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Abstract. The goal of this study is to characterize the sen-
sible (H ) and latent (LE) heat exchange for different land
covers in the heterogeneous steppe landscape of the Xilin
River catchment, Inner Mongolia, China. Eddy-covariance
flux measurements at 50–100 m above ground were con-
ducted in July 2009 using a weight-shift microlight air-
craft. Wavelet decomposition of the turbulence data enables
a spatial discretization of 90 m of the flux measurements.
For a total of 8446 flux observations during 12 flights,
MODIS land surface temperature (LST) and enhanced veg-
etation index (EVI) in each flux footprint are determined.
Boosted regression trees are then used to infer an environ-
mental response function (ERF) between all flux observa-
tions (H , LE) and biophysical (LST, EVI) and meteorologi-
cal drivers. Numerical tests show that ERF predictions cov-
ering the entire Xilin River catchment (≈ 3670 km2) are ac-
curate to≤ 18 % (1σ ). The predictions are then summarized
for each land cover type, providing individual estimates of
source strength (36 W m−2<H < 364 W m−2, 46 W m−2<

LE< 425 W m−2) and spatial variability (11 W m−2< σH <

169 W m−2, 14 W m−2< σLE < 152 W m−2) to a precision
of ≤ 5 %. Lastly, ERF predictions of land cover specific

Bowen ratios are compared between subsequent flights at dif-
ferent locations in the Xilin River catchment. Agreement of
the land cover specific Bowen ratios to within 12± 9 % em-
phasizes the robustness of the presented approach. This study
indicates the potential of ERFs for (i) extending airborne
flux measurements to the catchment scale, (ii) assessing the
spatial representativeness of long-term tower flux measure-
ments, and (iii) designing, constraining and evaluating flux
algorithms for remote sensing and numerical modelling ap-
plications.

1 Introduction

Measurements of the exchange of heat and moisture between
the land surface and the atmosphere are critical to our un-
derstanding of the role of terrestrial ecosystems in the global
climate system. Ground-based eddy-covariance (EC, a sum-
mary of all notation is provided in Appendix A) measure-
ments are suited to continuously monitor selected sites for
long periods and enable the integration in time (Baldocchi
et al., 2001). However, these results might only represent
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2194 S. Metzger et al.: Spatially explicit regionalization of airborne flux measurements

Fig. 1.Location of the Xilin River catchment in the Inner Mongolia
Autonomous Region, China (modified after Steffens et al., 2008).

small areas around the immediate measurement locations
(e.g. Kaharabata et al., 1997; Schuepp et al., 1992). On the
other hand aircraft-based measurements can provide flux in-
formation at regional scales (e.g. Desjardins et al., 1995) but
are restricted to short periods of time. Thus the temporal
and spatial characteristics of ground-based and airborne mea-
surements complement each other (Gioli et al., 2004; Mauder
et al., 2007). It is desirable to integrate both approaches in an
effort to provide suitable datasets for the design, constraint,
and evaluation of mass and energy exchange models at site
as well as at regional scales (Chen et al., 1999; Desjardins
et al., 1997). In the following we briefly review the require-
ments for spatial scaling of airborne EC measurements, and
the applicability of airborne EC measurements over complex
terrain.

Aggregation approaches enable estimating the exchange
over entire landscapes, provided fluxes for characteristic land
cover features or domains are known (Beyrich et al., 2006).
Flight path segmentation can be a useful tool to directly re-
late airborne EC measurements to landscape units (e.g. Des-
jardins et al., 1994; Vellinga et al., 2010). It is also possi-
ble to functionally relate these measurements to land cover
properties, which then reflect the effects of vegetation, cli-
mate, soil and topography on the flux strength. For exam-
ple, Kirby et al. (2008) propose a method for discerning in-
dividual fluxes in a heterogeneous landscape based on sub-
sets of “pure” flux fragments. Another approach is to utilize
quantitative information about the EC measurement’s spatial
context, on which basis environmental response functions
(ERFs, Desjardins et al., 1994) can be derived. The general
idea of ERFs is to establish a relationship between spatially
or temporally resolved flux observations (responses) and cor-
responding environmental drivers. Hence ERFs are a quanti-

tative mechanism to extract relationships from, and to con-
dense the information content in a dataset. If sufficiently ac-
curate, the extracted relationships can then be used, e.g. to
bridge observational scales or to adjust the spatial represen-
tativeness of ground-based flux measurements. In addition,
current methods to spatially resolve surface fluxes are mainly
focused on remote sensing algorithms (e.g. Fan et al., 2007)
and process-based land surface models (e.g. Vetter et al.,
2012). These procedures often demand far-reaching assump-
tions, such as the closure of the energy and water balances
(e.g. Anderson et al., 2012), or are challenging with respect
to the required data basis (e.g. Kaminski et al., 2012; Ziehn
et al., 2011). In contrast, accurate ERFs enable inferring
high-resolution surface flux maps directly from observational
data with minimal, quantifiable assumptions. However, ERFs
cannot provide insights, e.g. into ecosystem pools. Conse-
quently, ERFs might be suitable for complementing data as-
similation and remote sensing approaches, e.g. through con-
tributing to the design, constraint and evaluation of flux al-
gorithms.

The forenamed applications require the relation of the air-
borne measured fluxes to land cover properties. To enable
this requirement an aircraft is bound to measure close to the
surface, where characteristic fluxes from different land cov-
ers are not yet fully homogenized (or blended, Mason, 1988;
Wood and Mason, 1991). Moreover, the flux must be mea-
sured at a constant altitude above ground, so as to avoid ar-
tificial flux contributions through altitude fluctuations along
vertical gradients (Vickers and Mahrt, 1997). However in-
vestigation areas are seldom ideally flat, and topography can
vary significantly throughout a domain. To safely follow ter-
rain contours at a low and constant altitude above ground,
the aircraft must possess a low ratio of true airspeed to climb
rate. Only a few airborne platforms fulfil this requirement
(e.g. Bange et al., 2006; Gioli et al., 2004; Thomas et al.,
2012), with the weight-shift microlight aircraft (WSMA) be-
ing one of them (Metzger et al., 2011, 2012). In forenamed
studies we describe a WSMA that enables airborne EC flux
measurements in remote settings at reasonable cost and min-
imal infrastructural demand. The objectives of the present
study are to investigate the possibilities of (i) deriving mean-
ingful EC fluxes from WSMA measurements over complex
terrain, and (ii) scaling the results to a domain of interest.

We applied the WSMA over the undulating steppe of
the Xilin River catchment (XRC), Inner Mongolia, China
(Fig.1). On 21 days in the summer of 2009, flights along line
transects were conducted at 50–100 m a.g.l. From boundary
layer scaling it is found that the vertical flux gradients below
the flight level satisfy the surface layer definition (constant
within 5–10%). Hence measured sensible (H ) and latent heat
flux (LE) can be interpreted as surface fluxes (Sect.3.1). Be-
cause of its climate and management practices typical for
semiarid grasslands of China (Butterbach-Bahl et al., 2011),
intensive ecological research commenced in the XRC in the
late 1970s (Jiang, 1985). Besides Tibet, Inner Mongolia is
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China’s most important province for grassland-based live-
stock production, and desertification due to overgrazing is
a major problem for extensive areas (Meurer and Jiang,
2001). In addition, the land cover in the investigation area
varies distinctly in space and time (Ketzer et al., 2008; Schaf-
frath et al., 2011). We postulate that airborne EC flux mea-
surement is a promising tool to gain new insights into the
spatial variability of heat and moisture exchange across the
XRC.

In the present paper we firstly introduce the WSMA
and the on-board measurements, and give an overview of
the climate and physical composition of the study area
(Sects.2.1, 2.2). We then describe a measurement strategy
(Sect.2.3) which is linked to a novel data processing ap-
proach (Sect.2.4). A wavelet transformation allows us to re-
solve fluxes above each overflown cell of a 90 m land cover
raster without neglecting flux contributions on much larger
scales. In combination with footprint modelling and a non-
parametric machine learning technique, an ERF is computed
between the airborne flux observations and meteorological
and land surface drivers (Fig.5 provides an overview of the
data flow). In Sect.3 we present the results of this func-
tional relationship and evaluate its potential to explain the
spatial distribution of the heat and moisture exchange along
the flight lines. We interpret the results in the context of
blending scales and statistical errors, and discuss the un-
certainty associated with using the ERF to predict fluxes to
freely selectable domains in the XRC (Sect.3.2.4). Lastly,
we give an outlook on potential applications of WSMA
flux measurements and future improvements of the presented
methodology (Sect.4).

2 Materials and methods

2.1 The weight-shift microlight aircraft

The structure of a WSMA differs from common fixed-wing
aircraft: it consists of two distinct parts, the wing and the
trike, which hangs below the wing and contains pilot, en-
gine and the majority of the scientific equipment. This par-
ticular structure provides the WSMA with exceptional trans-
portability and climb rate, which qualifies it for applications
in inaccessible and topographically structured terrain. A de-
tailed description of the physical properties of the WSMA
used in this study as well as characteristics and manufac-
turers of sensors and data acquisition is given in Metzger
et al. (2011, 2012). In short, most variables are sampled at
100 Hz and are block-averaged and stored at 10 Hz, yielding
a horizontal resolution of approximately 2.5 m. In this study,
we use the 10 Hz measurements of the 3-D wind speed (σw =

0.04 m s−1 precision), temperature (σ = 0.04 K), humidity
(σ = 0.005 g m−3), and the height a.g.l. (σ = 0.04 m). From
error propagation it was found that changes in friction veloc-
ity (u∗), H and LE of 0.02 m s−1, 5 W m−2, and 3 W m−2,

respectively, can be reliably distinguished (Metzger et al.,
2012). In addition, we use for this study slow measurements
(≤ 0.1 Hz) of humidity (TP3 dew point mirror, Meteolabor
AG, Wetzikon, Switzerland), surface temperature (CT in-
frared thermometer, Optris GmbH, Berlin, Germany), and
down-welling shortwave radiation (LI-200 SZ, LI-COR Inc.,
Lincoln, Nebraska, 400–1100 nm, within an error of 5 %
equal to pyranometer measurements, 300–3000 nm).

2.2 Study area

Airborne EC flux measurements were performed in the XRC
from 23 June to 4 August 2009. The hilly investigation area
lies south of the provincial capital Xilinhot, Inner Mon-
golia, China (43.1–43.9◦ N, 116.0–117.2◦ E; 1000–1500 m
a.s.l., Fig.2). The XRC covers an area of≈ 3670 km2 and
is characterized by temperate continental monsoon climate,
with cold and dry winters and warm and wet summers.
From data of the years 1982–2005 at the Inner Mongolia
Grassland Ecosystem Research Station (IMGERS, 43.63◦ N,
116.70◦ E; 1187 m a.s.l., Fig.2), the monthly mean air tem-
perature ranges from−21◦C in January to+19◦C in July,
with an annual mean of+1◦C (Liu et al., 2008). Vari-
ability in total annual precipitation is high (166–507 mm)
with a mean annual sum of 335 mm. Typically, 60–80 %
of the rainfall occurs from June to August (Chen, 1988).
June 2009 (57 mm) and August 2009 (60 mm) were in the
usual range, but July 2009 (35 mm) only received half of
the long-term average rainfall. Detailed information on the
meteorological conditions during the flight campaign is pro-
vided in Appendix B. Chestnut soils are the main zonal
soil types, with a land cover dominated byStipa grandis, S.
krylovii, ArtemisiaandLeymus chinensissteppe. Throughout
the XRC the abundance of C4 species in the steppe compo-
sition is relatively homogeneous (15–25 %, Auerswald et al.,
2009). The growing season usually lasts from the end of May
to late September (Liang et al., 2001).

