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ABSTRACT

Aim The aims of this study are to resolve terminological confusion around

different types of species–area relationships (SARs) and their delimitation from

species sampling relationships (SSRs), to provide a comprehensive overview of

models and analytical methods for SARs, to evaluate these theoretically and

empirically, and to suggest a more consistent approach for the treatment of

species–area data.

Location Curonian Spit in north-west Russia and archipelagos world-wide.

Methods First, I review various typologies for SARs and SSRs as well as

mathematical models, fitting procedures and goodness-of-fit measures applied to

SARs. This results in a list of 23 function types, which are applicable both for

untransformed (S) and for log-transformed (log S) species richness. Then,

example data sets for nested plots in continuous vegetation (n = 14) and islands

(n = 6) are fitted to a selection of 12 function types (linear, power, logarithmic,

saturation, sigmoid) both for S and for log S. The suitability of these models is

assessed with Akaike’s information criterion for S and log S, and with a newly

proposed metric that addresses extrapolation capability.

Results SARs, which provide species numbers for different areas and have no

upper asymptote, must be distinguished from SSRs, which approach the species

richness of one single area asymptotically. Among SARs, nested plots in

continuous ecosystems, non-nested plots in continuous ecosystems, and isolates

can be distinguished. For the SARs of the empirical data sets, the normal and

quadratic power functions as well as two of the sigmoid functions (Lomolino,

cumulative beta-P) generally performed well. The normal power function (fitted

for S) was particularly suitable for predicting richness values over ten-fold

increases in area. Linear, logarithmic, convex saturation and logistic functions

generally were inappropriate. However, the two sigmoid models produced

unstable results with arbitrary parameter estimates, and the quadratic power

function resulted in decreasing richness values for large areas.

Main conclusions Based on theoretical considerations and empirical results, I

suggest that the power law should be used to describe and compare any type of

SAR while at the same time testing whether the exponent z changes with spatial

scale. In addition, one should be aware that power-law parameters are

significantly influenced by methodology.
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INTRODUCTION

Increasing species richness (S) with increasing area of inves-

tigation (A) is one of the most fundamental ‘laws’ in ecology

(Schoener, 1976; Lawton, 1999; Lomolino, 2000). Numerous

publications describe, mathematically characterize, and inter-

pret the underlying mechanisms of species–area relationships

(SARs) for nearly any biome or major taxon, and for scales

ranging from square millimetres to the entire surface of the

Earth (Connor & McCoy, 1979, 2001; Williamson, 1988;

Rosenzweig, 1995; Lomolino, 2001; Drakare et al., 2006).

The mathematical description of SARs is of great theoretical

and practical interest. First, theories of island biogeography

(e.g. MacArthur & Wilson, 1967; Lomolino & Weiser, 2001;

Whittaker & Fernández-Palacios, 2007), species abundance

distributions (e.g. Preston, 1962; May, 1975; Harte et al., 1999;

Ovaskainen & Hanski, 2003; Šizling & Storch, 2004; William-

son & Gaston, 2005; Pueyo, 2006) and neutral models (Bell,

2001; Hubbell, 2001; Rosindell & Cornell, 2007) predict

differently shaped SARs, and thus the actual shapes of SARs

provide a means for testing these theories. Moreover, it is

possible to analyse how taxon, scale, ecosystem or geographic

location influence the function type of the SAR and its

parameters (e.g. Crawley & Harral, 2001; Keeley & Fothering-

ham, 2003; Storch et al., 2005; Chiarucci et al., 2006; Drakare

et al., 2006), and this in turn facilitates the testing of

underlying ecological theories (e.g. Stark et al., 2006). Scale-

dependent processes are proposed as causes for the different

shapes of portions of SARs (Preston, 1960; Shmida & Wilson,

1985; Rosenzweig, 1995; Hubbell, 2001; Whittaker et al., 2001;

Turner & Tjørve, 2005), and understanding the area effect in

SARs allows one to test other effects on biodiversity (Buckley,

1985; Whittaker et al., 2001; Price, 2004).

SARs have also been used in comparing species-richness

values of different areas, in extrapolating species richness (e.g.

Colwell & Coddington, 1994; He & Legendre, 1996; Plotkin

et al., 2000), and in producing biodiversity maps (e.g. Kier

et al., 2005). Finally, SARs have been applied within conser-

vation biogeography, for example for identifying biodiversity

hotspots (e.g. Veech, 2000; Fattorini, 2007), for optimal reserve

planning (e.g. Desmet & Cowling, 2004), for predicting species

loss after habitat loss (e.g. Connor & McCoy, 2001; Ulrich,

2005) and for assessing human impacts on biodiversity (e.g.

Tittensor et al., 2007).

Many models have been applied to SARs (reviewed in

Tjørve, 2003). However, the two oldest, namely the power

function (Arrhenius, 1920, 1921; Preston, 1962) and the

logarithmic function (often erroneously termed the exponen-

tial function; Gleason, 1922), are the two most frequently

applied. When different function types are compared, the best

fit is most often reported for the power function (Williamson,

1988; Drakare et al., 2006; Dengler & Boch, 2008), which – on

untransformed axes – results in a convex upward-shaped curve

without an upper limit. Despite these general findings, many

authors claim that SARs should have an upper asymptote for

theoretical reasons, although they usually do not provide

empirical data to substantiate this assumption (Connor &

McCoy, 1979; He & Legendre, 1996; Schmitt, 1999; Lomolino,

2000, 2001; Tjørve, 2003).

Despite the long-recognized importance of species–area

analyses, most existing publications on this topic share a

number of serious shortcomings: (1) many new models have

been proposed solely on theoretical grounds (e.g. Lomolino,

2000; Tjørve, 2003); (2) the few published empirical studies

usually assume one model a priori, or rarely a few are

compared (but see Flather, 1996, and Stiles & Scheiner, 2007,

who compare nine and 15 models, respectively, but do this for

species sampling relationships and not for real SARs); (3) there

is no general agreement on how to select the ‘best’ model

(Connor & McCoy, 1979; Fattorini, 2007); (4) despite general

acknowledgement of the effect of different transformations of

the dependent variable, for example as S, log S, or A/S

(Williamson, 1988; Loehle, 1990), this effect has not been

considered consistently; and (5) proper SARs and species

sampling relationships (SSRs) are often confused, despite their

mathematical dissimilarity (see Scheiner, 2003, 2004; Gray

et al., 2004a,b; Hui, 2008).

Therefore, this article aims:

(1) to elaborate the differences between different categories of

relationships, including a clear differentiation of SARs from

SSRs,

(2) to review possible SAR models comprehensively,

(3) to provide a critique of and new ideas for the fitting and

comparison of different models,

(4) to assess a range of models and goodness-of-fit metrics

theoretically and empirically (with example data sets both

from continuous ecosystems and from isolates), and

(5) to suggest a more consistent approach for the treatment of

species–area data.

THEORETICAL AND TERMINOLOGICAL

BACKGROUND

Types of curves

Scheiner (2003) initiated renewed debate (Gray et al., 2004a,b;

Scheiner, 2004; Whittaker & Fernández-Palacios, 2007; see

Table 1) on the various types of SARs and the need to

distinguish them from what he calls accumulation or

rarefaction curves. His study distinguishes six variants of SARs,

grouped into four major types: type I – nested data with only

one measurement for each size; type II – a contiguous grid of

equal-size cells; type III – a non-contiguous grid of equal-size

cells; and type IV – islands of irregular shapes and sizes. Types II

and III each have variants A and B, which differ in combining

adjacent or randomly selected quadrats, respectively, to obtain

richness values for larger areas. The same classification was

recently applied by Ulrich & Buzko (2007) with, however,

different names. Gray et al. (2004a,b) recognize only Scheiner’s

type IV as a SAR, with type I coming under the category of an

accumulation curve, and types II and III as rarefaction curves. In

addition, they argue that it is irrelevant whether such accumu-
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lation and rarefaction curves are from defined areas or plotless

sampling. Scheiner (2003, 2004), by contrast, restricts these two

terms to plotless sampling methods. In a similar fashion to Gray

et al. (2004a,b), Gotelli & Colwell (2001) apply ‘taxon sampling

curve’ irrespective of plot-based vs. plotless methods. These

authors distinguish four types of such sampling curves,

depending on whether individuals or samples are the unit of

replication and the use of either accumulation (successive

increase of the original sampling) or rarefaction (mean values of

a repeated randomized re-sampling procedure; see Table 1).

Most recently, Whittaker & Fernández-Palacios (2007) sug-

gested a new typology similar to that of Gray et al. (2004a,b),

but with other names. Noting that the terms ‘species–area curve’

and ‘species–area relationship’ have been used in the literature

to refer to a range of very different phenomena, they argue in

favour of using more precisely prescribed terms. In their view,

the key distinction is between Scheiner’s type IV, which they

term ‘island species–area relationships’ (ISARs), and the other

three forms, all of which they regard as variants of species

accumulation (or sampling) curves.

Table 1 Proposed typology of species-richness relationships compared with the suggestions of Scheiner (2003, 2004), Gray et al. (2004a,b)

and Whittaker & Fernández-Palacios (2007).

Type Definition Scheiner Gray et al.

