibet 2009

Channel	Channels								
SE	Diff	Device	Serial nr	Wiring	Comments				
1	1H	HMP	T4650013	yellow	Blue = $12V$, purple = Ground				
2	1L	HMP	T4650013	brown					
Ground		HMP		red					
3	2H	pressure transmitter	E 1810003	white	pink = 12 V, blue = Ground				
4	2L	KH20 signal	1643	white	red = 12V, blue = Ground				
Ground		KH20 Ground/shield	1643	black/grey					
5	3H MUX		E4938	yellow	to MUX COM Even H				
6	3L	MUX	E4939	white	to MUX COM Even L				
Ground									
7	4H	Inclinometer	Inc.02	green	yellow = 12V, grey = Ground				
8	4L	Inclinometer	Inc.02	white					
Ground		Inclinometer	Inc.02	brown					
9	5H								
10	5L								
Ground									
11	6H								
12	6L								
Ground									
13	7H								
14	7L								
Ground									
15	8H	CNR1	990197	red	10.82 x 10^6 V/Wm ²				
16	8L	CNR1	990197	blue					
Ground									
17	9H	CNR1	990197	white					
18	9L	CNR1	990197	black					
Ground									
19	10H	CNR1	990197	grey					
20	10L	CNR1	990197	yellow					
Ground									
21	11H	CNR1	990197	brown					
22	11L	CNR1	990197	green					
Ground									
23	12H	CNR1	990197	yellow	red = IX1, $blue = IXR$				
24	12L	CNR1	990197	green					
Ground									
25	13H	TDR	14073	white	External Power				
26	13L	TDR	14072	white	green = 12V, brown = Ground				

Ground					
27	14H	TDR	14074	white	Attention: Ground in plug
					was not connected right
Ground					
Excitatio	on Vol	tage			
VX1					
VX2					
Ground					
VX3					
VX4					
Ground					
Continu	ous Ai	nalog Outputs			
CAO1					
CAO2					
Ground					
Excitatio	on Cui	rent		I	
		Device	Serial nr	Wiring	Comments
IX1		CNR1	990197	red	
IX2		MUX	E4939	green	to MUX COM Odd H
IX3					
IXR		CNR1/MUX		blue/Brown	brown to MUX COM Odd L
Pulse Co	ount	1			
G 1		D '	010001		no matter which cable is
Ground		Rain gauge	010291	white/red	ground
PI C 1		Rain gauge	010291	white	Calibration: 0.1 for mm
Ground					
P2					
Ground					
P3					
Ground D4					
P4					
COM D	anto.				
COM PC		MUV	E4020	groop	to MUX P_{00} / white $-12V$
	1 7 1	MUA	1.4939	green	to MUX CLK / brown $=$
C2	Rx1	MUX	E4939	vellow	ground
C3	Tx2			<u> </u>	8
C4	Rx2				
Ground					
C5	Tx3				
C6	Rx3				
C7	Tx4				
C8	Rx4				

Ground				
Power out	i I			-
5V				
Ground				
12V S1				
12V S2				
Ground				
12V 1				
12V 2				
Ground	Licor	75H-1200	black + white	
	Csat3	1756	black	
SDM				
SDM1	Licor	75H-1200	grey	
	Csat3	1756	green	
SDM2	Licor	75H-1200	blue	
	Csat3	1756	white	
SDM3	Licor	75H-1200	brown	
	Csat3	1756	brown	
Power in				
Ground				to 12V power supply + USV
12V				

Multiplexer AM 16/32B S/N Multiplexer: 4939

Experiment: Tibet 2009

Chann	Channels							
SE	Diff	Device	Serial nr	Wiring	Comments			
1	1H	PT100 long	T1	green	Water temperature			
	1L	PT100 long	T1	brown	Water temperature			
	Ground							
	2H	PT100 long	T1	yellow	Water temperature			
	2L	PT100 long	T1	white	Water temperature			
	Ground							
2	3H	PT100 long	T2	green				
	3L	PT100 long	T2	brown				
	Ground							
	4H	PT100 long	T2	yellow				
	4L	PT100 long	T2	white				
	Ground							
3	5H	PT100 long	Т3	green				
	5L	PT100 long	Т3	brown				