Land cover in the XRC had been classified on the ba-
sis of a Landsat 7 Thematic Mapper image of 17 August,
2005 (Wiesmeier et al., 2011). In recent years however the
development of settlements sprawled, and irrigated agricul-
ture is gaining popularity (Qi et al., 2007). The Bowen ratio
(Bo) of the latter is distinctly different from the land cover
classes that already exist in the classification of Wiesmeier
et al. (2011). This land cover classification was thus updated
and extended by visual reclassification of Advanced Space-
borne Thermal and Reflection Radiometer (ASTER) images
of 7 and 28 April 2009. The result is a land cover map
with a resolution of 90 m, which is dominated by generic
steppe (71 % coverage), intersected by a dune belt (10 %,
Fig. 2). The coverage of bare soil, mountain meadow, marsh-
land and rainfed agriculture is each≈ 5 %, and the cover-
age of water bodies, settlements and irrigated agriculture
is sub-per cent. In the context of this study the land cover
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Fig. 2.Maps of the Xilin River catchment (black boundary), with the IMGERS research station and pairs of flight lines. Left: land cover clas-
sification (modified after Wiesmeier et al., 2011) over a digital elevation model (Shuttle Radar Topography Mission, Tile 6004, data version
4.1, Jarvis et al., 2008). The colour codes are abbreviated for bare soil (Bare), marshland (Marsh), generic steppe (Steppe), mountain meadow
(Mountain), settlements (Settle), irrigated agriculture (Irrigated), and rainfed agriculture (Arable). Right: MODIS-enhanced vegetation index
of 20 July 2009 with a colour bar ranging from 0< EVI < 1.

classification represents the longer-term effects of vegeta-
tion, climate, soil and topography.

The spatial variation of temperature and precipitation in
the XRC follows altitudinal and latitudinal trends (Auer-
swald et al., 2009; Wittmer et al., 2010). To resolve the effec-
tive state of biophysical surface properties over time, we use
Moderate Resolution Imaging Spectroradiometer (MODIS)
data. We chose 8-day composites of the daytime land sur-
face temperature (LST, MOD11A2.5, 1 km resolution), and
16-day composites of the enhanced vegetation index (EVI,
MOD13Q1, MYD13Q1, 250 m resolution) for this purpose.
Due to an 8-day overlap of the EVI data products by the
MODIS Terra and Aqua missions, LST and EVI datasets
could both be acquired for 4, 12, 20, 28 July, and 5 Au-
gust 2009. The LST and EVI datasets were bi-linearly inter-
polated to the 90 m resolution of the land cover classification,
and linearly interpolated in time to yield an individual map
for each flight day. The spatial gradients in temperature and
precipitation throughout the XRC are clearly reproduced by
the greenness of the vegetation (Fig.2). The spatio-temporal
resolution of the MODIS data enables assessing the actual
state of the biophysical conditions at the land surface. LST
and EVI vary significantly not only throughout the study pe-
riod, but also between the different land cover types (Fig.3).
All land cover types follow a similar temporal trend, with
LST and EVI peaking mid-July and end-July, respectively.
While open water is the coolest surface, LST and greenness
increase from mountain meadow over marshland to irrigated
agriculture, which are likely strong sources of evapotranspi-
ration. The reverse relationship (increasing LST and decreas-
ing EVI) is found for settlements, rainfed agriculture, dunes,
steppe and bare soil, which are likely strong sources ofH .

A ceilometer (LD40 – Vaisala, Helsinki, Finland) was de-
ployed at IMGERS and provided vertical profiles of the at-
mospheric laser radiation backscatter intensity (Mini light
detection and ranging, originally applied for the detec-
tion of the cloud base height). The depth of the con-
vective boundary layer (CBL) was inferred from 10 min
means of these data, in combination with semi-daily ra-
diosonde ascends in nearby Xilinhot (World Meteorolog-
ical Organization station 54102,http://weather.uwyo.edu/
upperair/sounding.html). For this purpose the maximum gra-
dient method is used, which enables the detection of up to
five lifted inversions (Emeis et al., 2008; Helmis et al., 2012;
Münkel and Roininen, 2010). It is assumed that the aerosol
number concentration, size distribution, shape and chemical
composition (refractive index, absorption) adapt rapidly to
the CBL structure. If there was more than one maximum or
layer detected, the lowest one is taken as the CBL depth. The
CBL depth is used in Sect.2.4.1for the calculation of atmo-
spheric length scales, and in Sect.2.4.3for the source area
calculation of the airborne flux measurement. In addition,
the cloud cover during the flight periods was monitored by
ground personnel at IMGERS.

2.3 Measurement strategy

Advancing into more complex terrain, a flight strategy needs
to be derived that considers (i) pilot safety, (ii) vertical
flux gradients, (iii) orographically induced effects on radia-
tive transfer and turbulence generation, (iv) statistical er-
rors, and (v) the land cover distribution. Such a flight strat-
egy was derived for the XRC study region using the ge-
ographic information system ArcMap 9.2 (Environmental

Biogeosciences, 10, 2193–2217, 2013 www.biogeosciences.net/10/2193/2013/
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Systems Research Institute, Redlands, CA, USA). (i) A min-
imum flight level of 50 m above ground was found to pro-
vide the pilot with sufficient clearance for safe flight even
under buoyancy-driven turbulence. (ii) Measuring at a con-
stant pressure level would make a conversion of the measured
temperature and densities into potential quantities (Sect.2.4)
less important. However, over tilted or undulating terrain the
aircraft would partially travel along the vertical flux gradi-
ents, thus spuriously contaminating the measured flux sig-
nal. A correction for the vertical flux gradients over complex
terrain is not as straightforward and well conditioned as the
conversion into potential quantities. In order for the fluxes
to remain interpretable, the aircraft should thus measure at
approximately constant height above terrain; i.e. the flight
paths should follow the terrain contours. (iii) We use a digi-
tal elevation model (Shuttle Radar Topography Mission, Tile
60 04, data version 4.1, Jarvis et al., 2008) to calculate slope
angles. In an effort to avoid immediate orographically in-
duced effects on radiative transfer and turbulence generation,
all locations within 500 m radius around slopes exceeding 6◦

were masked. This radius approximately equals five times the
standard deviation (SD) of the terrain elevation. (iv) To re-
duce the statistical errors, the flight path should be long and
perpendicular to the mean wind direction. Thus we aligned
straight flight lines along four wind axes in the areas which
were not masked in the previous step. (v) Of the flight lines
that were frequently perpendicular to the mean wind direc-
tion, those that best represented the land cover distribution
in the XRC were covered on multiple flight days. This strat-
egy results in a terrain-following flight patterns, with typi-
cal altitude gradients of 100 m vertical on 10 km horizontal.
The climb angle of the aircraft rarely exceeds±5◦, and on
average the height above ground is constant to within 12 m
(Table1). Each flight line was repeated until a minimum of
40 km of data were acquired.

The aircraft was operated from IMGERS (Fig.2). For
the present study we use data from six days in July 2009
(Table1), which were selected according to the availability
of auxiliary datasets and homogeneity of the down-welling
shortwave radiationS ↓ along the flight tracks (TableB1).
On each day measurements were carried out along pairs of
approximately parallel flight lines at a nominal airspeed of
27 m s−1, with eight individual flight lines in total. Each pair
is located across or along the humidity and temperature gra-
dients in the XRC (Fig.2). This strategy provides two inde-
pendent datasets for each flight day, and covers the funda-
mental climatic gradients in this area.

The land cover type most frequently observed below all
flight lines is steppe (Table1). Flight lines with significant
surface coverage of marshland or irrigation agriculture tend
to be greener (higher EVI) compared to flight lines with sig-
nificant coverage of dunes or bare soil. In the following, we
investigate whether spatially resolved land cover information
can be used as predictor forH and LE measured along the
flight lines. At this we hypothesize that LST and EVI are rep-

Fig. 3.Change of land surface temperature (top) and enhanced veg-
etation index (bottom) for each land cover class throughout the
study period. The land cover colour code and corresponding ab-
breviations are identical with Fig.2. Vertical dashed lines indicate
the flight dates. The land cover “Water” is not present for the EVI,
because water absorbs strongly in the near infrared, leading to neg-
ative EVI values that are not indicative of vegetation greenness.

resentative proxies for heat and moisture sources on the sur-
face, respectively (e.g. Glenn et al., 2008; Lyons and Halldin,
2004; Nagler et al., 2007). Because aircraft measurements
cover a broad state space, the resulting observations are par-
ticularly suited to infer ERFs.

2.4 Data processing

An analysis package for the processing of the airborne EC
data was developed in GNU R version 2.13 (R Develop-
ment Core Team, 2012). The analysis package is described
in detail in Metzger et al. (2012) and is available upon re-
quest. Relevant processing steps are: (i) the raw data are
screened for spikes; (ii) humidity from fast response and slow
reference sensors are merged using a complementary filter;
(iii) the WSMA temperature and densities are transformed
to potential quantities at the mean flight altitude (pressure
level) of each flight line; (iv) the time delay due to separa-
tion between the vertical wind measurement and the temper-
ature and humidity measurements is corrected by maximis-
ing their lagged correlation; (v) the WPL correction accord-
ing to Webb et al. (1980) is used to correct LE for density
fluctuations; (vi) correction for spectral artefacts (−1± 1 %,
−2± 1 %, and−6± 2 % for the SDs in the wind compo-
nents along, transverse and vertical to the aircraft coordinate

www.biogeosciences.net/10/2193/2013/ Biogeosciences, 10, 2193–2217, 2013
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Table 1.Summary of the WSMA flights selected for analysis and related surface conditions. Shown are date, Chinese standard time (CST=

coordinated universal time+ 8), flight identifier (ID), length of each flight linel, repetitions rep, cumulated precipitation in a 10-day trailing
window P , most frequently occurring land cover classes LC1–LC3, and the enhanced vegetation index EVI immediately below the flight
lines. A legend with colour codes for LC and EVI is provided at the bottom. The LC colour code and corresponding abbreviations are
identical with Fig.2.