Whittaker &

Fernández-Palacios

Species–area

relationships (SARs)

Each point refers to a contiguous

plot (or to a mean value of several

such plots)

A. Continuous

ecosystems, nested plots

– Subplots of predefined sizes and

shapes are placed within the largest

plot

Species accumulation*,

rarefaction*

SACs*

a. Single values Each point refers to a single

richness count

I

b. Averaged values Each point refers to the mean of

richness counts for several equally

sized plots

IIA

i. Fully nested Each plot is nested within the next

larger plot

ii. Partly nested All plots are nested within the

largest plot but the smaller subplots

are placed independently of each

other according to a systematic or

random design

B. Continuous ecosystems,

non-nested plots

– Irregularly shaped units with

individual sizes but adjacent to

each other (e.g. countries)

IV* Species–area* –

C. Isolates – True island and habitat ‘islands’ IV* Species–area* ISARs

Species sampling

relationships (SSRs)

Each point refers to a sample (i.e. an

individual, a plotless sample, or a

plot) randomly drawn from a

defined larger area (or to the

combination of several such

samples)

A. Species accumulation

curves

– Species increase according to the

original sequence of recording

Species

accumulation

Species accumulation* SACs*

a. Individuals

b. Samples

B. Rarefaction curves – Mean species increase based on

repeated randomized re-sampling

from the total sample of a species

accumulation curve

Rarefaction,

Species–area*

Rarefaction* –

a. Individuals

b. Samples incl. IIB, IIIA, IIIB

In Whittaker & Fernández-Palacios (2007), the acronyms SACs and ISARs denote ‘species accumulation curves’ and ‘island species–area relation-

ships’, respectively. *Partial correspondences. For species sampling relationships, I adopt the typology of Gotelli & Colwell (2001). For SARs type A,

there are two possible subdivisions, which can be combined (e.g. subtypes A.a.ii or A.b.i). The classification of this table can be applied not only to

species but also to taxa of any rank (taxon–area relationship, taxon sampling relationship).
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All the reviewed typologies have their merits, but fail to

depict and delimit the full variety of species diversity curves.

Thus, I here provide a modified typology (Table 1). I suggest

distinguishing species–area relationships (SARs) from species

sampling relationships (SSRs) because these two categories

have fundamentally different curve shapes. Whereas SARs in

this sense are always unbound functions without an upper

limit (Williamson et al., 2001, 2002; Dengler, 2003, 2008),

SSRs necessarily approach a maximum richness value asymp-

totically (Gotelli & Colwell, 2001; Christensen, 2007; Dengler,

2008). For SSRs, the actual sampling may be carried out on

plots of defined area, but only in SARs does each richness value

of a curve refer to a contiguous area. Here, I mean ‘contiguous’

in the sense that the area is circumscribed by a single line and

no part inside these bounds is excluded from the species count,

although parts of this area may represent unsuitable habitat for

the taxon considered. On the one hand, area is a meaningful

biological parameter only when it is contiguous, because

biological processes such as dispersal or lateral spread normally

act much more intensively on immediately adjacent areas than

on disjunct areas. On the other hand, an area of a certain size

consisting of non-contiguous subplots randomly placed within

some larger area (as types IIB and IIIB of Scheiner, 2003) will

normally exhibit much higher richness values than will the

same area in the contiguous case (e.g. Rosenzweig, 1995; Hui,

2008). This is a result of spatial autocorrelation (distance

decay), which is a fundamental feature of natural systems (e.g.

Williamson, 1988; Bell et al., 1993; Legendre, 1993; Nekola &

Brown, 2007). Thus, my delimitation of SARs deviates both

from Scheiner’s (2003, 2004) by excluding his types IIB, IIIA

and IIIB, and from those of Gray et al. (2004a,b) and

Whittaker & Fernández-Palacios (2007) by including types I

and IIA alongside the unquestioned type IV (Table 1).

Although it seems reasonable that for SSRs we should adopt

the classification proposed by Gotelli & Colwell (2001), for

SARs a new schema had to be developed because in the so-far

most comprehensive classification, that of Scheiner (2003),

some subtypes are inappropriately classified or missing

(Table 1). Type A comprises all nested relationships (i.e. types

I and IIA of Scheiner), irrespective of whether they arise from

one (subtype A.a) or several (subtype A.b) subplot replications.

Thus, I apply ‘nested’ in a wider sense than does Scheiner

(2003, 2004), including all sampling designs where all subplots

are contained within the largest. Type A is the ‘purest’ form of

a SAR, with all data points representing the same environ-

mental conditions and only plot size varying, provided that the

smaller areas are analysed and averaged using an adequate

number of subplots (Dengler, 2008; Dengler & Boch, 2008). As

the coefficient of variation of species richness usually decreases

with increasing plot size, it is reasonable to increase the

number of replicates towards smaller plot sizes (Barkman,

1989; Dengler, 2006). Type C relationships, by contrast,

represent isolates; that is, true islands and habitat islands.

Type B is intermediate between types A and C, as it refers to

continuous ecosystems (as in type A) but analyses non-nested

areas of dissimilar size and shape, such as political or natural

geographical entities (as in type C). Whereas in types A and B

shapes and sizes of the analysed areas are delimited by humans,

the areas in type C have pre-existing bounds.

Possible models

Tjørve (2003) has provided the most comprehensive overview

of possible SAR models to date (14 types), including typology

and characterization. He distinguishes between convex and

sigmoid models, with all but two of the convex models

approaching an upper asymptote (saturation functions).

Because several relevant functions are missing in Tjørve

(2003), I publish here an augmented list without repeating

the details of his review (Table 2). Only for the nine newly

added models (or model families) do I give brief descriptions.

The linear (1) and exponential (10) functions have been

used in the literature basically because they allow linear

regression (Connor & McCoy, 1979; Gitay et al., 1991).

Because they predict an increase of species richness with area

by a factor equal to or higher than unity, they lack theoretical

plausibility, although they sometimes are reported to result in

good or even best fits (Connor & McCoy, 1979).

For the power (2) and logarithmic (7) functions, several

extensions have been suggested that may allow a better fit but

mostly have no theoretical justification. Gitay et al. (1991)

suggested two variants of the Gleasonian (logarithmic) model

(8–9), with the aim of obtaining models ‘mathematically

intermediate’ between the logarithmic and power functions.

They called them ‘exponential, square root’ and ‘exponential,

general root’ [in Table 2 as logarithmic (quadratic) and

logarithmic (general power)] and found that they both fitted

their data better than the logarithmic or power function.

Similarly, Chiarucci et al. (2006) added a quadratic term to the

power function (3) and found a better fit than for the normal

power function. As indicated in Table 2, one may even add

terms of higher polynomial order to the power function (4).

Whereas the previous additions to convex models were

designed with the sole aim of better approximating real data,

Plotkin et al. (2000) suggested a modification of the power

function based on the theoretical assumption of a spatial

persistence function instead of the self-similarity of the simple

power function (S = c Az exp [P(A)], where P(A) is an infinite

polynomial in A (6)). Truncating after the first term leads to

the approximation given as ‘power function (Plotkin, approx-

imate)’ in Table 2 (5).

Regarding upper-asymptotic models applied to SARs,

Tjørve (2003) covered the majority but there is some

confusion over terminology. Basically, there are convex

saturation functions (11–14, hereafter referred to as ‘satura-

tion functions’) and sigmoid functions (15–23). The Micha-

elis–Menten function (11), called the Monod function by

Tjørve (2003), was applied to SARs/SSRs for example by

Schmitt (1999) and Kluth & Bruelheide (2004). Lomolino

(2000) proposed a function that he claimed to be the Hill

function [Morgan–Mercer–Flodin function (20)] but is not,

and thus it was named the Lomolino function (21) by Tjørve
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(2003). Similarly, He & Legendre (1996) used a function that

they called the logistic function but that differs from the

standard logistic function (16; see, for example, Krebs, 1985;

Tjørve, 2003) and thus was named the He–Legendre function

(17) by Fattorini (2007).

Fitting and comparison of curves

During the first decades of species–area research, curve-fitting

was done exclusively using linear regression (e.g. Connor &

McCoy, 1979). Whereas linear and logarithmic functions can

be directly fitted by linear regression, the power function

(S = c Az) needs to be transformed logarithmically (log S = log

c + z log A). Although both power function ‘versions’ are

mathematically equivalent, they give different estimates for the

model parameters and R2 (Loehle, 1990) because the untrans-

formed version has an additive error term and the transformed

version has a multiplicative error term (Cresswell & Vidal-

Martinez, 1995). There have been vigorous discussions over

which version of the power function is biologically or

statistically more appropriate. Cresswell & Vidal-Martinez

(1995), for example, suggested the use of the untransformed

power law (i.e. the application of non-linear regression)

because they saw ‘no good reason to use multiplicative error

terms’. Williamson (1988), on the other hand, suggested that

the transformed power law is often statistically more appro-

priate because the residuals are usually less heteroscedastic

after transformation. Actually, there is no a priori reason to fit

a model for S rather than for log S (Williamson, 1988; Quinn

& Keough, 2002). It is up to the researcher to decide whether

to reduce the absolute or the logarithmic deviation by

choosing one of these options. However, different SAR models

should be compared only when the error terms are measured

in the same mathematical ‘space’ (i.e. with the same transfor-

mation of S; Loehle, 1990; Gitay et al., 1991; Fattorini, 2007).

Here, two important aspects rarely considered in the literature

must be pointed out: (1) apart from the power function any

SAR model can be fitted both for S and for log S; and (2)

fitting a function in one space of S and then assessing the

goodness-of-fit in the other space is also possible. This, for

example, allows comparison of a power function fitted for log

S with a logarithmic function fitted for S.