	Ground				
	6H	PT100 long	T3	yellow	
	6L	PT100 long	T3	white	
	Ground				
4	7H	PT100 long	T4	green	
	7L	PT100 long	T4	brown	
	Ground				
	8H	PT100 long	T4	yellow	
	8L	PT100 long	T4	white	
	Ground				
5	9H	PT100 short	T5	black	
	9L	PT100 short	T5	orange	
	Ground				
	10H	PT100 short	T5	brown	
	10L	PT100 short	T5	red	
	Ground				
6	11H	PT100 short	T6	black	
	11L	PT100 short	T6	orange	
	Ground				
	12H	PT100 short	T6	brown	
	12L	PT100 short	T6	red	
	Ground		_		
7	13H	PT100 short		black	
	13L	PT100 short		orange	
	Ground		T7		
	14H	PT100 short	T7	brown	
	14L	PT100 short		red	
	Ground				
8	15H	PT100 short	T8	black	
	15L	PT100 short	T8	orange	
	Ground				
	16H	PT100 short	T8	brown	
	16L	PT100 short	Т8	red	
	Ground				
9	17H				
	I/L				
	Ground				
	18H	Heat flux plate	HP3 69813	blue	227µV/mW/cm ²
	18L	Heat flux plate	HP3 69813	brown	
	Ground				
10	19H				
	19L				
	Ground				
	20H	Heat flux plate	HP3 65653	blue	$243\mu V/mW/cm^2$
	20L	Heat flux plate	HP3 65653	brown	must be multiplied with -1
	Ground				
11	21H				
	21L				

	Ground		
	22H		
	22L		
	Ground		
12	Ground		
	23H		
	23L		
	Ground		
	24H		
	24L		
	Ground		
13	25H		
	25L		
	Ground		
	26H		
	26L		
	Ground		
14	27H		
	27L		
	Ground		
	28H		
	28L		
	Ground		
15	29H		
	29L		
	Ground		
	30H		
	30L		
	Ground		
16	31H		
	31L		
	Ground	 	
	32H	 	
	32L		
	Ground		

	RES	Logger	green	to Logger C1 Tx (Com1)	
	CLK	Logger	yellow	to Logger C1 Rx (Com1)	
	Ground	Logger	brown	power from Logger	
	12V	Logger	white	power from Logger	
COM	Odd H	Logger			
	Odd L	Logger	green	to Logger IX2	
	Ground	Logger	brown	to Logger IXR	
	Even H	Logger			
	Even L	Logger	er yellow to Logger Diff 3H		
	Ground	Logger	white	to Logger Diff 3L (SE6)	

B. Licor Calibration

Device			must value	actual value	
LiCor7500 SN	zero	CO2	0	0.77 mmol/(m^3)	19.25 µmol/mol
1200	zero	H20	0	-9.5 mmol/(m^3)	-0.24 mmol/mol
	span	CO2	352.59 µmol/mol	14.41 mmol/(m^3)	365.38 µmol/mol
	span	H20	16.46°C dew point T	17.27°C dew point T	

	Α	В	С	D	Е	XS	Z
CO ₂	153.342	4598.71	4.88349e+07	-1.480160e+10	1.912250e+12	0.0043	-0.0005
H ₂ O	4936.129	408908.	-1.61506e+08			-0.0006	0.0177

Additional Information can be found in the Configuration file "D_Licor_Calibration" on DVD Nr 494.