Date Time CST ID l  [km] rep P  [mm] LC1 LC2 LC3 EVI

8 July 2009 10:20–10:50 O10 15 3 1.4 54% 35% 6% 35 ± 13%
12:00–12:50 O12 13 6 32% 30% 21% 35 ± 18%

13 July 2009 11:30–12:10 O8 30 2 5.0 59% 15% 11% 32 ± 10%
12:40–13:10 O3 21 2 70% 17% 13% 25 ± 6%

15 July 2009 11:30–12:20 O11 11 6 5.0 48% 42% 10% 33 ± 9%
12:30–13:00 O7 11 4 79% 16% 4% 21 ± 6%

17 July 2009 11:00–11:30 O11 11 4 5.2 54% 40% 4% 36 ± 12%
12:20–13:00 O7 11 5 82% 10% 5% 21 ± 8%

26 July 2009 12:50–15:30 C1 60 2 13.4 51% 24% 20% 25 ± 7%
13:10–15:10 C2 63 2 73% 10% 9% 27 ± 9%

30 July 2009 11:00–13:30 C1 60 2 14.3 52% 24% 18% 25 ± 7%
11:10–13:20 C2 63 2 74% 10% 8% 26 ± 8%

LC Arable Dunes Irrigated Steppe

EVI

Bare Marsh

> 20%–25% > 25%–30% > 30%–35% > 35%

system, respectively) and cospectral artefacts (−4±4 %, 0±
1 %, and 0± 2 % foru∗, H and LE, respectively) after Met-
zger et al. (2012); and (vii) calculation of random and sys-
tematic statistical errors after Lenschow and Stankov (1986)
and Lenschow et al. (1994).

2.4.1 Horizontal mixing between surface and flight level

Horizontal mixing between the surface and the flight level re-
sults in the spatial integration of fluxes above heterogeneous
terrain, a process also referred to as “blending” (e.g. Mason,
1988). Working toward an ERF between surface properties
(driver) and flux measurement (response), we will test three
hypotheses related to horizontal mixing. At flight level (i) the
turbulence is in approximate equilibrium with the land sur-
face in the flux footprint; (ii) the measured turbulence statis-
tics are representative of the mechanical setting upwind; (iii)
changes in the turbulent flux can be resolved at the horizontal
scale of surface heterogeneities.

Several analytical formulations have been developed to
characterize a mixing regime (e.g. Mahrt, 2000; Raupach
and Finnigan, 1995; Wood and Mason, 1991). Such formu-
lations are usually based on the comparison of characteris-
tic length scales for surface heterogeneity and CBL mixing.
Here we use the autocorrelation function to estimate the typi-
cal horizontal scale of surface heterogeneityLH. For this pur-
pose we integrate the autocorrelation function of the WSMA-

measured surface temperatureTs at distanced along a flight
line from zero lag to the first crossing with zero at lagc0;

LH =

c0∫
0

T ′
s(d)T

′
s(d + c)

T ′
s(d)

2
dc, (1)

where overbars denote the mean along a flight line, and
primes denote the deviations from this mean.LH can be in-
terpreted as the spatial coherence of surface features along
the flight path (e.g. Strunin et al., 2004). In the following we
assume thatLH is isotropic within the flux footprint, i.e. also
representative perpendicular to the flight path.

In order to further characterize the mixing regime,LH
can be compared to atmospheric length scales. These length
scales inter-relate the transport strengths in the horizontal and
vertical directions, and correspond to the along wind distance
after which the air mass below a reference level is approxi-
mately homogenized. Formulations for atmospheric length
scales mainly differ in their use of (i) the measures of trans-
port strengths, and (ii) the vertical or horizontal reference
scale. Raupach and Finnigan (1995) proposed a length scale
LR (now also referred to as Raupach length), which charac-
terizes the mixing regime throughout the entire CBL;

LR = 0.8zi
u

w∗

, (2)
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with CBL depthzi , average (bulk) horizontal transport veloc-
ity u, and convective velocityw∗. Becauseu cannot be mea-
sured directly, it is substituted in Eq. (2) and in the follow-
ing investigations with the measured horizontal wind speed at
flight altitude. The influence of surface heterogeneities with
spatial scalesLH that are small compared toLR is confined
below the CBL top. In this case the concept of a “blending
height” within the CBL arises. The blending height corre-
sponds to a vertical level at which the turbulent flow field
over heterogeneous terrain approaches equilibrium with the
local vertical gradient. If the blending height is confined
within the surface layer, Monin–Obukhov similarity can be
applied above the blending height (Mahrt, 2000). Wood and
Mason (1991) define the thermal blending height for unstable
stratification;

zTB1 = LH
w′θ ′

0,v

u θ0,v
· 323, (3)

with the buoyancy heat flux from the virtual potential tem-
peratureθ0,v, and the horizontal wind speedu at the blend-
ing height. This thermal blending height can be rearranged
as thermal blending length;

LTB1 = z
u θ0,v

w′θ ′

0,v

· 3.1 · 10−3, (4)

now representing the smallest scale of surface heterogeneity
that significantly influences the turbulent flow at flight levelz

above ground. An improved version of the thermal blending
length was proposed by Mahrt (2000);

LTB2 = LR
θ0,v

σTs

· 4.3 · 10−3, (5)

which considers the SD ofTs as a measure for the amplitude
of surface heterogeneity. The numeral factors in Eqs. (3)–
(5) were estimated from observations by Mahrt (2000). In
Sect.3.1 the results of above formulations are used to test
the initial hypotheses related to horizontal mixing.

2.4.2 Wavelet cross-scalogram

The differentiation of land cover types is at odds with the
classical time-domain EC method, which assumes homoge-
neous terrain. However, Parseval’s theorem implies that the
covariance of signals may be studied not only in the time
domain, but equivalently in the frequency domain. There, we
have the wavelet transform family of methods at our disposal,
which are particularly suited for the spectral analysis of non-
stationary signals.

A wavelet is a signal that is localized in both time and
frequency. Different localizations of the same basic shape
(daughter wavelets) are constructed as a function of timet

by defining;

ψa,b(t)=
1

√
|a|
ψ

(
t − b

a

)
=

1
√

|a|
ψ(q), (6)

whereψ is a suitable mother wavelet,a a scale parame-
ter (in frequency domain),b a location parameter (in time
domain), andq = (t − b)/a a dimensionless coordinate (in
time–frequency space). The convolution

∫
x(t)ψa,b(t)dt of

a signalx with a daughter waveletψa,b yields a wavelet
coefficientWx(a, b), a wavelet transform being a collec-
tion of such coefficients. We follow the procedure of Tor-
rence and Compo (1998), using the continuous wavelet trans-
form approximation for discrete input. The chosen mother
wavelet is the Morlet waveletψ(q)= π−1/4eiω0qe−q

2/2

with the frequency parameterω0 = 6. The relevant param-
eters are spaced exponentially in frequency and linearly in
time, respectively:aj = a02jδj for j = 0, . . . ,J andbn = nδt

for n= 0, . . . ,N − 1, with length of the datasetN , initial
scale parametera0(δt,ψ) and number of scale increments
J (a0,δj,δt, N, ψ). a0 and J are chosen such that the ex-
treme wavelet scales match the period of the Nyquist fre-
quency, here 0.2 s, and the duration of the dataset, respec-
tively. The unit of increment in the time domain,δt , is given
by the sampling period of the time series, here 0.1 s. The
unit of increment in frequency domain,δj , can be set to
different values, with smaller values increasing both reso-
lution and redundancy. For the present data, the results of
the wavelet analyses were insensitive to the choice ofδj

in the range 0.0625< δj < 0.25. Hence we follow the ex-
ample of Torrence and Compo (1998) and useδj = 0.125.
The wavelet scalogram of a signalx is defined as the ma-
trix of |Wx(a, b)|

2 for all admissiblea, b. Likewise, the
wavelet cross-scalogram of two signalsx, y is the matrix
of Wx(a, b)Wy(a, b)

∗, where∗ denotes the complex conju-
gate. The global covariance ofx andy can be estimated by
weighted averaging;

cova,b =
δjδt

CδN

J∑
j=0

N−1∑
n=0

Wx(aj , bn)Wy(aj , bn)
∗

aj
, (7)

whereCδ is a reconstruction factor specific to each mother
wavelet, here 0.776 for the Morlet wavelet. The covariance
can also be estimated locally for a subinterval of eitherj or
n. This is a useful feature for dealing with changes in land
cover: the continuous wavelet transform is highly redundant,
with high correlation between adjacent low-frequency coef-
ficients. Therefore, the covariance for a subinterval in time
can be estimated without neglecting low-frequency, large-
scale contributions. The downside of the large low frequency
support is that edge effects due to the finite overall dataset
increase with scale. Torrence and Compo (1998) define the
cone of influence (COI) as the boundary where the power of
edge-related artefacts is damped by a factor ofe−2. Integra-
tion over all scales yields results close to the time-domain
EC method (here,−7 to −3 % median differences), but also
includes less reliable estimates above the COI (e.g. Strunin
and Hiyama, 2004). Considering only scales below the COI
rejects those less reliable estimates (e.g. Mauder et al., 2007).
However, because part of the scale range is excluded, such a
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procedure also systematically increases the discrepancy be-
tween wavelet and time-domain EC methods (here,−22 to
−7 % median differences). Moreover, the COI tapers toward
the centre of the dataset (Fig.4). Different scales would be
included when estimating the covariance for subintervals at
different positions along the flight path. Hence, for the lo-
calization of flux contributions in space we (i) integrate over
all scales of a subinterval, and (ii) use a correction factor for
each individual flight path to compensate the difference be-
tween wavelet and time-domain EC methods. Such a proce-
dure is suited for the derivation of ERFs, because (i) it en-
ables localization in space, (ii) considers contributions to the
local flux from scales that are larger than the subinterval, (iii)
is not biased with respect to the global time-domain covari-
ance, and (iv) uncertainty arising from edge-effects is propa-
gated in the ERF and included in the final uncertainty metric
(Sect.2.5.1).

Computations were performed with a continuous wavelet
transform package written in GNU R (R Development Core
Team, 2012), partially based on the published code of Tor-
rence and Compo (1998) available fromhttp://atoc.colorado.
edu/research/wavelets. u∗, H and LE (and analogously the
SDs of the wind components) are calculated for overlapping
subintervals of 1000 m length. The subintervals are centred
above each cell of the land cover/LST/EVI grids that was
overflown by the WSMA, principally yielding one flux ob-
servation every 90 m. The resulting sample size for all 12
flights in Table1 isN = 8446.

2.4.3 Footprint modelling

The footprint- or source weight function quantifies the spatial
contributions to each flux observation (Schmid, 2002; Vesala
et al., 2008). For this purpose we use the footprint model
of Kljun et al. (2004, KL04), which is a parameterisation of
the backward Lagrangian model of Kljun et al. (2002) in the
range −200≤ z/L≤ 1, u∗ ≥ 0.2 m s−1, and 1 m≤ z ≤ zi .
The parameterisation depends uponu∗, measurement height
z, SD of the vertical windσw and the aerodynamic roughness
lengthz0, of whichu∗, z andσw are measured directly by the
WSMA. The roughness length is inferred using the logarith-
mic wind profile with the integrated universal function for
momentum exchange after Businger et al. (1971) in the form
of Högstr̈om (1988). The KL04 is a cross-wind integrated
footprint model; i.e. it does not resolve the distribution per-
pendicular to the main wind direction. In order to account for
cross-wind dispersion, the KL04 was combined with a Gaus-
sian cross-wind distribution function (Kljun et al., 2013, in
the following referred to as KL04+). In addition to above
variables, the SD of the crosswind from WSMA measure-
ments and the depth of the CBLzi from ceilometer mea-
surements (Sect.2.2) are used. This results in a computa-
tionally fast footprint parameterisation which considers 3-D
dispersion and is not constrained to applications in the sur-
face layer. Metzger et al. (2012) evaluated KL04+ against a

Fig. 4. Wavelet cross-scalograms for the sensible heat flux (top
panel) and the latent heat flux (centre panel) along flight pattern
O12 on 8 July 2009, 12:16–12:24 CST. The colour palette changes
from blue (downward fluxes) over white (neutral) to red (upward
fluxes). The shaded areas identify the cone of influence. Below each
cross-scalogram the integrated flux over all scales is shown for each
overflown 90 m cell of the land cover grid. The surface elevation
along the flight pattern is displayed in the bottom panel.

backward Lagrangian reference footprint model, and good
agreement was found for all considered cases.