In comparing SAR models, R2 is still the most frequently

used statistic. The use of R2
adj is necessary when comparing

models with different numbers of parameters (Loehle, 1990;

Quinn & Keough, 2002). More recently, information criteria

such as Akaike’s information criterion (AIC) and the Bayesian

information criterion (BIC) have been suggested as more

Table 2 Overview of the major models used for fitting species–area relationships and their characteristics.

No. Curve name Model Parameters Source Upper asymptote

1 Linear function* S = b0 + b1 A 2 Connor & McCoy (1979) No

2 Power function* S = b0 A b1 2 Arrhenius (1920), Tjørve (2003) No

3 Power function (quadratic)* S = 10 ^ (b0 + b1 log A

+ b2 (log A)2)

3 Chiarucci et al. (2006) No

4 Power function (general polynomial) S = 10 ^ (S bi Ai) n + 1 – No

5 Power function (Plotkin, approximate)* S = b0 A b1 exp (b2 A) 3 Plotkin et al. (2000) No

6 Power function (Plotkin, full) S = b0 A b1 exp (S bi+1 Ai) n + 2 Plotkin et al. (2000) No

7 Logarithmic function* S = b0 + b1 log A 2 Gleason (1922), Tjørve (2003) No

8 Logarithmic function (quadratic)* S = (b0 + b1 log A)2 2 Gitay et al. (1991) No

9 Logarithmic function (general power) S = (b0 + b1 log A)b2 3 Gitay et al. (1991) No

10 Exponential function S = 10 ^ (b0 + b1 A) 2 Connor & McCoy (1979) No

11 Michaelis–Menten (Monod) function* S = b0 A/(b1 + A) 2 Tjørve (2003),

Kluth & Bruelheide (2004)

Yes (b0)

12 Negative exponential function* S = b0 (1 ) exp ()b1 A)) 2 Tjørve (2003) Yes (b0)

13 Asymptotic regression function S = b0 ) b1 b2
)A 3 Tjørve (2003) Yes (b0)

14 Rational function* S = (b0 + b1 A)/(1 + b2 A) 3 Tjørve (2003) Yes (b1/b2)

15 Logistic function* S = b0/(1 + exp ()b1 A + b2)) 3 Tjørve (2003) Yes (b0)

16 He–Legendre function S = b0/(b1 + A )b2) 3 He & Legendre (1996),

Fattorini (2007)

Yes (b0)

17 Gompertz function S = b0 exp ()exp ()b1 A + b2)) 3 Tjørve (2003) Yes (b0)

18 Extreme value function S = b0 (1 ) exp (b1 A + b2))) 3 Tjørve (2003) Yes (b0)

19 Morgan–Mercer–Flodin (Hill) function S = b0 Ab1/(b2 + Ab1) 3 Tjørve (2003) Yes (b0)

20 Lomolino function* S = b0/(1 + (b1
log (b2/A))) 3 Lomolino (2000), Tjørve (2003) Yes (b0)

21 Chapman–Richards function S = b0 (1 ) exp ()b1 A))b2 3 Tjørve (2003) Yes (b0)

22 Cumulative Weibull function S = b0 (1 ) exp ()b1 Ab2)) 3 Tjørve (2003) Yes (b0)

23 Cumulative beta-P function* S = b0 (1 ) (1 + (A/b1) b2) )b3) 4 Tjørve (2003) Yes (b0)

S, species richness; A, area; and b0 … bn, fitted parameters. Note that for the power functions, b0 and b1 are generally termed c and z, a terminology

that is also applied in the text of this paper. For the sake of convenience, logarithms of 10 are used. Summation (S) is always from 1 to n. The models

included in the analyses of this article are marked with an asterisk (*) after the curve name.
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powerful tools for multi-model selection (Burnham & Ander-

son, 2002; Quinn & Keough, 2002; Johnson & Omland, 2004).

They have only rarely been applied to SARs or SSRs to date

(e.g. Fridley et al., 2005; Stiles & Scheiner, 2007). He &

Legendre (1996) suggested that the function with the lowest

P-value of the F-ratio in the anova of the respective regression

model should be regarded as the most suitable. This proposal,

however, has two weak points: (1) the underlying null model is

inappropriate as it assumes no increase of species number with

area; and (2) according to the mainstream approach of

hypothesis testing, a significance level should be specified a

priori, and results with lower probabilities should then be

regarded as equally significant (Quinn & Keough, 2002). Thus,

in contrast to the suggestion of He & Legendre (1996),

functions should not be selected based on whether the

probability of erroneously rejecting H0 is, for example, 10)12

or 10)13.

The visual inspection of a ‘lack-of-fit’ is also frequently

applied in the SAR/SSR literature, be it by viewing the original

graphs (Connor & McCoy, 1979) or the plots of the residuals

(Flather, 1996; Fattorini, 2007). It is clear that such a visual

categorization must be subjective, and McGill (2003) thus

rated this approach as the weakest possible goodness-of-fit test.

Although extrapolation of species richness beyond the

largest plot size is one of the most frequent applications of

SARs, there are only few and unsystematic approaches to

testing which model function types are most suitable for this

purpose (e.g. Dolnik, 2003).

MATERIALS AND METHODS

Data sources

Two empirical data sets (SAR types A and C) were used to

exemplify the theoretical considerations presented in this

paper. For the selection of these data sets, two considerations

were crucial: (1) each included SAR should cover a wide range

of areas (at least two orders of magnitude, preferably more)

because for narrower ranges of area, model discrimination is

nearly impossible (cf. McGill, 2003); and (2) within both data

sets, I aimed to include a wide array of situations. The data sets

were restricted to plants because for animals and other

organisms mostly SSRs and partly type C SARs, but only

rarely true type A SARs are available owing to methodological

limitations.

Type A is represented by nested-plot species–area data of

an unusually wide plot-size range from 14 vegetation types

from the Curonian Spit National Park on the Baltic coast of

Russia (Dolnik, 2003). The vegetation types cover a wide

ecological and structural range, from open pioneer commu-

nities of mobile dunes to species- and structurally-rich

swamp forests (see Table S1 in Supporting Information).

Dolnik (2003) analysed all plants (including bryophytes and

lichens, and also both terricolous and non-terricolous taxa)

for 16 plot sizes from 0.0001 to 900 m2 (one count per size).

Mean species-richness values of the two to 23 replicates per

vegetation type were used in the analyses (i.e. the data belong

to subtype A.b.i according to Table 1). Detailed specifications

of the data are given in Tables S1 and S2.

The type C data are for vascular plant species from islands in

six lake and oceanic archipelagos, in biomes ranging from

tropical to hemiarctic zones, and for sizes ranging from 1 m2

to more than 10,000 km2 (Buckley, 1985; Deshaye & Morisset,

1988; Rydin & Borgegård, 1988; Hobohm, 2000; Bergmeier &

Dimopoulos, 2003; Price, 2004). Detailed specifications of the

data are given in Table S3.

Curve fitting

For the analyses, 12 models were selected to represent the full

range of curve shapes (linear, convex-unbound, convex-

saturation, sigmoid), and of numbers of fitted parameters

(Table 2). Each of these 12 functions was fitted both for S and

for log S. For the sake of convenience, I used log10 throughout,

but any other logarithm would have produced equivalent

results. In addition, the Michaelis–Menten function was fitted

for A/S, which results in a linearization of that function (Woolf

transformation; see Raaijmakers, 1987; Schmitt, 1999). The

regression analysis was performed with the non-linear regres-

sion model of statistica 7.1 (StatSoft, Inc., 2005; settings:

least squares; method of estimation: quasi-Newton; criterion of

convergence: 0.0001). For starting values and step-width, the

default values of the program (0.1 and 0.5) were used for all

parameters unless the iterations did not converge. For these

cases, the values were altered using previously established

parameter values from similar situations, which always led to a

satisfactory fit.

Evaluation of the goodness-of-fit

The fitted parameters from the non-linear regressions were

afterwards used to calculate goodness-of-fit metrics. To assess

the goodness-of-fit within the fitted range of plot sizes, I used

AICc (modification of AIC for small n: Burnham & Anderson,

2002; Johnson & Omland, 2004), calculated both for S- and for

log S-space.

To assess the suitability of a SAR model for extrapolating

species richness beyond the largest plot, I fitted the same model

to the data set after omission of the largest areas and then

compared the predicted with the actual species-richness values

for the largest plot in the original data set. To standardize this

procedure, all data for areas larger than one-tenth of the largest

area were omitted. This deviation was calculated on a log

S-scale and is termed the log error of extrapolation (LEE). In

the case of type A relationships, the actual value is the one

recorded for the largest plot. For curve types B and C, it is not

as simple because the richness value for the largest entity

usually deviates from the average curve owing to non-average

environmental conditions. In such cases, for the actual value of

the largest area, I used the value predicted in the full-range

model by the one function that had the lowest AICc value in

the S-space.
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Rankings were calculated for each metric and each series of

species–area data. These rankings were used to calculate mean

ranks for each of the three metrics for both the nested-plot and

the island data set. Furthermore, the mean values of metrics for

these two data sets were calculated and afterwards ranked. As

both methods yielded similar results, I present mostly those of

the second method because they are more clearly interpretable.