	-		
Nr	Author(s)	Title	Year
01	Foken	Der Bayreuther Turbulenzknecht	01/1999
02	Foken	Methode zur Bestimmung der trockenen Deposition von Bor	02/1999
03	Liu	Error analysis of the modified Bowen ratio method	02/1999
04	Foken et al.	Nachfrostgefährdung des ÖBG	03/1999
05	Hierteis	Dokumentation des Experimentes Dlouhá Louka	03/1999
06	Mangold	Dokumentation des Experimentes am Standort Weidenbrunnen, Juli/August 1998	07/1999
07	Heinz et al.	Strukturanalyse der atmosphärischen Turbulenz mittels Wavelet-Verfahren zur Bestimmung von Austauschprozessen über dem antarktischen Schelfeis	07/1999
08	Foken	Comparison of the sonic anomometer Young Model 81000 during VOITEX-99	10/1999
09	Foken et al.	Lufthygienisch-bioklimatische Kennzeichnung des oberen Egertales, Zwischenbericht 1999	11/1999
10	Sodemann	Stationsdatenbank zum BStMLU-Projekt Lufthygienisch-bioklimatische Kennzeichnung des oberen Egertales	03/2000
11	Neuner	Dokumentation zur Erstellung der meteorologischen Eingabedaten für das Modell BEKLIMA	10/2000
12	Foken et al.	Dokumentation des Experimentes VOITEX-99	10/2000
13	Bruckmeier et al.	Documenation of the experiment EBEX-2000, July 20 to August 24, 2000	01/2001
14	Foken et al.	Lufthygienisch-bioklimatische Kennzeichnung des oberen Egertales	02/2001
15	Göckede	Die Verwendung des Footprint-Modells nach Schmid (1997) zur stabilitätsabhängigen Bestimmung der Rauhigkeitslänge	03/2001
16	Neuner	Berechnung der Evaporation im ÖBG (Universität Bayreuth) mit dem SVAT-Modell BEKLIMA	05/2001
17	Sodemann	Dokumentation der Software zur Bearbeitung der FINTUREX-Daten	08/2002
18	Göckede et al.	Dokumentation des Experiments STINHO-1	08/2002
19	Göckede et al.	Dokumentation des Experiments STINHO-2	12/2002
20	Göckede et al	Characterisation of a complex measuring site for flux measurements	12/2002
21	Liebethal	Strahlungsmessgerätevergleich während des Experiments STINHO-1	01/2003
22	Mauder et al.	Dokumentation des Experiments EVA_GRIPS	03/2003
23	Mauder et al.	Dokumentation des Experimentes LITFASS-2003, Dokumentation des Experimentes GRASATEM-2003	12/2003
24	Thomas et al.	Documentation of the WALDATEM-2003 Experiment	05/2004
25	Göckede et al.	Qualitätsbegutachtung komplexer mikrometeorologischer Messstationen im Rahmen des VERTIKO-Projekts	11/2004
26	Mauder & Foken	Documentation and instruction manual of the eddy covariance software package TK2	12/2004
27	Herold et al.	The OP-2 open path infrared gas analyser for CO_2 and H_2O	01/2005
28	Ruppert	ATEM software for atmospheric turbulent exchange measurements using eddy covariance and relaxed eddy accumulation systems and Bayreuth whole-air REA system setup	04/2005
29	Foken (Ed.)	Klimatologische und mikrometeorologische Forschungen im Rahmen des Bayreuther Institutes für Terrestrische Ökosystemforschung (BITÖK), 1989-2004	06/2005
30	Siebeke & Serafimovich	Ultraschallanemometer-Überprüfung im Windkanal der TU Dresden 2007	04/2007

Volumes in the series ,University of Bayreuth, Department of Micrometeorology, Arbeitsergebnisse'

31	Lüers & Bareiss	The Arctic Turbulence Experiment 2006 PART 1: Technical documentation of the ARCTEX 2006 campaign, May, 2nd to May, 20th 2006	07/2007
32	Lüers & Bareiss	The Arctic Turbulence Experiment 2006 PART 2: Visualization of near surface measurements during the ARCTEX 2006 campaign, May, 2nd to May, 20th 2006	07/2007
33	Bareiss & Lüers	The Arctic Turbulence Experiment 2006 PART 3: Aerological measurements during the ARCTEX 2006 campaign, May, 2nd to May, 20th 2006	07/2007
34	Metzger & Foken et al.	COPS experiment, Convective and orographically induced precipitation study, 01 June 2007 – 31 August 2007, Documentation	09/2007
35	Staudt & Foken	Documentation of reference data for the Experimental areas of the Bayreuth Center for Ecology and Environmental Research (BayCEER) at the Waldstein site	11/2008
36	Serafimovich et al.	ExchanGE processes in mountainous Regions (EGER) – Documentation of the Intensive Observation Period (IOP1), September, 6 th to October, 7 th 2007	01/2008
37	Serafimovich et al.	ExchanGE processes in mountainous Regions (EGER) – Documentation of the Intensive Observation Period (IOP2), June, 1 st to July, 15 th 2008	10/2008
38	Siebicke	Footprint synthesis for the FLUXNET site Waldstein/Weidenbrunnen (DE-Bay) during the EGER experiment.	12/2008
39	Lüers & Foken	Jahresbericht 2008 zum Förderprojekt 01879- Untersuchung der Veränderung der Konzentration von Luftbeimengungen und Treibhausgasen im hohen Fichtelgebirge 2007 - 2013	01/2009
40	Lüers & Foken (Ed.)	Proceedings of the International Conference of "Atmospheric Transport and Chemistry in Forest Ecosystems" Castle of Thurnau, Germany, Oct 5 to Oct 8, 2009	10/2009
41	Biermann et al.	Mesoscale circulations and Energy and gaS exchange Over the Tibetan Plateau Documentation of the Micrometeorological Experiment, Nam Tso, Tibet 25 th of June – 08 th of August 2009	11/2009