Turbulence statistics for a 1000-m-long subinterval over
the wavelet scalograms (Sect.2.4.2) are used to evaluate the
KL04+. One evaluation is carried out for each overflown cell
of the land cover, LST and EVI grids (i.e. every 90 m along
the flight path). With the overflown grid cell as base point, the
footprint weightswxy(

∑
wxy = 1) are calculated for each

grid cell with positionx, y, relative to the base point. From
here the footprint composition is calculated;

LST =

∑
x

∑
y

wxy · LSTxy, (8)

EVI =

∑
x

∑
y

wxy · EVIxy, (9)

with the land surface temperature and enhanced vegetation
index for each grid cell, LSTxy and EVIxy , respectively.
For graphical representation all evaluations of KL04+ along
a flight line are superimposed and normalized to a sum of
unity. Additional information and references regarding foot-
print calculations along line transects can be found in Hutjes
et al. (2010) and Meijninger et al. (2006).
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Fig. 5.Flow chart showing how input and reported data streams are processed along the four principal steps of the LTFM method. Additional
detail is provided in Sects.2.4.4and4, and a summary of all notation can be found in Appendix A.

2.4.4 Environmental response function

We base the development of a catchment-specific ERF on
the works of Chen et al. (1999), Hutjes et al. (2010) and
Ogunjemiyo et al. (2003). The general idea is to establish
a functional relationship between spatially or temporally re-
solved flux observations (responses) and corresponding envi-
ronmental drivers. Figure5provides an overview of the novel
approach to ERF presented in the following.

Thus far, a suitable number of flux observations was ob-
tained by either shortening the time-domain EC averaging
interval (Chen et al., 1999; Ogunjemiyo et al., 2003), or by
stratifying repeated observation along the same flight line
on different days (Hutjes et al., 2010). The inherent draw-
backs are the neglect of either long wavelength contributions
to the flux measurement, or inter-day variability of ecosys-
tem drivers. Both are overcome using the wavelet cross-
scalogram technique (Sect.2.4.2).

Previously, the development of ERFs has solely focused
on drivers in the footprint of the flux observations, namely
discrete land cover classifications. This procedure ignores
within-class variability across a catchment, e.g. along cli-
matic or altitudinal gradients, which can be overcome by us-
ing continuous variables such as LST and EVI instead. In
addition, the present approach considers the meteorological
drivers S ↓, mixing ratio (MR), and potential temperature
(θ ). This avoids the need for stratifying or pre-selecting data,
and enables constructing a single ERF that is valid for the en-

tire observation period and, within the range of the measured
variables, throughout a catchment of interest.

Hitherto, ERFs were determined as the inverse of a linear
mixing matrix, using either numerical (Chen et al., 1999) or
regression methods (Hutjes et al., 2010; Ogunjemiyo et al.,
2003). Such a procedure assumes a linear relationship be-
tween drivers and responses, which is subject of on-going
discussion and research (e.g. Raupach and Finnigan, 1995).
Instead, the present approach uses boosted regression trees
(BRTs), a non-parametric machine learning technique, to es-
tablish an ERF between drivers and responses. In contrast
to parametric approaches, BRTs do not assume a predeter-
mined form of the response, but construct an ERF accord-
ing to the information in the data. It is for this reason that
not the absolute values of the land surface and meteorolog-
ical drivers are important, but rather their spatial variabil-
ity and coherence. In case of the land surface drivers for
example, the only assumption made here is that the spatial
patterns of LST and EVI approximate the spatial patterns
of source strength inH and LE (e.g. Holmes, 1970; Oke,
1987). This is a much weaker assumption than a mechanis-
tic link, and adds power to the method. BRTs can fit com-
plex nonlinear relationships, automatically handle interac-
tions between drivers, and provide predictive performance
that is superior to most traditional modelling methods (e.g.
Hu et al., 2010). Here we use the BRT work package by Elith
et al. (2008), which builds upon the GBM library by Ridge-
way (2012). To identify the optimal choice of parameters and
variables for the BRTs, a sensitivity analysis was conducted
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Fig. 6. Flight along pattern O12 on 8 July 2009, 12:16–12:24 CST (white dashed line). The composite flux footprint along the flight line
(30 %, 60 %, 90 % contour lines) is superimposed over maps of land cover (left panel), land surface temperature (LST, centre panel), and
enhanced vegetation index (EVI, right panel). The land cover colour code and corresponding abbreviations are identical with Fig.2.

using the cross-validation (CV) procedure described in Elith
et al. (2008). During cross validation all available data are
divided into 10 random combinations of training (90 %) and
evaluation (10 %) fractions, which allows assessing and opti-
mising model performance. The parameter settings that mini-
mized predictive deviance for the present dataset were found
to be: absolute (Laplace) error structure, bag fraction (0.7),
tree complexity (5), learning rate (0.1), and number of trees
(104). The initial set of variables also included time of the
day, MODIS albedo, atmospheric pressure, land cover,z,
zi , u, u∗, z0, virtual potential temperature, as well as ele-
vation, topographic wetness index, aspect, and slope of the
footprint modelled source area. We use the variable drop-
ping algorithm by Elith et al. (2008) to reach a compromise
between predictive deviance and model parsimony. This al-
gorithm (i) fits a BRT model, (ii) performs a 10-fold CV,
(iii) drops the least important predictor (determined from the
improvement to the model and the number of splits, Fried-
man, 2001), and (iv) repeats this sequence until a stopping
criterion is reached. The mean CV deviance can be used to
decide how many variables can be removed without signifi-
cantly affecting predictive performance. Here, we set an up-
per threshold of 30 W m−2 for the mean CV deviance, which
equals≤ 1/2 the random sampling error in the flux observa-
tions (Table4). The dropping of variables first stopped for
LE at 29.2 W m−2 mean CV deviance, yielding a set of the
five most important predictors (LST, EVI,S ↓, MR, andθ).
ForH the same predictor set yields a mean CV deviance of
only 22.6 W m−2. Remarkably, atmospheric pressure,z, and
zi were no significant predictors for the observed fluxes. This
indicates that the chosen flight/analysis strategy effectively
minimizes cross-contamination of the flux observations by
vertical flux/pressure gradients. Analogously the algorithm
dropped elevation, aspect, and slope of the footprint mod-
elled source area as predictors. This shows that slope-induced
effects on radiative transfer or turbulence generation do not

significantly impact the flux observations. Consequently, the
final BRT model is fitting an ERF toH and LE as function
of only the five most important predictors. This ERF is then
used to predictH and LE throughout the XRC, as a function
of LST and EVI for each grid cell, and the medianS ↓, MR,
andθ for the duration of a flight.

In the following we will use the term LTFM to re-
fer to the overall procedure consisting of Low level
flights, Time–frequency-, Footprint-, and Machine
learning analyses (Fig.5).

2.5 Uncertainty

Throughout the present study, we use the median and the me-
dian absolute deviation as preferred measure of location and
scale, respectively (Croux and Rousseeuw, 1992; Rousseeuw
and Verboven, 2002). All resulting uncertainty estimates are
representative of one standard deviation. For the purpose of
detecting systematic differences between observations and
predictions, we use the maximum-likelihood fitting of a func-
tional relationship (MLFR, Ripley and Thompson, 1987).
This method assigns a weight to each data couple in the re-
lationship, which is inversely proportional to its error vari-
ances. In our case, the squared random flux errors in the
observations, and the residuals in the BRT cross-validation
ensemble are used. This appreciates reliable data and depre-
ciates uncertain data couples. The errors in the MLFR co-
efficients are determined from a jackknife estimator (Que-
nouille, 1956; Tukey, 1958). If the regression intercepts were
not significant, the relationships were forced through the ori-
gin, and confidence intervals were determined from the slope
error. The coefficient of determinationR2 was calculated
in analogy to weighted least-squares regression (Kvalseth,
1985; Willett and Singer, 1988). It is the proportion of varia-
tion in the weighted dependent variable that can be accounted
for by the weighted independent variable.
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Uncertainty in the LTFM up-scaling procedure originates
from different sources during measurement and data analy-
sis. Part of these uncertainty terms exhibit random character-
istics; i.e. they tend to cease with sample size. Another part
however will systematically bias the results, independent of
sample size. An uncertainty budget for the random and sys-
tematic uncertainties in the LTFM procedure will consist of
uncertainty terms for (i) instrumentation and hardware, (ii)
turbulence sampling, (iii) spatio-temporal analysis, (iv) BRT
residuals, (v) BRT response function, and (vi) BRT state vari-
ables. While uncertainty terms (i), (ii), and (iv) can be quan-
tified with readily available procedures (Sects.2.4, 3.3), in
teh following we describe several techniques to assess terms
(iii), (v) and (vi).

2.5.1 Spatio-temporal analysis in heterogeneous terrain

Under the umbrella of spatio-temporal analysis, we quantify
in the following the uncertainty contribution from wavelet
analysis, footprint modelling, and the assumption of linear
mixing. The fluxes derived from the wavelet cross-scalogram
were adjusted to match the leg-averaged fluxes from time-
series EC, which avoids bias between both techniques. Also
areas above the wavelet cross-scalogram COI were used in
the flux calculation to ensure including all scales of turbulent
transport along the entire transect. However, values above the
COI are potentially distorted due to edge effects, in particular
close to the beginning and the end of each transect. These
artefacts propagate in the resulting variances and fluxes, and
consequently into the footprint estimates. Additional spatial
uncertainty terms result from the use of an “offline” foot-
print model that does not consider the actual flow field, as
well as from the MODIS EVI and LST data. The use of
BRTs does not expect a linear response between the state
variables and the flux signal. However, LTFM still assumes
the linear mixing of the flux signal with respect to the con-
tributing surface patches with different biophysical proper-
ties and source strengths.

To quantify the error inherent in the above analysis steps,
we compare maps of LTFM predicted fluxes to airborne flux
observations. (i) The BRT is trained with all available ob-
servations (N = 8466). (ii) Using the median state variables
along each flight leg (N = 42), the BRTs response function
is used to predict a similar number of flux maps (Fig.11).
(iii) The LTFM footprints are superimposed over these flux
maps. (iv) For each flux observation, a predicted flux is cal-
culated as the footprint-weighted average of all contributing
cells, and (v) predictions and observations are compared.

2.5.2 Response function

BRTs are a non-parametric machine learning technique in
which a response function is constructed according to the
coherencies in the training data. As a direct consequence the
predictive performance of BRTs depends on how complete

the combinations of state variables in the evaluation data are
represented in the training data. Here we assess the suscep-
tibility of the BRT response function and predictive perfor-
mance to missing state variable combinations in the train-
ing data. For this purpose, 12 incomplete training datasets
are created, each of which omitting a different flight out of
the total of 12 flights in Table1. For each incomplete train-
ing dataset, (i) the BRT is trained, (ii) the resulting response
function is used with the state variables along the omitted
flight for prediction, and (iii) predictions and observations
are compared.