To condense the information further, mean ranks of all three

goodness-of-fit metrics were calculated for the models in both

the nested-plot and the island case.

To estimate the stability of the parameter estimates, I tested

how much they changed when the data set or the analysing

method was slightly altered. For this purpose, I compared the

values in pairs for all fitted parameters both for models fitted

in S against those fitted in log S (the first gives more weight to

large areas; the second, more weight to small areas) and for

those fitted for the full range of area sizes against those fitted

only for areas smaller than 1/10 of the largest area (corre-

sponding to the criterion used for the calculation of LEE). To

reflect the wide range of values an individual parameter can

take (often spanning several orders of magnitude), I used log

differences, which, however, were not defined in the few cases

for which a parameter (partly) showed negative values.

RESULTS

Nested plots

According to AICc (S), the quadratic power function fitted for

S was the best model for six of the 14 analysed plant

communities and worked well for the other eight, resulting in a

mean rank of 1.8 for this metric and a mean DAICc (S) of 3.66

(Table 3 and Table S1). Also satisfactory were the Lomolino

function, the power function (Plotkin), and the regular power

function, all fitted for S (best fit in two or three communities

each), as well as the S-versions of the cumulative beta-P

function (mean rank: 4.9 but never the best fit) and the

quadratic version of the logarithmic function (twice the best fit

but only intermediate results for the other communities). The

quadratic power function (fitted for log S) also worked well

according to AICc (S) and was ranked sixth of all 25 function–

space combinations. For AICc (log S) (Table 3 and Table S1),

the results were analogous, with the quadratic power function

fitted for log S being the best. The Lomolino, cumulative beta-

P and the two other versions of the power functions fitted in

the log S-space also described the shape of the actual function

satisfactorily. Again, the quadratic version of the logarithmic

Table 3 Evaluation of the goodness-of-fit of various models and transformations of S for nested plots (curves of 14 plant communities

from Dolnik, 2003; for details, see Materials and Methods).

No. Category Model S-space Mean rank AICc (S) AICc (log S) LEE DAICc (S) DAICc (log S) LEE

1 Linear Linear S 20.3 19 20 22 73.47 81.69 0.92

2 Linear Linear log S 22.0 25 18 23 103.29 75.75 1.26

3 Power Power S 5.7 5 11 1 12.16 36.26 0.03

4 Power Power log S 7.3 11 5 6 37.95 18.37 0.13

5 Power Power (quadratic) S 3.7 1 6 4 3.66 24.89 )0.11

6 Power Power (quadratic) log S 5.3 6 1 9 19.81 4.70 )0.05

7 Power Power (Plotkin, approx.) S 12.3 3 10 24 8.72 34.86 )1.18

8 Power Power (Plotkin, approx.) log S 12.7 9 4 25 29.31 15.65 )2.40

9 Logarithmic Logarithmic S 17.0 15 25 11 63.36 n.d. )0.27

10 Logarithmic Logarithmic log S 17.0 21 13 17 80.34 58.33 )0.43

11 Logarithmic Logarithmic (quadratic) S 10.7 10 19 3 30.00 78.79 )0.12

12 Logarithmic Logarithmic (quadratic) log S 10.7 13 9 10 54.27 31.39 )0.19

13 Saturation Michaelis–Menten A/S 17.7 18 22 13 64.69 110.72 )0.31

14 Saturation Michaelis–Menten S 17.0 14 23 14 56.82 111.05 )0.34

15 Saturation Michaelis–Menten log S 19.3 23 15 20 86.74 68.63 )0.58

16 Saturation Negative exponential S 18.7 16 24 16 63.78 113.95 )0.37

17 Saturation Negative exponential log S 20.3 24 16 21 88.22 70.88 )0.61

18 Saturation Rational S 13.7 12 17 12 50.55 71.34 )0.31

19 Saturation Rational log S 16.7 20 12 18 77.34 53.41 )0.43

20 Sigmoid Logistic S 17.7 17 21 15 64.62 87.24 )0.36

21 Sigmoid Logistic log S 18.3 22 14 19 83.86 61.89 )0.47

22 Sigmoid Lomolino S 3.7 2 7 2 8.13 27.92 )0.11

23 Sigmoid Lomolino log S 5.7 7 2 8 22.84 8.85 )0.14

24 Sigmoid Cumulative beta-P S 5.7 4 8 5 11.94 30.18 )0.13

25 Sigmoid Cumulative beta-P log S 6.0 8 3 7 25.52 9.23 )0.13

The naming of the models follows Table 2. Three goodness-of-fit metrics were applied: Akaike’s information criterion (corrected for small n; AICc)

assessed both for S- and for log S-space as well as log error of extrapolation (LEE; for definition, see text). For these metrics, mean values of the 14

curves (columns 9–11) as well as the corresponding ranks (1 = best fit, 25 = worst fit; columns 6–8) are presented. The column ‘Mean rank’ provides

the average ranking of all three metrics. Positive values of LEE denote overestimation of the actual values, whereas negative values denote under-

estimation. Because the logarithmic function (fitted in S) partly predicted negative richness values, AICc was not defined (n.d.) for the log S-space.
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function resulted in the best fit for two communities, and

additionally the rational function gave the best fit for one

community, although both curve types yielded only interme-

diate results for the rest of the vegetation types. On the other

hand, linear, negative exponential, Michaelis–Menten and the

regular logarithmic functions fitted the nested-plot SAR data

poorly both for S and for log S and for all community types.

Regarding the suitability for extrapolation, the normal

power function fitted for S turned out to be the most suitable

on average, and overestimated the actual species richness of a

ten-fold area with a mean LEE of only 0.03 (i.e. by 7%). This

model, however, accounted for only one-quarter of first

rankings for LEE, and some other models had similar mean

LEE values and ranks for both S-spaces, namely the Lomolino,

the cumulative beta-P and the quadratic logarithm function as

well as the two other versions of the power function (see

Table S1). The normal logarithmic function, the three satura-

tion functions and the logistic function formed a group of

intermediate suitability for extrapolation, whereas both the

linear function and the Plotkin version of the power function

turned out to be completely unsuitable, the former giving

predictions c. 10 times too high, and the latter predictions

much too low, mostly close to zero. The predicted values of the

normal and quadratic power functions, irrespective of the

S-space, were either slightly too high or too low. Whereas the

absolute extrapolation errors were only slightly worse for the

Lomolino, cumulative beta-P and quadratic logarithmic func-

tions, these almost always yielded estimates c. 30% too low.

Worse were the normal exponential function, the three

saturation functions and the logistic function, which under-

estimated the richness values of the large plot by 60% on

average.

Of the functions with only two fitted parameters, the power

function outperformed all other models by far. It was rated

best according to AICc (S) in all 14 community types, and for

AICc (log S) and LEE the logarithmic function performed

better in only one community for each.

Islands

Results for the island data set were generally similar but less

clear than those for the nested plots; in other words, the

individual archipelagos showed more idiosyncrasies (Tables 4

and S3). Again, on average the three versions of the power

function, the quadratic logarithmic function, the Lomolino

function, and the cumulative beta-P function (fitted for the

respective S-space) were rated as the most suitable group of

functions according to AICc for S or log S. However, for

individual archipelagos other functions with on average

rather poor fits proved to describe the curve shape most

Table 4 Evaluation of the goodness-of-fit of various models and transformations of S for islands (curves of six archipelagos; for

details, see Materials and Methods).

No. Category Model S-space Mean rank AICc (S) AICc (log S) LEE DAICc (S) DAICc (log S) LEE

1 Linear Linear S 21.7 24 22 19 46.65 52.04 0.69

2 Linear Linear log S 20.7 25 15 22 111.02 29.52 0.86

3 Power Power S 9.7 7 14 8 14.11 24.45 0.20

4 Power Power log S 14.3 22 6 15 41.63 9.42 0.32

5 Power Power (quadratic) S 12.7 1 17 20 2.54 31.92 )0.29

6 Power Power (quadratic) log S 12.0 14 1 21 23.04 3.64 )0.63

7 Power Power (Plotkin, approx.) S 13.0 3 12 24 5.31 19.67 )4.06

8 Power Power (Plotkin, approx.) log S 13.7 13 5 23 21.27 7.74 )2.83

9 Logarithmic Logarithmic S 13.0 12 24 3 19.46 n.d. )0.19

10 Logarithmic Logarithmic log S 15.0 23 10 12 41.77 17.22 )0.37

11 Logarithmic Logarithmic (quadratic) S 8.7 5 20 1 10.77 37.54 )0.06

12 Logarithmic Logarithmic (quadratic) log S 8.7 17 4 5 29.72 6.14 )0.15

13 Saturation Michaelis–Menten A/S 19.7 15 19 25 23.74 36.32 n.d.

14 Saturation Michaelis–Menten S 12.0 6 21 9 12.99 45.87 )0.18

15 Saturation Michaelis–Menten log S 15.0 19 8 18 33.67 14.18 )0.21

16 Saturation Negative exponential S 15.7 10 23 14 16.17 54.38 )0.27

17 Saturation Negative exponential log S 15.7 20 11 16 40.07 18.10 )0.39

18 Saturation Rational S 15.3 9 24 13 14.84 n.d. )0.17

19 Saturation Rational log S 11.7 18 7 10 29.88 10.43 )0.36

20 Sigmoid Logistic S 11.0 8 18 7 14.72 35.22 )0.33

21 Sigmoid Logistic log S 15.7 21 9 17 40.79 16.79 )0.42

22 Sigmoid Lomolino S 6.7 2 16 2 4.79 30.23 )0.13

23 Sigmoid Lomolino log S 9.7 16 2 11 26.47 4.45 )0.06

24 Sigmoid Cumulative beta-P S 7.0 4 13 4 5.81 21.70 )0.06

25 Sigmoid Cumulative beta-P log S 6.7 11 3 6 18.62 4.63 )0.10

For details of the organization of the table, see Table 3. Undefined values are marked with ‘n.d.’.
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appropriately, for example the regular logarithm function

for the islands in the Swedish Lake Hjälmaren (Rydin &

Borgegård, 1988). Generally, the linear, the negative exponen-

tial, the logarithmic function, and all models fitted for the

complementary S-space resulted in poor fits.