2.5.3 State variables

Here, we consider the uncertainty resulting from disregard-
ing part of the natural variability in the state variables that
are used for spatially and temporally explicit BRT predic-
tions. For this purpose we quantify the disregarded parts of
the natural variability in each state variable and propagate it
through the full BRT model. While explicit in time, the mete-
orological variables measured by the aircraft do not cover the
entire catchment. We estimate a measure of spatial variability
from all subsequent pairs of flights that are located in differ-
ent areas of the catchment (Table1, Fig. 2). The median dif-
ferences throughout the catchment forS ↓ (−6±12 W m−2),
θ (−1.1±1.1 K), and MR (−0.5±0.3 g kg−1) are not signif-
icant (Wilcoxon rank-sum test,p ≥ 0.18). On the contrary,
MODIS EVI and LST are explicit in space, but not contin-
uous in time. The 8-day trends from one scene to the next
are accounted for in the BRT procedure through temporal
interpolation between the MODIS scenes (Sect.2.2). How-
ever, processes of shorter duration, such as frequent events of
small-scale convective precipitation, go unaccounted. Hence
we estimate a measure of the natural variability between
two MODIS scenes. For this purpose we calculate the me-
dian change of all grid cells between all subsequent MODIS
scenes, amounting to 0.01± 0.05 for EVI and−0.5± 6.2 K
for LST. The random part of EVI and LST natural variabil-
ity by far exceeds the MODIS data product uncertainty of
≈ 0.015 (Xiang et al., 2003) and≈1 K (Wan and Li, 2008),
respectively. Hence MODIS data product uncertainty was not
considered separately.

The correlation matrix between the state variables was
calculated using all 8446 aircraft observations. A variance-
covariance matrix was calculated from this correlation matrix
and the random part of the state variables’ natural variability.
Preserving the variance-covariance relationship, 1000 sam-
ples were drawn from a multivariate normal distribution with
zero mean. These represent 1000 combinations of co-existing
natural variability in the state space of the BRT model. The
propagation through the BRT model was performed individu-
ally for each combination by (i) superimposing the estimated
natural variability over the measured state variables of all
8446 observations, (ii) performing a BRT prediction, and (iii)
comparing the results to the undisturbed predictions.
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3 Results and discussion

In the first part of this section, we assess the surface–
atmosphere mixing regimes. From there wavelet analysis,
footprint modelling and BRTs are used to infer ERFs be-
tween land surface properties and the flux measurements.
Lastly, uncertainties in the LTFM up-scaling procedure are
analysed and discussed.

3.1 Horizontal mixing between surface and flight level

On spatial average energy conservation requires that the
vertical profiles ofH and LE approach their respective
entrainment flux at the top of the CBL (e.g. Deardorff,
1974; Sorbjan, 2006). The linear vertical flux gradient of
H throughout the CBL was calculated (−0.21 W m−2 m−1

– −0.06 W m−2 m−1), assuming thatH ceases at the stati-
cally stable entrainment zone around 0.8 CBL. However, the
entrainment flux ofE is unknown. Hence we cannot estimate
the vertical flux gradient ofE, but assume a comparable or-
der of magnitude as forH . The resulting effect of the ver-
tical flux gradient below the flight level is−5± 2 % ofH ,
which falls well within the surface layer definition (e.g. Rau-
pach and Finnigan, 1995; Stull, 1988, flux constant within
5− 10%). Thus, it is feasible to assume thatH andE mea-
sured at flight level are representative of surface fluxes.

The characteristic length scale of surface heterogeneity is
on the order of several hundred to thousand meters, with
an average ofLH = 1012± 715 m (Table2). Along identi-
cal flight pathsLH is comparable between days with differ-
ent meteorological settings (e.g. 15 and 17 July 2009, 26 and
30 July 2009). This confirms the usefulness of the surface
temperature measurement as a proxy for surface heterogene-
ity. Only the longer flight paths C1 and C2 cross the dune
belt in the centre of the catchment (Fig.2). The dune belt
is the largest continuous land cover after steppe, and con-
sequently the autocorrelation function ofTs estimates large
values ofLH (1458–2615 m). During all flights,LH was
small compared to the Raupach length (LR = 1532–5214 m),
and thus the influence of the surface heterogeneity is con-
fined within the CBL (zi = 1100–2500 m). Here we use the
thermal blending height (zTB1 = 40± 29 m) as an estimate
for the vertical level where quasi-equilibrium of the turbulent
exchange between land surface and atmosphere is reached.
At all times the flight level (z= 48–102 m) is abovezTB1
and below≈ 10 % of the CBL depth, a common estimate
for the depth of the atmospheric surface layer (e.g. Raupach
and Finnigan, 1995; Stull, 1988). Hence it is feasible to as-
sume that the turbulence measurement at flight level is rep-
resentative for the land surface in the flux footprint. The in-
terpretation of the flux observations might be more compli-
cated for measurement heights below the thermal blending
height (limited spatial representativeness) or above the sur-
face layer (vertical flux gradient). The blending length for-
mulationsLTB1 (1660±723) andLTB2 (957±441) are used

to assess the minimum size of surface heterogeneity that sig-
nificantly influences the flow at flight level. Here we use
255 m< LTB2 < 1852 m as a guideline, becauseLTB2 is also
representative of the magnitude of surface heterogeneity. The
native resolution of the EVI data (230 m) and the land cover
data (90 m) is equal to or better thanLTB2, and thus sufficient
to reproduce the variability of the land cover. In comparison,
the native resolution of the LST data (1000 m) is coarse, po-
tentially leading to an attenuation of the ERFs.

Using the wavelet cross-scalogram, long wavelength con-
tributions to the flux do not constrain the spatial resolution
of the flux computation along the flight path. Nevertheless,
the random flux error is inversely proportional to the square
root of the averaging length (e.g. Lenschow and Stankov,
1986), and propagates directly into the computation of the
ERFs. Hence, we consider a trade-off between random error
(high resolution) and smearing (low resolution) of the result-
ing flux estimates. The upwind distance (perpendicular to the
WSMA flight path) where 80 % of the flux contributions are
included in the footprint,L80% = 1171±314 m, is compara-
ble in magnitude toLH. Thus, a flight path length of similar
extent (1000 m) is a physically meaningful window for the
computation of turbulence statistics and fluxes, because (i)
changes in the turbulent flux (response) are resolved at the
same spatial scale as the characteristic surface heterogeneity
(driver); (ii) the turbulence statistics used for footprint calcu-
lations are representative on the same spatial scale as the up-
wind extent; and (iii) the random error for each flux estimate
decreases by≈ 70 % compared to a window length of 90 m.

The (aerodynamic) roughness length is usually below
1 m, with exception of the low wind speed situation on
17 July 2009, pattern O11, and the higher flight levels (z ≥

97 m) on 26 July 2009 (Table2).

3.2 Flux un-mixing

The presentation of the flux un-mixing results follows
the sequence of the LTFM analysis steps. In Sect.3.2.1
the spatially resolved flux observations from the wavelet
cross-scalogram are illustrated. Subsequently, footprint mod-
elling is used to infer the biophysical surface properties in
the source area of each flux observation (Sect.3.2.2). In
Sect.3.2.3the ERFs between flux observations and meteoro-
logical and land surface drivers are established. These ERFs
are then used to predict the surface fluxes throughout the
XRC, which are finally summarized for different land cov-
ers (Sect.3.2.4).

3.2.1 Spatially resolved flux measurement

Here and in the following we use a flight along pattern
O12 for illustration, which follows a shallow elevation gra-
dient (Fig. 4 bottom panel). This flight pattern is particu-
larly suitable for this purpose because of its marked land
cover changes over a relatively short distance. The wavelet
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Table 2.Mean length scales±SD between repetitions during the WSMA flights selected for analysis. Shown are CBL depthzi , aerodynamic
roughness lengthz0, flight altitudez, thermal blending heightzTB1, length scale of surface heterogeneityLH, Raupach lengthLR, the thermal
blending lengthsLTB1 andLTB2, and the upwind distance from the WSMAL80%, where 80 % of the flux contributions are included in the
flux footprint.

Date Time (CST) ID zi (m) z0 (m) z (m) zTB1 (m) LH (m) LR (m) LTB1 (m) LTB2 (m) L80% (m)

8 Jul 2009 10:20–10:50 O10 1100 0.21± 0.13 59± 4 45± 7 802± 192 1532± 105 1046± 171 255± 5 931± 52
12:00–12:50 O12 1800 0.07± 0.05 72± 6 24± 2 700± 58 4093± 164 2160± 263 628± 39 1574± 147

13 Jul 2009 11:30–12:10 O8 1900 0.04± 0.05 51± 0 41± 4 1055± 5 4770± 3 1330± 122 999± 12 1440± 127
12:40–13:10 O3 2100 0.05± 0.07 51± 2 38± 5 858± 95 4292± 236 1134± 45 1108± 220 1305± 64

15 Jul 2009 11:30–12:20 O11 2200 0.06± 0.04 55± 4 11± 2 370± 54 5214± 508 1950± 223 1368± 304 1470± 168
12:30–13:00 O7 2100 0.26± 0.19 57± 7 17± 6 298± 76 3507± 82 984± 117 1207± 132 1081± 128

17 Jul 2009 11:00–11:30 O11 1400 1.13± 0.81 48± 1 22± 0 366± 37 1589± 65 788± 74 440± 28 720± 74
12:20–13:00 O7 1400 0.05± 0.06 52± 2 19± 8 507± 219 3136± 169 1381± 54 950± 159 1296± 150

26 Jul 2009 12:50–15:30 C1 2500 1.75± 1.91 97± 4 85± 68 1458± 913 2626± 284 1974± 562 752± 196 991± 331
13:10–15:10 C2 2500 2.30± 2.12 102± 5 83± 51 1459± 632 2430± 382 1921± 325 916± 310 945± 191

30 Jul 2009 11:00–13:30 C1 1600 0.48± 0.34 56± 3 46± 21 1653± 161 3097± 340 2403± 1438 1015± 22 1042± 100
11:10–13:20 C2 1600 0.11± 0.01 54± 0 51± 13 2615± 84 3798± 735 2853± 601 1852± 51 1206± 0

cross-scalogram allows a high spatial discretization of tur-
bulent flux measurements. At the same time it includes
flux contributions from wavelength that are significantly
longer than the 1000 m subinterval for each flux observa-
tion (Fig.4). The resulting high number of flux observations
along a flight line leads to previously unachievable resolu-
tion and coverage of the state space. Spatially coherent flux
contributions are detected on transport scales (eddy sizes) of
500–2000 m, that is of similar size as the extent of homo-
geneous surface patchesLH. Strong local flux contributions
are confined to scales< 500 m, and approximately decay
within the lower threshold of the observed blending lengths
LTB1 andLTB2. This confirms a close coupling between at-
mospheric turbulence structures with surface patchiness, and
consolidates the interpretation of the length-scale approach.
The less certain flux contributions above the wavelet COI are
small (−15 to−4 % median differences for all flights). In the
present example the COI is confined to relatively small scales
(≤ 4 km), which is a direct result of the comparatively short
flight. In general, more certain flux contributions below the
COI include transport scales up to≈ 1/3 of the flight length,
and can reach≈ 16 km for flight patterns C1 and C2. How-
ever, this also implies that the maximum considered transport
scale differs between the flight patterns, just as it would be
the case for the time-domain EC method. The wavelet cross-
scalogram reveals strong turbulent transport in the second
and fourth quarter of the flight forH , and in the first and
third quarter for LE (Fig.4). When integrated over all trans-
port scales for each overflown 90 m cell of the land cover
grid, these patterns correspond to strong upward fluxes.

3.2.2 Land cover

In Sect.3.2.1, turbulence statistics and fluxes were integrated
for each overflown 90 m cell of the land cover grid. In the

following we expand the integration window to overlapping
subintervals of 1000 m length, while retaining a spatial dis-
cretization of 90 m. Such a procedure significantly reduces
the random sampling error (Sect.3.1), though at the cost of
decreasing the number of resulting observations by one win-
dow size (dN ≈ 10). The resulting turbulence statistics are
used to calculate the source area of each individual flux ob-
servation along the flight line, which are superimposed over
the land cover grids. Figure6 shows that in general LST and
EVI follow the land cover patterns, e.g. lower temperature
and higher greenness for irrigated agriculture and marshland.
However, it is also evident that the static land cover clas-
sification cannot reflect the current surface conditions. For
example, the marshland in the north-western quadrant ap-
pears dried-out (high LST and low EVI), while the steppe
area in the north-eastern quadrant shows large variations in
LST. Hence, biophysical surface properties also vary signifi-
cantly within the land cover classes. This is likely a function
of geomorphological properties such as aspect, slope and soil
type, but also due to the large variability of convective rain-
fall events across the study area (e.g. Schaffrath et al., 2011).

Following superimposition of the footprints over the land
cover data, the spatial contributions of different surface prop-
erties to each flux observation can be quantified (Fig.7). It is
evident that measured Bo changes in correspondence with
the dominating land cover, i.e. low Bo for marshland and
irrigated agriculture, and high Bo for bare soil and steppe.
LST and EVI are stratified between the land covers, al-
though in different sequence compared to the regional av-
erage (Fig.3). The variability of LST and EVI within the
land cover classes is equal to or larger than the between-class
variability, in particular for marshland, irrigated and rainfed
agriculture. While LST and EVI behave inversely for all nat-
ural land covers (−0.78< r <−0.10), the contrary is true
for irrigated (r = 0.92) and rainfed (r = 0.30) agriculture.
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The latter finding appears counter-intuitive, but can be ex-
plained by tillage farming in the low-level plains with crops
that are not adapted to the semiarid climate, such as pota-
toes. The albedo of these densely vegetated crops can be
lower compared to the sparsely vegetated steppe land cover
(α ≈ 0.2, Ketzer et al., 2008), resulting in higher foliage
temperatures. Only two natural land covers, marshland and
mountain meadow, exhibit similarly high EVI values as the
field crops (Figs.2, 3). Nevertheless, the LST of these land
covers is comparatively low. In case of the marshland this can
be explained by water-saturated soils with high heat capac-
ity. Conversely, lower temperatures in accordance with the
adiabatic temperature gradient are expected for the mountain
meadows at higher altitudes.

In Fig. 8 H and LE observations along the flight line
are shown together with the LST and EVI in the respec-
tive source area. Because of the 1000 m integration win-
dow over the wavelet cross-scalogram, the results appear
smoother compared to Fig.4, where a 90 m integration win-
dow is used. It is apparent thatH and LE both systemati-
cally change with LST (rH = 0.64, rLE = −0.84) and EVI
(rH = −0.62, rLE = 0.73). However, peaks inH (3 km and
9 km in Fig.8) and in LE (0 km and 7 km) do not manifest
when their respective land surface drivers in the footprint are
maximal. Instead they seem to follow a trade-off function be-
tween LST and EVI.

3.2.3 Environmental response functions

Thus far our findings indicate that the interactions between
land surface and atmosphere are multi-facetted and poten-
tially non-linear. Hence we use LST and EVI as topical,
spatio-temporal proxies for the source strength ofH and
LE, rather than using the land cover classification directly.
In comparison to earlier flux un-mixing studies (Chen et al.,
1999; Hutjes et al., 2010; Ogunjemiyo et al., 2003), this has
the benefit of (i) providing individual source strength rep-
resentations for the effects of surface moisture and temper-
ature, and (ii) representing the land surface by continuous
(LST, EVI) rather than discrete variables (land cover classes),
thus enabling the use of more advanced scaling algorithms.

Here, we use BRTs to extract the relationships between all
(N = 8446) flux observations and land cover (LST, EVI) and
meteorological (S↓, MR, andθ ) variables. While BRTs are
capable of reproducing complex interactions through multi-
layered branching, the fitted function can be summarized,
e.g. as partial dependence plots (Fig.9). These show the ef-
fect of each individual variable on the response after (i) sub-
traction of the offset (H0 = 161 W m−2, LE0 = 176 W m−2),
and (ii) accounting for the average effects of all other vari-
ables in the model. The partial dependence plots in Fig.9
are sorted in order of the relative importance of the response
variables (Friedman, 2001). The most important responses
of H are non-linear (LST,θ), followed by linear responses
(S ↓, MR, and EVI). With the exception of MR and EVI, the

individual responses are positive in sign. The order of the re-
sponses for LE is partially different (MR, LST,θ , S ↓, and
EVI), and only the responses onS↓ and EVI are approxi-
mately linear (not shown). With exception of MR (concave,
maximal response around 10 g kg−1) and LST (convex, min-
imal response around≈ 310 K), the signs of the responses
for LE are positive. It appears surprising thatH and LE are
only weakly related toS ↓. This can be explained by using
only noontime flights in the present study, whereS ↓ mainly
fulfils the purpose of accounting for varying cloud/radiation
conditions between different measurement days. In addition,
during individual flightsS ↓ was usually constant to within
≤10 % (TableB1). However, when using ERFs to reproduce
a diurnal cycle, a much larger dependence ofH and LE on
S ↓ would be expected.

In Fig. 10 MLFRs are established between BRT fitted
values forH and LE and the observed fluxes (N = 8446).
Here we use the BRT cross-validation residuals and the ran-
dom sampling errors in the observations to determine the
MLFR weights of each data point. Uncertainty terms (i),
(iii), (v) and (vi) (Sect.2.5) cannot be quantified individu-
ally for each observation. Hence these terms are not consid-
ered here, but in the final uncertainty budget (Tables3 and
4). For bothH and LE the agreement between the BRT fit-
ted values and the observed fluxes is excellent. Contrary to
our initial anticipation, the ERFs are not attenuated by the
relatively coarse MODIS LST resolution, as indicated by ap-
proximately zero MLFR offset and unity slope. The median
absolute deviation in the residuals is small (≤ 1 %). How-
ever, several outliers are found for moderate to high fluxes
of H (N = 41) and LE (N = 133), for which the BRTs un-
derestimate the observed value by−150 Wm−2 or more.
The majority of these cases occur during the flights O8 on
13 July 2009 and C1 on 26 July 2009, respectively. On
both dates the outliers concur with highly intermittent so-
lar irradiance (200< S ↓< 1200 W m−2) along a short sec-
tion of the flight paths. For instance an intermittent cloud
cover can disrupt the functional relation between the irradi-
ance (driver) and the flux (response) observations, because,
(i) at a flight level of 50–100 m a.g.l., the aircraft irradiance
measurement does not representS ↓ in the source areas of
H and LE, and (ii) the plant physiological response can vary
substantially on spatio-temporal scales that are small com-
pared to atmospheric transport processes between the land
surface and the aircraft.

Our choice of land surface and meteorological drivers ap-
pears to work well for describing the noontime surface–
atmosphere exchange of heat and water vapour over a
moisture-limited landscape. However, it is important to note
that appropriately describing exchange processes over longer
periods of time, for different landscapes or scalars might re-
quire finding an entirely different set of predictors.
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Fig. 7. Biophysical surface properties in the footprint of each observation (N = 124) along the flight pattern O12 on 8 July 2009, 12:16–
12:24 CST, summarized by land cover. Shown are (clockwise from top right panel) land surface temperature, enhanced vegetation index,
Bowen ratio, and the land cover fraction in the footprint. The dashed lines are land cover averages for LST and EVI, and the spatial trend for
Bo. The land cover colour code and corresponding abbreviations are identical with Fig.2.

Fig. 8. Sensible heat flux (left panels) and latent heat flux (right panels) along the flight pattern O12 on 8 July 2009, 12:16–12:24 CST. Also
shown is the random sampling error (error bars) for each observation (N = 124), and the spatial trend (dashed line). The top and bottom
panels show the land surface temperature and the enhanced vegetation index in the footprint of each observation, respectively.

3.2.4 Extrapolation and summarization

For the duration of each flight pattern, the trained BRT mod-
els are used to extrapolateH and LE throughout the XRC.
For this purpose the median meteorological state variables
during each flight pattern as well as topical grids of MODIS
LST and EVI data are used. Grid cells that exceed the state
space of the BRT training dataset (N = 8446) are excluded
from extrapolation. Fig.11shows the resulting flux grids for
three different days, with a spatial coverage of≥ 92 %. Be-
cause of the identical state space ranges for BRT training
and prediction, also the ranges of the extrapolated turbulent
fluxes are within limits of the observations. Despite that the

land cover classification was never used during the extrapo-
lation process, several landscape units are clearly recogniz-
able in the flux maps. For instance bot, the Xilin River valley
and the mountainous headwater area to the east display low
H and LE. On the contrary, the non-vegetated basin on the
northern tip shows consistently low evapotranspiration.

For a given meteorological boundary condition (MR,θ ,
S ↓), the heat fluxes within several hours of solar zenith
can be expressed as a function of LST and EVI (Fig.9). In
turn, these biophysical surface properties are characteristic
within a land cover class (Fig.3). Here, we aggregate all
grid cells of the flux maps according to land cover class,
resulting in sample distributions ofH and LE. This allows
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Table 3.Median land cover specific flux estimates ofH and LE from the LTFM procedure over all flight patterns± median spatial variability
within the respective land cover. Also shown are the corresponding median ensemble random uncertaintiesσens(H ), σens(LE) and land cover
specific sample sizeN .

Land cover H (Wm−2) LE (Wm−2) σens(H) σens(LE) N

Bare soil 193± 32 136± 38 1 % 1 % 22049
Sand dunes 188± 37 144± 55 1 % 1 % 43424
Marshland 125± 55 230± 59 1 % 1 % 20722
Steppe 202± 40 138± 46 < 1 % < 1 % 321956
Mountain meadow 114± 47 260± 69 1 % 1 % 25175
Settlements 172± 40 155± 46 3 % 5 % 1404
Rainfed agriculture 183± 35 147± 40 1 % 1 % 17024
Irrigated agriculture 116± 32 224± 41 5 % 5 % 1068

Table 4. Median systematic- and random uncertainty terms (in
parentheses) for a single flux observation or grid cell throughout
the LTFM procedure.