The extrapolation suitability (measured as LEE) was gener-

ally best for the quadratic logarithmic and the cumulative beta-

P functions (for S and log S) as well as for the regular

logarithmic and the Lomolino functions fitted for S. Unlike the

situation for nested-plot data, the regular power function

performed only moderately well (mean rank c. 11 for both

transformations), and the quadratic power function interme-

diately if fitted for S (mean rank: 12.5) and rather poorly if

fitted for log S (mean rank: 16.7). Again, the linear and the

Plotkin functions were generally completely unsuitable for

extrapolation, although in the case of the Macaronesian islands

(Hobohm, 2000) the linear function gave the most accurate

extrapolation value. Compared with the situation in the

nested-plot data set, the models had the same tendencies in

extrapolations towards overestimates or underestimates. How-

ever, the positive and negative deviations of the estimates from

the actual value were generally more pronounced for all types

of power functions, whereas underestimates were less pro-

nounced in extrapolations from the logarithmic, saturation

and sigmoid functions compared with those for nested-plot

data set (Table 4).

Stability of parameter estimates

In the nested-plot data set, the parameter estimates were

relatively stable in the case of the power and logarithmic

functions and their variants between S and log S, and full

vs. reduced area range (Table 5). For all other function

types, the estimates for at least one of the parameters were

unstable or very unstable, often covering one or even several

orders of magnitude (Table 5). In particular, the parameter

b0 of the saturation and sigmoid functions, which corre-

sponds to the estimated maximum richness (see Table 2),

showed mean log differences of 0.15–0.97 (i.e. 1.4- to 9.3-

fold differences on average; Table 5). In one community, the

asymptotic richness value of the Lomolino function even

differed by a factor of 1293 between the models fitted for S

and log S. The situation for the island data set was basically

the same (not shown); however, in this case the parameters

of the derived power models (quadratic and Plotkin) also

behaved very unstably.

As non-linear regression is an iterative process, it may be

‘captured’ at a local optimum of parameter combination.

Thus, different starting or step-width values may lead to

different results. In this respect, only the linear, power and

logarithmic models, and their variants, as well as the Micha-

elis–Menten model produced ‘stable’ parameter estimates. For

the remaining saturation functions and the sigmoid functions,

there were often several solutions with practically identical

AICc values but parameter estimates differing by one or several

orders of magnitude (not shown).

DISCUSSION

Criteria for model selection

As demonstrated for the two example data sets, the three

applied goodness-of-fit metrics, AICc (S), AICc (log S) and

LEE, resulted in clearly and consistently deviating results

(Tables 3 and 4; Tables S1 and S3). This indicates that they

capture different aspects of the curve fit and thus provide

valuable complementary information. By contrast, other tested

metrics, such as R2
adj, p or lack-of-fit measures, resulted in

similar to nearly identical model rankings compared with AICc

in the same S-space (not shown). Contrary to repeated

suggestions (e.g. Connor & McCoy, 1979; He & Legendre,

1996; Fattorini, 2007), there is thus no good reason to apply

these parameters additionally. Of the metrics that measure the

goodness-of-fit within a fitted range, AIC (or alternatively BIC,

which in this study gave nearly identical results) has the

advantages of being generally accepted in recent statistical

literature, of allowing the comparison of non-nested models

and of adequately penalizing additional parameters (see Quinn

& Keough, 2002; McGill, 2003). Although in the case of nested

data the estimates of the standard errors of the regression

parameters are invalid (but the same is true for all the

compared metrics), the estimates of the regression parameters

Table 5 Mean differences of the parameter estimates between

models fitted for S and for log S as well as for those fitted for the

full range of plot sizes (0.0001–900 m2) and those fitted for the

reduced range used for calculating the extrapolation capability

(0.0001–49 m2).

Model

S vs. log S Full vs. reduced

b0 b1 b2 b3 b0 b1 b2 b3

Linear 0.40 0.37 0.27 0.94

Power 0.06 0.08 0.03 0.05

Power (quadratic) 0.01* 0.03 n.d. 0.01* 0.04 n.d.

Power (Plotkin, approx.) 0.07 0.07 n.d. 0.07 0.06 n.d.

Logarithmic 0.09 0.28 0.11 0.17

Logarithmic (quadratic) 0.03 0.12 0.02 0.08

Michaelis–Menten 0.28 2.44 0.25 0.80

Negative exponential 0.26 2.59 0.25 0.80

Rational 0.54 1.11 1.31 0.23 0.65 0.92

Logistic 0.15 1.70 0.30 0.24 0.73 0.11

Lomolino 0.35 0.07 1.67 0.39 0.06 1.87

Cumulative beta-P 0.97 1.95 0.11 1.22 0.91 1.64 0.10 0.83

Differences were calculated as log differences, i.e. jlog10 (x1) – log10

(x2)j, and are presented as means for all 14 plant communities of the

nested-plot data set. Note that a log difference of more than 0.3 (set in

bold italics) means a more than two-fold difference, and a log differ-

ence of more than 1.0 (bold) means a more than 10-fold difference.

Owing to occurring negative values, log differences were not defined

for b2 in the two derived power functions (n.d.). The values of b0 in the

quadratic power function (*) were calculated only for 13 communities

because in one community this parameter took negative values and

thus the log differences were undefined.
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themselves are unbiased (Adler et al., 2005). Moreover, the

model selection itself is not influenced by the nestedness of the

data because the data are equally nested for all compared

models (for detailed discussion, see Dengler, 2008).

Although Cresswell & Vidal-Martinez (1995) claimed that it

is nonsensical to estimate goodness-of-fit metrics of SARs in

the log S-space, I agree with Quinn & Keough (2002, p. 64)

that the choice of the untransformed S-space is as arbitrary as

that of the log S-space. It is clear that AICc (S) gives relatively

more weight to the deviations for larger areas, whereas AICc

(log S) does so for smaller areas (cf. Loehle, 1990). Because a

prediction error of one species would generally be considered

as high for S = 1 but as negligible for S = 1000, it actually is

meaningful to assess goodness-of-fit metrics (additionally) on

the log S-scale.

As shown (compare Tables 3 and 4), a model that produces

a good fit need not also be suitable for extrapolation. Thus, the

newly proposed metric LEE adds valuable information to the

model selection process, as extrapolations are one of the most

fundamental applications of SARs. Moreover, one can argue

that a model that produces consistently good extrapolations

depicts the real nature of the SAR better than one that only fits

well for a given data set within a given range of areas, as curve

fitting is generally a ‘weak test’ (McGill, 2003). As an

alternative to the proposed log error of extrapolation (LEE),

one could think of a relative error of extrapolation. However,

the latter would have the disadvantage of not equally weighting

positive and negative deviations, but instead would range from

)100% to +¥ (non-negative species-richness values provided).

In addition to goodness-of-fit and extrapolation capability

(Tables 3 and 4), other criteria are important for model

selection. First, functions whose parameters have interpretable

meaning and allow easy comparison between different data sets

can generally be considered superior. In this respect, the linear,

logarithmic, power and quadratic power functions are quite

suitable. Their parameters correspond to the species richness on

an area of standard size and to the steepness of the curve (i.e. to

the absolute or relative rates at which new species are added

when area is increased). The parameters of the Michaelis–

Menten function (after transformation) also truly represent

aspects of species–area relationships (Kluth & Bruelheide,

2004). By contrast, the parameters of the negative exponential,

rational and logistic functions influence more than one curve

characteristic, and all but the first parameter of the Lomolino

and the cumulative beta-P functions jointly define curve shape

in ways that are difficult to interpret (Tjørve, 2003). Further-

more, a curve parameter may have a meaning by definition but

its fitted values appear to be arbitrary. This is the case with the

asymptotic richness value (b0) of the Lomolino and cumulative

beta-P functions, which frequently exceeded the species count

on the largest plot by several orders of magnitude.

Second, only the normal power function and the two

logarithmic functions produced ‘stable’ parameter estimates

throughout, meaning that they were not influenced by the

settings of the non-linear regression analysis and only slightly

influenced by slight modifications of the data set (see Results).

Third, some functions predict theoretically impossible

values for species richness or its increment, and it is

questionable whether such functions can be regarded as valid

models even when they satisfactorily fit a certain range of data.

For example, the logarithmic function necessarily predicts

negative species richness values (for A < 10)b0/b1), and this

mostly happens even within the fitted range. The quadratic

power function also can result in negative S-values, although

normally outside the fitted range. Some models also violate the

limitations of the increment (corresponding to the z-value of

the power function) which are 0 £ z £ 1. This means that

species–area relationships based on data from the same

statistical population must be non-decreasing and cannot

increase more steeply than unity (Williamson, 2003). For

example, the quadratic and Plotkin modifications of the power

function result either in a predicted decrease of the species

richness beyond a certain size of area (b2 < 0) or in increments

greater than unity for large areas (b2 > 0).