Source H LE

Instrumentation and hardware 0 % (8 %) 0 % (7 %)
Turbulence sampling 0 % (57 %) 0 % (121 %)
Spatio-temporal analysis 2 % (40 %) 4 % (47 %)
BRT residuals 0 % (5 %) 0 % (6 %)
BRT response function 11 % (69 %) 18 % (77 %)
BRT state variables 13 % (77 %) 14 % (75 %)

a formal transition from a mosaic- to a tile representation
of H and LE over the XRC for the duration of each flight
pattern (Mengelkamp et al., 2006). These sample distribu-
tions then enable the analysis of land cover specific source
strengths (36 W m−2<H < 364 W m−2, 46 W m−2< LE<
425 W m−2), as well as the spatial variability within a land
cover (11 W m−2< σH < 169 W m−2, 14 W m−2< σLE <

152 W m−2). Table3 gives an overview of the median land
cover specificH and LE over all flight patterns, and their
median spatial variability. These results fall well within
the range of summertime ensemble average fluxes during
solar noon observed by ground-based EC measurements
over different land covers in this region (100 Wm−2 <H <

310 W m−2 and 100 Wm−2 < LE< 480 W m−2; Gao et al.,
2009; Hao et al., 2007; Hao et al., 2008; Shao et al., 2008).
In comparison, the flight-line average heat fluxes are in
the range of 71 Wm−2 <H < 310 W m−2 and 46 Wm−2 <

LE< 300 W m−2 (TableB2).
However, the magnitudes ofH and LE are not only func-

tions of land cover, but also proportional to the available en-
ergy. The available energy changes within, but in particular
between flight days. To alleviate this effect and to enable
the comparison between different flights, we calculate the
Bowen ratio Bo=H/LE between the sample distributions.
Despite differences in the meteorological drivers (MR,θ ,
S ↓), the median land cover specific Bo agrees well between
subsequent flight patterns on all measurement days (Fig.12).

Fig. 9. Boosted regression tree partial response plots ofH for all
five state variables in order of their relative importance (in braces).
The fitted function (black) shows the variable response of the BRT
over the range of one individual state variable, while the remain-
ing state variables are held at an average, constant value. The red
dashed line is a smoothed representation of the fitted function (lo-
cally weighted polynomial regression).

During the afternoon flights, 12± 9 % higher Bo values are
observed compared to the morning flights, as expected from
a land surface that desiccates in the course of the day. Never-
theless, the 99.9 % confidence interval includes unity slope.
Hence, for several hours within solar zenith Bo does not
change significantly, and can be interpreted as a character-
istic land surface property. On this basis we summarize the
regional flux estimates for the duration of the flight campaign
as time series of land cover specific Bo ratios (Fig.12). The
order of Bo between the land covers follows the order of the
land cover specific EVI approximately inversely, while the
temporal pattern follows the pattern of the land cover specific
LST (Fig. 3). High Bo values until mid-campaign indicate
that the land surface dries out. This trend is reversed toward
the end of the campaign, when the approach of humid air
masses leads to considerable precipitation. The median daily
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Fig. 10. Maximum likelihood functional relationships betweenN = 8446 aircraft observation and LTFM predictions of sensible heat flux
(left) and latent heat flux (right). The weight of each data point in the relationship is represented by the size of the circles. The error bars
show the cross-validation residuals for the LTFM predictions, and the ensemble random sampling error for the aircraft measurement. The
99.9 % confidence intervals are too narrow to be displayed properly.

Fig. 11.Maps of the LTFM predicted fluxes of sensible heat (H , top) and latent heat (LE, bottom) on 13, 17 and 26 July 2009 (left to right).
The colour gradient from blue over grey to red represents values that are lower, equal to, or greater than the average of the values, respectively
(see legend). Percentages in braces after the flight ID indicate the spatial coverage of the prediction throughout the catchment. Meteorological
state variables from the superimposed flight lines are used in the respective LTFM prediction (illustration identical with Fig.2).

natural variability of Bo within the land covers ranges from
48 % (rainfed agriculture) to 79 % (marshland). Water ab-
sorbs strongly in the near infrared, leading to negative EVI
values that are not indicative of vegetation greenness. Hence
EVI values for water surfaces are discarded, and the land
cover “water” cannot be modelled by the present ERFs.

3.3 Uncertainty

Metzger et al. (2012) have shown that turbulent flux mea-
surements with the WSMA platform and instrumentation are
unbiased, and precise to within 8 %. Uncertainty due to the
limited sampling size of turbulent eddies is estimated using
the methods of Lenschow and Stankov (1986) and Lenschow
et al. (1994). Details on the implementation can be found
in Metzger et al. (2012). For a single flux measurement, the
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Fig. 12.Left: MLFR of Bowen ratio between the first and the second flight pattern on every measurement day. The weight of each data point
in the relationship is represented by the size of the circles. Right: time series of Bo for different land covers throughout the measurement
campaign. In both images the error bars represent the Gaussian sum of the natural variability in each land cover class and the ensemble
random error in the LTFM procedure. The land cover colour code and corresponding abbreviations are identical with Fig.2.

Fig. 13.MLFRs of median observed and predicted fluxes along 42 flight lines. The error bars correspond to the variability of the fluxes along
the flight line, and the weight of each data point in the relationship is represented by the size of the circles.

systematic (and random) components of this sampling uncer-
tainty range from< 1 % (57 %) forH to< 1 % (121 %) for
LE. Table4 summarizes above uncertainty sources, as well
as additional sources which are discussed in the following.

In order to assess the uncertainty arising from the spatio-
temporal analyses (Sect.2.5.1), we compare the median ob-
served and predicted fluxes along all flight legs (Fig.13).
The LTFM predictions slightly overestimate the observed
fluxes (H = 5 %, LE= 5 %), but in both cases the 99.9 %
confidence intervals include unity slope. The median dif-
ferences of dH = 2 % (40 %), and dLE= 4 % (47 %) agree
marginally more closely. Moreover, the median residuals be-
tween fitted and observed values emphasize that the BRT fit-
ting technique is unbiased (Table4).
Subsequently, we assess the predictive performance of the
BRT response function in light of missing state variable

combinations in the training data. For this purpose one
flight at a time was omitted from the training data, and
the incompletely trained BRT model was used to predict
the missing data. The resulting median differences amount
to 11 % (69 %,N = 7311) for H and 18 % (77 %,N =

7265) for LE. During prediction, cases where one or more
state variables exceed their respective range during training
were excluded. As a consequence the sample size is≈ 14 %
smaller than the total number of observations (N = 8466).

Lastly, we consider the uncertainty resulting from disre-
garding part of the spatio-temporal variability in the state
variables during BRT predictions. For this purpose we
quantify the disregarded parts of the natural variability, and
propagate it through the full BRT model. The resulting me-
dian differences amount to 13 % (77 %) and 14 % (75 %)
for H and LE, respectively, and are dominated by the effect
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of LST natural variability (r = 0.81, and−0.69). Because
the response of the BRT predictions on LST is non-linear
(Fig. 9), deviations of similar magnitude but opposite sign
in LST do not cancel out in the predictions. This can lead
to a systematic overestimation as a function of the specific
state variable combination in each prediction, and is hence
dependent on the catchment composition. However, in all test
cases the 99.9 % confidence intervals between observed and
predicted fluxes include unity slope. Hence we go without
introducing a non-linearity response factor, but assign an ac-
curacy of≤ 20 % to the LTFM method.
Assuming normal distribution and independence, the random
parts of all uncertainty terms (Table4, in parentheses) can be
combined to their Gaussian sum. Then, the ensemble random
uncertaintyσensconsiders the reduction of the random uncer-
tainty with sample size (e.g. Mahrt, 1998);

σens=
σran
√
N
, (10)

with zero expected valueσensand the SDσran of the popula-
tion with sizeN . Whileσran is a measure for the average dis-
persion of a single observation or grid cell,σensquantifies the
level of confidence we can expect from aggregating multiple
observations or grid cells. The resulting ensemble random
uncertainty for land cover specific flux estimates throughout
the XRC ranges from< 1 % for steppe to 5 % for settlements
and irrigated agriculture (Table3).

4 Conclusions

The overarching goal of airborne EC flux measurements is
to bridge the gap between observations and data assimilation
approaches on different spatial scales. This study develops
the LTFM procedure to characterize the exchange of sensible
and latent heat for different land covers in a heterogeneous
steppe landscape. The procedure “mines” the information
content of EC flux observations and extracts quantitative re-
lationships with environmental drivers. In the process LTFM
maximises objectivity and data use efficiency – all available
observations are considered. The subsequent steps of LTFM
are (1) low level EC flux flights, (2) time–frequency analysis
of the flux observations, (3) source area modelling of contin-
uous biophysical surface properties, and (4) inferring ERFs
from non-parametric machine learning.

(i) The use of a weight-shift microlight aircraft with low
airspeed and high climb rate enables low level flights at
constant height even above topographically structured
terrain. Masking out slopes during flight planning effec-
tively minimizes cross-contamination of the flux obser-
vations by slope-induced effects on radiative transfer or
turbulence generation. This reduces the degrees of free-
dom in explaining the observed flux responses, albeit
potentially at the expense of oversimplifying surface–
air exchange processes.

(ii) Wavelet decomposition of the turbulence data yields un-
precedented spatial resolution of the flux observations.
However, due to edge effects flux observations close
to the start or end of a dataset can contain spectral
artefacts. Using alternative techniques such as empir-
ical mode decomposition (Barnhart et al., 2012a, b) or
structure-parameter methods (Van Kesteren et al., 2013)
might help to further improve the results.

(iii) An “offline” footprint parameterization considering 3-D
dispersion is suitable to map the differences in sur-
face properties encountered by a flux measuring aircraft.
However, when adapting LTFM e.g. to ground-based
measurements, the range of surface properties is likely
to shrink significantly. In order to improve the decreased
signal-to-noise ratio, it might become important to also
consider the local flow field, especially when measur-
ing at greater heights. For example, closure models with
terrain-following coordinates (Hsieh and Katul, 2009;
Sogachev and Lloyd, 2004) or “online” Lagrangian dis-
persion modelling (Markkanen et al., 2010; Matross
et al., 2011; Wang and Rotach, 2010; Weil et al., 2012)
could be useful for such a purpose.

(iv) Instead of a static and discrete land cover classifica-
tion, the LTFM method uses spatio-temporally con-
tinuous and topical information of biophysical surface
properties. Only the continuous nature of MODIS land
surface data enabled the use of the BRT machine learn-
ing technique. In this combination the climatic and al-
titudinal gradients throughout the XRC are successfully
reproduced. In the interest of further advancing LTFM,
it is desirable to also consider the uncertainty in the ob-
servations during machine learning, and to explore al-
ternative machine learning techniques such as support
vector machines (e.g. Yang et al., 2007).