Performance of models

Overall, the quadratic power function and the Lomolino

function performed best for the nested-plot data set, followed

closely by the normal power function and the cumulative beta-

P function (see Table 3). From the models with only two

parameters, the normal power function was by far the most

adequate. Its two versions (S and log S) behaved quite

similarly, with the exception that the extrapolation capability

of the first was slightly better. It should be noted that the

normal power function performed very well for extrapolating

richness data far beyond the largest plot throughout the wide

range of vegetation types.

For the island data, the six analysed curves showed more

peculiarities than did the 14 plant communities, as funda-

mentally different curve types were rated as most suitable,

including a linear function in one case. These idiosyncrasies

should, however, not be assigned to different underlying

species–area relationships but to the fact that, in island data

(SARs type C), the ‘real’ relationship (i.e. the dependence of

species richness on area) is partly masked by ecological

differences between the islands (i.e. the dependence of species

richness on factors other than area; see, for example, Whittaker

et al., 2008) and also by the ‘island effect’ (small islands

generally have fewer species than areas of the same size on

continents, but this difference decreases when islands become

larger and thus more similar to continents; see Whittaker &

Fernández-Palacios, 2007). For the analysed islands, the

Lomolino, cumulative beta-P and quadratic logarithmic func-

tions were superior on average to power functions, but again

the normal power function performed best among the two-

parameter models (see Table 4).

Contrary to claims that logarithmic functions should

describe small-scale SARs in continuous ecosystems better

than power functions (Gleason, 1922; Stohlgren et al., 1995;

He & Legendre, 1996; also Dolnik, 2003, for some plant

communities re-analysed in this article), I found that the
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normal logarithmic function was one of the least appropriate

functions to describe such SARs throughout the broad range of

analysed vegetation types, which agrees with the findings of

Fridley et al. (2005).

Apart from the Lomolino and the cumulative beta-P

functions, all functions with an upper asymptote generally

performed poorly for both the nested-plot and islands data set.

In particular, they completely failed when extrapolating

richness values beyond the largest area because most of them

give richness estimates for the asymptote that lie only slightly

above or even below the highest value occurring among

the included data. This finding contrasts somewhat with the

simulation results of McGill (2003), who found that even the

Michaelis–Menten and the logistic function can fit power

functions very well. However, this is only true when a narrow

range of plot sizes is sampled, as the author admits. In the

present study, among the saturation functions only the

Lomolino and the cumulative beta-P function performed

better, which, however, should rather be attributed to their

high flexibility owing to three or four parameters than to the

existence of an upper asymptote (cf. Tjørve, 2003). In fact,

simulated data of a ‘perfect’ power function, represented by 16

data points as in the nested-plot data set, were fitted by the

Lomolino function with R2
adj = 0.999953 and LEE = )0.01

(i.e. deviation c. )2%) and by the cumulative beta-P function

with R2
adj = 0.999774 and LEE = )0.02 (c. )4%) (both

examples for S-space). However, even these two flexible

sigmoid functions slightly but systematically underestimated

the true value in extrapolation for the nested-plot data set (see

column LEE in Table 3).

Do species–area relationships have asymptotes?

It is often claimed that SARs of different kinds should

approach an upper asymptote for large areas (general: Connor

& McCoy, 1979; Williams, 1995; He & Legendre, 1996; Tjørve,

2003; type A: Cain, 1938; Tüxen, 1970; Mueller-Dombois &

Ellenberg, 1974; Schmitt, 1999; type C: Lomolino, 2000, 2001).

If any argument for this widespread assumption is given, it

usually runs as follows: ‘Because the number of species

available for colonisation in any biogeographic region or

geographical unit of the planet is limited, the species–area

curve has to be asymptotic to some upper ‘‘number of species’’

bound’ (He & Legendre, 1996, p. 721). As Williamson et al.

(2001) rightly pointed out, the fact that for any given area

(even the whole Earth) there is a fixed (although often

unknown) number of species does not imply that the species–

area curve must approach this value asymptotically. In fact,

real SARs become even steeper towards continental or

intercontinental scales, i.e. 107–108 km2 (Rosenzweig, 1995;

Williamson et al., 2001, 2002).

For the local scale (10)4–103 m2), the vast body of published

data (e.g. Crawley & Harral, 2001; Fridley et al., 2005) similarly

contradicts the existence of asymptotes. In a recent study that

by contrast claims that saturation functions nearly always fit

such data better than function types without asymptotes (Stiles

& Scheiner, 2007), this finding can simply be attributed to the

fact that the authors analysed type IIIB ‘species–area curves’ in

the sense of Scheiner (2003), which, in fact, are SSRs. There is

no sound theoretical argument why either continuous ecosys-

tems or particular vegetation types should approach an upper

limit of species for large areas (see also Dengler, 2003). On the

one hand, completely homogeneous environments do not exist

and owing to the universal distance decay the degree of

heterogeneity on average grows with increasing area (e.g.

Williamson, 1988; Bell et al., 1993). On the other hand, even in

completely homogeneous environments, the number of species

would increase slowly but unlimitedly with increasing area, as

the number of ‘atypical’ species from neighbouring ecosys-

tems/biotas that occur in the study area by chance increases

with increasing edge length. In the present study, models with

an upper asymptote accordingly turned out to be unsuitable

for both nested-plot and island biodiversity data (apart from

the Lomolino and cumulative beta-P function; for explanation,

see previous section).

The other question is whether there is a lower asymptote

within SARs. Since the work of MacArthur & Wilson (1967),

some biogeographers have claimed that a so-called ‘small

island effect’ (SIE) should cause species richness to vary

independently of island area on relatively small islands

(Lomolino, 2000, 2001; Lomolino & Weiser, 2001; Whittaker

& Fernández-Palacios, 2007; see also the review by Triantis

et al., 2006). The idea of the SIE is that below a breakpoint area

T1 species richness is not affected by area (but positive), and

for larger areas it follows a power or logarithmic function with

A ) T1 as the independent variable. In what has been to date

the most comprehensive study, Lomolino & Weiser (2001)

claimed that they had detected a SIE in most of their 102

analysed data sets of true and habitat islands, as they yielded

higher R2 values for the breakpoint function than for the

respective power or logarithm function without a breakpoint.

However, they did not penalize for the extra parameter T1,

which is necessary when comparing the fit of regression models

of varying complexity (e.g. Quinn & Keough, 2002). I also was

not able to find a single study that demonstrated the existence

of a SIE unequivocally, either because the authors rejected this

effect themselves (e.g. Barret et al., 2003; Panitsa et al., 2006;

Hannus & von Numers, 2008) or because they demonstrated it

only graphically (MacArthur & Wilson, 1967) or with the same

statistically flawed approach as used by Lomolino & Weiser

(2001) (e.g. Gentile & Argano, 2005; Triantis et al., 2006).

Moreover, small areas normally will be more strongly affected

by environmental heterogeneity (and thus show more scatter

in the species–area plot), whereas this heterogeneity is partly

levelled-off for larger areas (Williamson et al., 2001). Thus,

fundamentally different shapes of SARs for small islands (SAR

type C) are not proven and seem improbable.

For small-scale nested-plot SARs (SAR type A) different

authors have claimed a left-hand steepening or flattening of the

curve (cf. Williamson et al., 2001). What actually happens,

however, fundamentally depends on the sampling method

(Williamson, 2003; Dengler, 2008): in the any-part system
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(‘shoot presence’) of sampling, all aerial parts of plants are

counted with vertical projections that fall within the studied

area. In the grid-point (roughly equivalent to the ‘rooted

presence’) system, each ‘individual’ is treated as a point without

area and thus is always assigned to only one of several adjacent

areas. The consequence in both cases is a deviation from the

power law (or any other SAR model) for very small areas. The

exponent (z or b1 in Table 2) of the power law approaches 0 in

the any-part system and 1 in the grid-point system for A fi 0.

As described by Williamson (2003), the deviation from the

power law ‘detected’ in the large data sets of woody species

inventories by Plotkin et al. (2000), which caused these authors

to propose a complex modification of the power law (see

Table 2), is simply an artefact of the grid-point system they

used. The deviations were significant up to 104 m2, which

probably can be attributed to the fact that they studied only

very large organisms (tropical trees). In the data of Dolnik

(2003) used for this study, for which ‘rooted presence’ sampling

(mathematically similar to the grid-point system) was also

applied but which included herbaceous plants, bryophytes and

lichens, the SAR in the log–log representation became only

slightly steeper towards the smallest areas (10)4 m2); that is, the

quadratic power functions had a small negative b2. For the

opposite effect in the case of the any-part system, Williamson

(2003) referred to Crawley & Harral (2001), who reported

decreasing z-values below areas of 104 m2. However, I assume

that other factors were causal there because in my own study of

dry grasslands (Dengler, 2005) I could detect the small-area

effect of the any-part system only below 10)4 m2. Although I

fundamentally agree with Williamson (2003), his prediction

that the any-part system results in a lower asymptote at S = 1 is

correct only in his theoretical vegetation. In real vegetation, the

‘asymptotic richness’ will equal the average number of over-

lapping species at each point of the analysed area, which can be

above or below one (Dengler, 2003, 2005).