The ERFs resulting from LTFM can aid bridging observa-
tional scales, e.g. by isolating and quantifying relevant land–
atmosphere exchange processes, estimating land cover spe-
cific emission factors, extending flux measurements to the
catchment scale, assessing the spatial representativeness of
EC flux measurements, etc. Analogously applying LTFM to
ground-based EC measurements could aid, e.g. advancing
the treatment of location bias from diagnostic assessment
(e.g. Chen et al., 2012) to prognostic transfer functions, con-
straining local to regional water budgets, distinguishing an-
thropogenic and natural sources/sinks in urban environments
and substantiating process-studies.

www.biogeosciences.net/10/2193/2013/ Biogeosciences, 10, 2193–2217, 2013



2212 S. Metzger et al.: Spatially explicit regionalization of airborne flux measurements

Appendix A

Notation

A1 Abbreviations

3-D Three-dimensional
a.g.l. Above ground level
a.s.l. Above sea level
Arable Rainfed agriculture
ASTER Advanced Spaceborne Thermal and

Reflection Radiometer
Bare Bare soil
BRT Boosted regression tree
CBL Convective boundary layer
COI Cone of influence
CST Chinese standard time (CST=

coordinated universal time+ 8)
CV Cross-validation
EC Eddy covariance
ERF Environmental response function
IMGERS Inner Mongolia Grassland Ecosystem

Research Station
Irrigated Irrigated agriculture
KL04 Footprint parameterisation of Kljun et al. (2004)
KL04+ Footprint parameterisation of Kljun et al. (2004)

with superimposed cross-wind dispersion function
LTFM Low level flights, time–frequency-, footprint-,

and machine learning analyses
as influenced by stocking rate

Marsh Marshland
MLFR Maximum likelihood functional relationship
MODIS Moderate Resolution Imaging Spectroradiometer
Mountain Mountain meadow
SD Standard deviation
Settle Settlements
Steppe Generic steppe
WSMA Weight-shift microlight aircraft
XRC Xilin River catchment

A2 Functions

Overbars denote the mean along a flight line, and primes de-
note the deviations from this mean.

* Complex conjugate
cov Covariance
d Difference
σ Standard deviation
ψ Mother wavelet

A3 Parameters and variables

α Albedo (–)
a Wavelet scale parameter (s)
a0 Initial wavelet scale parameter (s)

b Wavelet location parameter (s)
Bo Bowen ratio (–)
c Lag of autocorrelation function (m)
CC Cloud cover (–)
Cδ Wavelet reconstruction factor (–)
d Distance along a flight line (m)
DIR Wind direction (◦)
δj Wavelet frequency increment (–)
δt Wavelet time increment (s)
e Euler’s number≈ 2.71828 (–)
EVI Enhanced vegetation index (–)
H Sensible heat flux (Wm−2)
i Imaginary uniti2 = −1 (–)
ID Flight identifier (–)
j Running index (–)
J Number of wavelet scale increments (–)
l Length of flight line (km)
L Monin–Obukhov length (m)
L80% Upwind distance where 80 % of the flux

contributions are included in the footprint (m)
LC Land cover class coverage (%)
LE Latent heat flux (W m−2)
LST Land surface temperature (K)
LH Horizontal scale of surface heterogeneity (m)
LR Raupach length (m)
LTB1 Thermal blending length (m)
LTB2 Improved thermal blending length (m)
MR Mixing ratio (g kg−1)
n Running index (–)
N Sample size (–)
p Probability of test statistic (–)
P Cumulated precipitation in a 10-day trailing

window (mm)
q Dimensionless wavelet coordinate (–)
r Pearson correlation coefficient (–)
rep Repetitions (–)
res residuals (Depending on variable)
S↓ Down-welling shortwave radiation (Wm−2)
t Time (s)
Ts Surface temperature (K)
θ Potential temperature (K)
θ0,v Virtual potential temperature (K)
u Horizontal wind speed (m s−1)
u∗ Friction velocity (m s−1)
w Footprint weight (–)
W Wavelet coefficient (–)
w∗ Convective velocity (m s−1)
x Wildcard for a signal (–)
y Wildcard for a signal (–)
z Measurement height (m)
z0 Aerodynamic roughness length (m)
ω0 Wavelet frequency parameter (–)
zi Convective boundary layer depth (m)
zTB1 Thermal blending height (m)
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Table B1.Mean meteorological conditions±SD between repetitions during the WSMA flights selected for analysis. Shown are cloud cover
CC, shortwave down-welling radiationS↓, mixing ratio MR, horizontal wind speedu, wind direction DIR, virtual potential temperatureθv ,
surface temperatureTs, and the SD of the surface temperatureσT s.

Date Time (CST) ID CC S↓ (Wm−2) MR (gkg−1) u (ms−1) DIR (◦) θv (K) Ts (◦C) σT s (K)

8 Jul 2009 10:20–10:50 O10 7/8 842± 55 6.4± 0.0 3.2± 0.3 221± 12 312.0± 0.4 40.8± 1.2 8.1± 0.4
12:00–12:50 O12 7/8 773± 53 5.9± 0.2 6.5± 0.3 320± 2 313.7± 0.3 39.8± 1.0 8.8± 0.4

13 Jul 2009 11:30–12:10 O8 4/8 810± 16 9.3± 0.1 8.3± 0.4 291± 6 309.7± 0.1 41.9± 0.3 6.4± 0.1
12:40–13:10 O3 4/8 838± 6 8.6± 0.1 6.9± 0.6 297± 6 311.2± 0.3 45.8± 0.2 5.3± 0.8

15 Jul 2009 11:30–12:20 O11 7/8 796± 72 7.1± 0.1 7.0± 0.8 253± 9 315.3± 0.2 42.1± 1.1 5.3± 0.7
12:30–13:00 O7 7/8 843± 56 6.8± 0.0 5.8± 0.2 255± 8 316.7± 0.2 50.8± 0.7 4.0± 0.5

17 Jul 2009 11:00–11:30 O11 7/8 589± 39 9.4± 0.1 2.7± 0.2 102± 5 309.3± 0.2 35.9± 0.5 4.8± 0.3
12:20–13:00 O7 7/8 682± 122 11.2± 0.2 5.9± 0.4 144± 4 310.4± 0.1 40.3± 2.5 4.5± 0.9

26 Jul 2009 12:50–15:30 C1 7/8 668± 46 9.6± 0.3 2.9± 0.1 174± 5 312.8± 0.5 36.4± 1.2 4.8± 0.7
13:10–15:10 C2 7/8 747± 67 9.1± 0.1 2.7± 0.3 178± 23 313.0± 0.4 36.5± 0.5 3.7± 0.7

30 Jul 2009 11:00–13:30 C1 7/8 715± 82 11.6± 0.3 4.3± 0.7 159± 15 311.8± 0.9 34.6± 5.1 4.1± 0.5
11:10–13:20 C2 7/8 567± 11 11.6± 0.0 4.9± 0.9 154± 9 311.3± 1.2 32.8± 1.0 2.7± 0.5

Table B2. Mean turbulence statistics±SD between repetitions during the WSMA flights selected for analysis. Shown are friction velocity
u∗, sensible heat fluxH , latent heat flux LE, Monin–Obukhov lengthL, SD of vertical windσw, and convective velocityw∗.

Date Time (CST) ID u∗ (ms−1) H (Wm−2) LE (Wm−2) L (m) σw (ms−1) w∗ (ms−1)

8 Jul 2009 10:20–10:50 O10 0.31± 0.03 154± 20 194± 45 −14± 3 0.88± 0.03 1.82± 0.08
12:00–12:50 O12 0.46± 0.07 199± 14 110± 36 −38± 16 0.97± 0.04 2.29± 0.05

13 Jul 2009 11:30–12:10 O8 0.52± 0.09 290± 47 196± 43 −40± 24 0.99± 0.05 2.65± 0.13
12:40–13:10 O3 0.42± 0.12 288± 18 86± 51 −23± 19 0.95± 0.01 2.70± 0.07

15 Jul 2009 11:30–12:20 O11 0.47± 0.07 176± 17 138± 30 −46± 23 0.83± 0.05 2.36± 0.07
12:30–13:00 O7 0.52± 0.12 310± 28 65± 12 −38± 19 1.07± 0.11 2.77± 0.08

17 Jul 2009 11:00–11:30 O11 0.39± 0.07 156± 26 46± 67 −30± 15 0.79± 0.04 1.93± 0.09
12:20–13:00 O7 0.41± 0.07 206± 18 48± 45 −27± 13 0.83± 0.06 2.11± 0.07

26 Jul 2009 12:50–15:30 C1 0.33± 0.09 120± 33 300± 76 −20± 10 0.94± 0.11 2.25± 0.21
13:10–15:10 C2 0.37± 0.05 117± 11 227± 2 −29± 8 0.94± 0.04 2.22± 0.06

30 Jul 2009 11:00–13:30 C1 0.43± 0.13 107± 76 194± 27 −57± 14 0.75± 0.12 1.78± 0.41
11:10–13:20 C2 0.38± 0.05 71± 4 223± 11 −50± 19 0.68± 0.04 1.65± 0.02

A4 Subscripts

In general, subscripts follow the parameter and variable def-
initions in Appendix A3. Instances with differing use of sub-
scripts are defined in the following.

ens Ensemble
ran Random
v Cross-wind component
w Vertical wind component
x Longitudinal coordinate
y Latitudinal coordinate

Appendix B

Meteorological conditions

The midday flights are usually accompanied by a thin layer
of cirrus clouds, interspersed with local convective cumuli,
resulting in a cloud cover between 4/8 and 7/8 (TableB1).
The down-welling shortwave radiation decreases over the du-
ration of the campaign, with minima on 17 and 30 July 2009.
These minima coincide with the advection of comparatively
moist air, as evident from the higher mixing ratios.S ↓ also
correlates with the precipitation history (Table1, r = −0.40).
The wind speed at flight level decays from up to 8.3 m s−1

at the beginning down to 2.7 m s−1 towards the last quarter
of the flight campaign. All wind sectors with the exception

www.biogeosciences.net/10/2193/2013/ Biogeosciences, 10, 2193–2217, 2013



2214 S. Metzger et al.: Spatially explicit regionalization of airborne flux measurements

of northerlies occur. Both the virtual potential air tempera-
ture and the surface temperature peak during the middle of
the flight campaign. As a result of several convective pre-
cipitation events, the mixing ratio increases over the flight
campaign, accompanied by a dampening of the surface tem-
perature variability.

The ranges of the flight line average turbulent fluxes
are 0.3< u∗ < 0.5 m s−1, 71 W m−2<H < 310 W m−2 and
46 W m−2< LE< 300 W m−2 (Table B2). The friction ve-
locity peaks during flights under high wind speeds. WhileH

dominates the heat exchange during the middle of the cam-
paign, LE peaks at the beginning and end of the campaign.
The Bowen ratio throughout the campaign correlates (r =

−0.67) with precipitation history (Table1), i.e. the mois-
ture available for evapotranspiration. Moreover,H clearly
correlates withS ↓ (r = 0.68), while no such relationship
was found for LE (r = 0.02). The atmospheric stratification
was unstable throughout all flights (Monin–Obukhov length
L= −34± 20 m), with corresponding high values of the SD
of the vertical windσw = 0.88± 0.11 m s−1 and convective
velocityw∗ = 2.21± 0.39 m s−1.
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Chávez, J. L.: Mapping daily evapotranspiration at Landsat spa-
tial scales during the BEAREX’08 field campaign, Adv. Water
Res., 50, 162–177, doi:10.1016/j.advwatres.2012.06.005, 2012.

Auerswald, K., Wittmer, M. H. O. M., M̈annel, T. T., Bai, Y.
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