A general model for SARs

As shown, the normal power function was fundamentally the

best two-parameter model to describe SARs at small scales

(10)4–103 m2) in continuous ecosystems (SAR type A) for the

broad range of vegetation types studied. Among the three

models with more fitted parameters that performed similarly

or slightly better on average according to the mean rank in

Table 3, namely quadratic power, Lomolino and cumulative

beta-P, the latter two have serious shortcomings: (1) their

assumption of an upper asymptote is not justified (see

previous section); (2) their parameters are not easily inter-

pretable and are very unstable; and (3) their good fit may

simply be caused by their high flexibility. The quadratic power

function, on the other hand, has the disadvantage that it

predicts decreasing species numbers above a certain threshold

area, which is in reality impossible. Although the individual

SARs for islands (SAR type C) showed more peculiarities, these

can be attributed to environmental differences owing to the

non-nested design rather than to differences in the underlying

SAR, as argued above (see Crist & Veech, 2006). Recently,

Dengler & Boch (2008) demonstrated with a re-sampling

approach from continuous ecosystems that non-nested sam-

pling actually led to more stochasticity than did nested

sampling and that this improved the relative performance of

other models compared with the normal power function.

Knowing that power functions are most suitable for ‘pure’

SARs of nested-plot data, it seems reasonable to apply them

generally for island and other non-nested data as well. When

deviations from normal power functions occur in SARs of type

C, they thus can be attributed to factors other than area (i.e. to

ecological idiosyncrasies of the individual islands).

Based on the outlined theoretical consideration, the review

of literature data, and the example data analysed in this article,

I suggest using the (normal) power function as a general model

for all kinds of species–area data and at any scale, but treating

the exponent z as scale-dependent. This approach is similar to

a recently published suggestion of Christensen (2007), who

describes SARs with the function S(A) = c Aln(s(A)), but claims

that s(A) decreases monotonously with increasing A. An

approach that allows z to vary freely between the theoretical

bounds 0 and 1 has several additional advantages, as follows.

(1) The question of whether and at which point(s) z changes

significantly can be addressed by standard statistical tests. For

example, it could be easily tested whether or not a small area or

a small island effect (see above) occurs in a data set. Similarly,

it is possible to test whether SARs are ‘triphasic’ when areas

over many orders of magnitude are compared. Whereas some

authors have argued that SARs should follow a flat–steep–flat

pattern (Lomolino, 2000, 2001; Crawley & Harral, 2001),

others have supported a steep–flat–steep pattern (Preston,

1960; Hubbell, 2001; Allen & White, 2003; McGill & Collins,

2003; Fridley et al., 2005). (2) A power function with flexible z

can actually also describe the shapes of any other model. (3)

The two parameters of the power function, c and z, and

potentially the characterization of the scale-dependence of z

are readily interpretable and comparable amongst the multi-

tude of SAR studies (e.g. Drakare et al., 2006).

As the estimates for both the function parameters and the

goodness-of-fit metrics of power functions fitted for S or for

log S deviate from each other, it is important to report in

which S-space the function was fitted and to compare only

values from the same space. As discussed above, there is no

prevalence for either one of these approaches, although there

are arguments in favour of both. The use of S is favourable for

two reasons: (1) it allows the easy treatment of entities with

zero species – which could particularly occur for islands (and

these then need to be included, see Williams, 1996); and (2)

whereas curves fitted for S and log S perform similarly for most

parameters, the former are generally more suitable for

extrapolation (see Tables 3 and 4). On the other hand, there

are three arguments for fitting in the log S-space: (1) no

sophisticated statistical software for non-linear regression is

needed (whereas this point certainly caused the general

preference for fitting in log S-space in the past, it should not

be an ‘excuse’ today); (2) iterative, non-linear curve-fitting
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procedures do not necessarily converge or may converge at a

‘local optimum’ only (in the present study, however, such

‘problems’ only occurred for function types other than power

functions; see Results; cf. Stiles & Scheiner, 2007); and (3)

when type A SARs are calculated, the z-value for a mean curve

(for example for several series of nested-plots of the same

vegetation type) remains the same, irrespective of whether the

z-values for the individual plots are calculated first and then

averaged, or the z-value is calculated for a data set containing

all individual area-richness pairs. In contrast, the two calcu-

lations yield different results when the curves are fitted in S.

How power-law SARs came to be

It may be questioned what causes the prevalence of power laws

in SARs. Neither of the two requisites originally suggested by

Preston (1962), namely (1) true isolates and (2) canonical log-

normal species-abundance distributions, is actually essential.

The present study joins several previous analyses in showing

that the power function fits data from continuous ecosystems

even better than that from islands. As regards the second

aspect, May (1975) previously showed that non-canonical log-

normal distributions and broken-stick distributions also result

in power laws. Moreover, various authors have shown that log-

normal species-abundance distributions are much rarer in

nature than are power-law SARs (e.g. Williamson & Gaston,

2005). Thus recent authors have proposed other reasons for

the prevalence of power laws: Harte et al. (1999) argued that

power-law SARs are the consequence of self-similarity in the

abundance distribution of species, and Šizling & Storch (2004)

showed that, owing to the ‘finite-area effect’, this is true even

when species differ in their fractal dimension. Most recently,

Martı́n & Goldenfeld (2006) demonstrated that power-law

SARs are the consequence of skewed species-abundance

distributions (i.e. log-normal with higher rarity) and the

clustering tendency of individuals of any given species. Hubbell

(2001) and Rosindell & Cornell (2007) showed with their

neutral models that stochastic events of death, dispersal and

speciation are enough to produce power-law SARs over a wide

range of intermediate spatial scales. In a completely different

approach, Palmer (2007) mathematically deduced power-law

SARs from the near-universal distance decay of features of the

abiotic environment (an idea that was previously put forward

but not tested by Williamson, 1988), finding that z depends on

the fractal dimensions of the relevant environmental factors.

Importance of a meaningful typology

In the literature, SARs and SSRs are often confused. For

example, Inouye (1998) speaks of SARs although he analysed

SSRs, and Tjørve (2003) calls Flather’s (1996) species accu-

mulation functions ‘species–area models’. Although at first

glance this confusion may seem to be a mere semantic

problem, it actually has profound consequences as these

misconceptions lead researchers to use inappropriate sampling

strategies or to draw erroneous conclusions from their results.

For example, while claiming that ‘not all species–area curves

are power functions’, Stiles & Scheiner (2007) actually studied

SSRs, for which unbound functions, such as the power

function, are theoretically excluded. Similarly, the general

underestimation of the actual richness of combined disjunct

areas by the power model in Chong & Stohlgren (2007) is not

unexpected because these authors – contrary to their assump-

tion – studied SSRs, which are initially steeper than SARs (see

Hui, 2008). On the other hand, the frequent assumption that

SARs should be asymptotic for large areas (see discussion on

the existence of asymptotes above) probably largely emerges

from incorrect analogies with SSRs.

Whereas a SAR arises from several plots or geographic units

(e.g. islands) of different sizes whose species richness is known

with sufficient precision, a SSR yields only one value for a

single plot with defined area but unknown species richness,

from which random samples are drawn to achieve this goal.

Analysis of SARs aims to elucidate the relationship between

area and species richness, and thus addresses a more funda-

mental question than that of SSRs (Gray et al., 2004a). SARs

are more widely applicable, such as for extrapolation, estab-

lishing a common spatial grain for analyses, deriving b-diver-

sity measures, and hypothesis testing (Scheiner, 2003). SSRs,

on the other hand, really only address species richness in a

precisely delimited area (total plot), a property that may be

extremely costly or even impossible to measure directly in

certain taxa that are difficult to observe (e.g. insects, soil

microbes or marine benthos). In this way, SSRs and the

associated richness estimation techniques are extremely useful

(Magurran, 2004). It is important to note that SSRs are

basically unsuitable for analysis of the relationship of species

richness to area, or for extrapolating beyond the total plot area.

By contrast, if analysed appropriately, SARs may reasonably be

used for extrapolation even towards much larger areas, as

shown in the Results with the newly suggested parameter LEE.

CONCLUSIONS AND OUTLOOK

In this study, I have shown that the power law generally

describes different types of SARs most appropriately – which is

in accordance with many previous studies. Deviating results

reported in the literature can mostly be attributed either to

methodological shortcomings (Dengler, 2008; Dengler & Boch,

2008) or to the fact that their authors actually studied area-

based SSRs rather than real SARs. Here, the proposed new

typology of species richness curves may help researchers to

avoid similar misinterpretations in the future.

A variety of completely different processes are capable of

producing power-law SARs, a conclusion that agrees with that

of Lawton (1999), who argues that the most robust macro-

ecological patterns are those that can be generated by several

different mechanisms. Thus, it seems pointless to test such

processes by analysing which model fits a specific SAR best, in

particular, because these processes are not mutually exclusive

(Turner & Tjørve, 2005; Nekola & Brown, 2007). Moreover,

power-law relationships are frequently found in many complex
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systems (for example number of minerals vs. area, number of

unique words vs. text length), suggesting that this pattern is the

consequence of shared properties of a class of complex systems

(Nekola & Brown, 2007). Nevertheless, analysis of the depen-

dence of SAR slopes on taxon, environmental conditions and

spatial scale is useful, as differences in the z-values convey

information on underlying processes and their relative impor-

tance in a particular case (Drakare et al., 2006; Nekola &

Brown, 2007; Peay et al., 2007). To this end, the suggested

application of the power law with flexible z offers a universal

tool with which to study and compare any type of SAR – but it

should be kept in mind that the parameters of the power-law

SAR are also significantly influenced by methodology, partic-

ularly by the fitted S-space and the sampling procedure (any-

part vs. grid-point system).
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Skalenebenen – Exemplarische Untersuchungen aus Tro-

ckenrasen und Konsequenzen für das Probedesign von
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Beispiel Höherer Pilze. Abhandlungen der Delattinia, 25,

67–210.

Schoener, T.W. (1976) The species–area relation within

archipelagos: models and evidence from island land birds.

Proceedings of the International Ornithological Congress, 16,

628–642.

Shmida, A. & Wilson, M.V. (1985) Biological determinants of

species diversity. Journal of Biogeography, 12, 1–20.
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Table S1 Detailed information for the nested-plot dataset from Dolnik (2003). The plant communities represent the variety of extant vegetation types within the Curonian Spit 
National Park on the Russian Baltic coast (21° E, 55° N). From each plant community, nSeries series of nested plots have been studied and averaged. Plant species richness values 
(vascular plants, bryophytes, lichens; terricolous, epiphytic, saxicolous, lignicolous) were recorded from quadratic plots of 16 different sizes (0.0001 m², 0.0025 m², 0.01 m², 
0.0625 m², 0.25 m², 1 m², 4 m², 9 m², 16 m², 25 m², 49 m², 100 m², 225 m², 400 m², 625 m², 900 m²). In three plant communities for which the mean richness values of the 
smallest plot sizes were zero, these were excluded from the SAR analyses (see columns nSizes and Plot sizes [m²]). The three last columns give the best models according to the 
criteria AICc [S], AICc [log S], and LEE. 

Plant community Vegetation class Category nSeries nSizes Plot sizes [m²] AICc [S] AICc [log S] LEE 
Sphagnion magellanici Oxycocco-Sphagnetea Bog 7 16 0.0001–900 Power (quadr.) [S] Power (quadr.) [log S] Power (quadr.) [log S] 
Caricetum distichae Phragmito-Magno-

Caricetea 
Grassland, wet 2 15 0.0025–900 Power (Plotkin, 

approx.) [S] 
Power (quadr.) [log S] Power [log S] 

Caricetum gracilis Phragmito-Magno-
Caricetea 

Grassland, wet 3 15 0.0025–900 Power [S] Logarithmic (quadr.) 
[log S] 

Power [S] 

Corispermum intermedium-
Ammophila arenaria community 

Ammophiletea Pioneer 
community 

9 14 0.01–900 Logarithmic (quadr.) 
[S] 

Rational [log S] Cumulative beta-P 
[log S] 

Koelerion glaucae Koelerio-
Corynephoretea 

Grassland, dry 9 16 0.0001–900 Power (quadr.) [S] Power (quadr.) [log S] Power [S] 

Koelerion glaucae (with shrubs) Koelerio-
Corynephoretea 

Grassland, dry 10 16 0.0001–900 Power (quadr.) [S] Power [log S] Logarithmic (quadr.) 
[log S] 

Lolio-Cynosuretum Molinio-Arrhenatheretea Grassland, 
mesic 

8 16 0.0001–900 Logarithmic (quadr.) 
[S] 

Logarithmic (quadr.) 
[log S] 

Logarithmic (quadr.) 
[log S] 

Rubus caesius-Salix daphnoides 
community 

Rhamno-Prunetea Scrub 9 16 0.0001–900 Power [S] Power (quadr.) [log S] Power [S] 

Betulion pubescentis Vaccinio uliginosi-
Pinetea sylvestris 

Forest, wet 4 16 0.0001–900 Lomolino [S] Power (quadr.) [log S] Lomolino [S] 

Carici elongatae-Alnetum 
glutinosae 

Alnetea glutinosi Forest, wet 20 16 0.0001–900 Power (quadr.) [S] Lomolino [log S] Lomolino [log S] 

Dicrano-Pinion Vaccinio-Piceetea Forest, dry 23 16 0.0001–900 Power (Plotkin, 
approx.) [S] 

Power [log S] Power [log S] 

Linnaeo-Piceetum Vaccinio-Piceetea Forest, mesic 9 16 0.0001–900 Power (quadr.) [S] Lomolino [log S] Power (quadr.) [S] 
Melampyrum pratense-Betula 
pendula community 

Quercetea robori-
petraeae 

Forest, mesic 10  0.0001–900 Power (quadr.) [S] Lomolino [log S] Cumulative beta-P 
[log S] 

Tilio-Carpinetum Carpino-Fagetea Forest, mesic 7  0.0001–900 Lomolino [S] Power (quadr.) [log S] Power (quadr.) [S] 

 



Table S2 Mean species richness values of the nested-plot dataset from Dolnik (2003) used in the analyses. In 
those three plant communities for which the mean richness values of the smallest plot sizes were zero, these were 
excluded from the SAR analyses. For further information, see Appendix S1 in Supporting Information. 
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0.0001 1.6 0.0 0.0 0.0 2.2 1.3 2.1 1.6 0.8 0.5 1.3 0.7 0.9 0.3
0.0025 3.7 1.5 1.3 0.0 4.9 4.1 9.1 4.9 4.0 1.4 2.5 2.2 2.4 1.3

0.01 6.1 2.5 2.3 0.1 8.6 6.1 14.3 6.8 7.3 2.1 4.5 3.4 4.6 2.4
0.0625 9.3 7.0 4.3 0.1 12.6 10.5 23.1 10.8 10.0 5.9 6.8 5.8 7.8 4.9

0.25 12.6 10.5 6.7 0.3 17.9 13.1 30.1 15.9 12.3 8.8 9.0 8.3 11.5 8.0
1 16.4 14.0 9.0 0.6 21.8 17.7 37.4 21.9 19.3 14.8 12.6 15.2 20.7 14.9
4 23.7 19.0 10.3 1.9 26.3 22.1 48.5 29.4 28.5 23.8 19.4 25.3 27.6 21.1
9 25.9 23.0 11.7 2.2 28.9 25.2 54.5 35.3 35.0 30.0 23.7 31.4 34.1 26.6

16 29.3 25.5 13.3 2.6 32.2 27.3 58.0 41.9 41.8 37.7 29.7 35.7 45.3 38.1
25 31.0 29.0 14.0 3.0 34.9 30.7 59.9 48.3 45.3 43.1 33.0 38.9 51.8 42.3
49 36.0 31.5 16.0 3.1 40.3 27.6 62.9 58.3 49.8 49.8 39.0 47.4 61.4 48.1

100 39.7 33.0 19.3 3.3 44.9 46.3 68.5 71.7 58.5 60.5 46.8 55.1 72.5 62.6
225 44.1 43.0 25.0 4.4 49.6 59.3 74.3 83.9 70.8 73.5 58.2 66.0 88.3 76.4
400 47.3 54.0 27.3 5.0 55.2 70.6 80.4 99.1 80.5 86.3 66.2 73.7 100.9 88.6
625 52.7 74.5 29.3 5.6 59.9 78.6 86.0 112 83.5 97.1 72.5 81.7 112.8 99.6
900 55.9 93.0 31.7 5.9 64.9 86.7 92.4 122 88.0 106.7 81.5 88.2 127.4 107.1

 



Table S3 Detailed information for the island dataset. The number of islands is given as n. From Deshaye & Morisset (1988), the three smallest islands without any species were 
excluded from the analyses to avoid discussions on the complicated methods for treating zero-species entities adequately, which was beyond the scope of the present paper. Note 
that the island sizes are given in different units for the individual archipelagos. The three last columns give the best models according to the criteria AICc [S], AICc [log S], and 
LEE. 

Source Type Location Latitude n Island sizes Richness 
values 

AICc [S] AICc [log S] LEE 

Bergmeier & 
Dimopoulos (2003) 

Sea, continental 
islands 

Aegean, Greece 34°–40° N 28 0.5–3,000 ha 4–469 Power [S] Logarithmic 
(quadr.) [log S] 

Power [S] 

Buckley (1985) Sea, continental 
islands 

Princess Charlotte 
Bay, Australia 

ca. 14° S 61 1–4,090 m² 1–45 Power (Plotkin, 
approx.) [S] 

Power [log S] Cumulative beta-P 
[S] 

Deshaye & Morisset 
(1988) 

Sea, continental 
islands 

Richmond Gulf, 
Canada 

ca. 56° N 31 0.17–92.14 ha 1–37 Logarithmic 
(quadr.) [S] 

Logarithmic 
(quadr.) [log S] 

Logarithmic 
(quadr.) [S] 

Hobohm (2000) Sea, oceanic 
islands 

Macaronesian 
Islands 

15°–39° N 30 10–2,355 km² 68–1,367 Power [S] Power [log S] Linear [S] 

Price (2004) Sea, oceanic 
islands 

Hawaiian Islands 18°–29° N 18 0.02–10,433 km² 1–483 Power (quadr.) [S] Power [log S] Logistic [S] 

Rydin & Borgegård 
(1988) [only data for 
1984 used] 

Lake Lake Hjälmaren, 
Sweden 

ca. 59° N 37 50–25,170 m² 5–115 Logarithmic [S] Logarithmic [log S] Logarithmic [log S] 

 


