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Summary 
Preferential flow of water in soil is now recognized as a common phenomenon. It results in 

complex flow patterns that can be visualized by dye tracers and increases the risk of 

pollutants’ reaching greater depths. We analyzed the behaviour of a risk index for vertical 

solute propagation based on extreme value theory. This risk index can be calculated from 

binary images of dye stained soil profiles and is defined as the form parameter of the 

generalized Pareto distribution. We did five tracer experiments with Brilliant Blue and iodide 

under changing experimental (variable initial soil moisture) and initial conditions (different 

irrigation rates). Our results indicate some persistence of the risk index against small changes 

of experimental conditions such as the irrigation rate. On the other hand, it seems to be 

affected by initial soil moisture. Comparisons of Brilliant Blue and iodide patterns show that 

the form parameter alone is not sufficient to estimate the risk of vertical solute propagation. 

Therefore we propose to combine the risk index with the scale parameter of the generalized 

Pareto distribution.  

Introduction 

Although preferential flow of water in soil was discovered in the late 19th century 

(Schumacher, 1864; Lawes et al., 1882), it was considered for a long time as exceptional. 

Today, it is regarded as a common phenomenon that depends on the spatial heterogeneity and 

intensity of rainfall (Gish et al., 2004), water repellency (Hendrickx et al., 1993; Ritsema & 

Dekker, 2000; Wang et al., 2000), soil structure (Flury et al., 1994; Kulli et al., 2003; Vogel 

et al., 2006) and biological factors such as the distributions of roots (Mitchell et al., 1995) and 

earthworm burrows (Farenhorst et al., 2000; Shuster et al., 2002; Weiler & Naef, 2003). 

Preferential flow results in complex flow patterns that can be visualized by dye tracers. 

Brilliant Blue is frequently used in vadose zone hydrology for such tracing studies although 

its adsorption behaviour is non-linear and depends on soil properties (Ketelsen & Meyer-

Windel, 1999; German-Heins & Flury, 2000; Kasteel et al., 2002). However, it is readily seen 

against most soil colours and has acceptable toxicological characteristics for environmental 

use (Flury & Flühler, 1994; Mon et al., 2006). 

Usually, the main information obtained from dye stained profiles are binary images – 

photographs of soil profiles that are classified in stained (black) and unstained (white) parts. 

They are used for qualitative description of flow regimes and for the visualization of 

preferential flow (Öhrstöm et al., 2002; Kulli et al., 2003; Weiler & Naef, 2003). Recent 

studies, however, took a quantitative approach to tracer studies in soils by establishing dye 
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concentration maps (Aeby et al., 1997; Forrer et al., 1999; Forrer et al., 2000). This method 

needs calibration because the same dye concentration has different hues depending on soil 

colour. Forrer et al. (2000) reported 203 calibration samples in a ‘fairly uniform Eutric 

Cambisol’ on an agricultural field. Morris & Mooney (2004) used 100 samples to assess 

concentrations in a small intact soil block (200 mm × 200 mm × 200 mm). 

Such a calibration becomes complicated for soils with progressively changing colours 

because the number of calibration samples increases rapidly. This is the case at our study site. 

Indeed, we can distinguish four or five different main hues in our soil and varying degrees of 

their combinations. Each of these hues needs its own calibration between the possible 

concentration range of Brilliant Blue and the resulting RGB (Red, Green and Blue) values on 

images. Therefore, we needed some other approach to obtain quantitative information on flow 

processes from stained profiles, one that does not require any information on dye 

concentrations in the soil. Schlather & Huwe (2005) propose a risk index for groundwater 

vulnerability to pollutants based on extreme value theory. It can be calculated from binary 

images of dye stained soil profiles and does not require any additional information on soil 

properties. The goal of our study is to consider in detail the behaviour of the risk index for 

different experimental and initial conditions. 

Materials and methods 

Dye tracer experiments 

We did five tracer experiments in a Norway spruce forest in southeast Germany. The soil is a 

Cambisol or a Cambic Podzol with loam or sandy loam above loamy sand. The stone content 

is medium to high and the pH is 4. We used Brilliant Blue FCF and iodide as tracers. The 

latter served as reference because Brilliant Blue may be retarded with regard to infiltrating 

water as a result of adsorption on soil particles. Bowman (1984) reported that the sorption 

behaviour of iodide is similar to that of bromide, which is considered as the most suitable 

tracer for water movement in soil (Flury & Wai, 2003). In order to have the same spatial 

resolution of flow patterns for both tracers, we visualised iodide by a spray method proposed 

by Lu & Wu (2003). Following this we applied a solution of iron(III) nitrate and starch 

directly on the excavated soil profile. Iron(III) oxidized iodide to iodine, which formed a 

dark-blue complex with starch. This method worked well; however, the time reported by Lu 

& Wu (2003) of about 1 to 2 hours for the colour reaction was not sufficient for a good 

contrast to Brilliant Blue dye, and we let it develop during the night. Lu & Wu (2003) also 
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proposed a visualization method for bromide, but the Prussian blue complex formed has a 

blue colour that would be too difficult to distinguish from Brilliant Blue. 

We applied 64 mm of tracer solution on plots of about 2 m2 using a sprinkler similar to 

that proposed by Ghodrati et al. (1990). The irrigation rate was either 32 mm hour-1 (referred 

to as ‘low’) or 64 mm hour-1 (‘high’), and the concentration of both tracers in the solution was 

5 g l-1. The maximum 10-minutes intensity recorded at the study site between 1999 and 2006 

was 22 mm and the maximum 1-hour intensity was 54 mm. So the applied irrigation rate was 

fairly high but not unrealistic. Before the experiment, plots 1 and 2 were covered for 

approximately 2 weeks and are referred to as ‘moist’, plots 4 and 5 were covered for 

approximately 5 weeks and are called ‘dry’. The initial matric potential before the plots were 

covered was −157 hPa at 0.2 m, −53 hPa at 0.3 m and −14 hPa at 1.0 m depth.  Plot 3 was not 

covered and represented the actual field moisture conditions of the study site. Here, the matric 

potential before tracer application was −52 hPa at 0.2 m, −46 hPa at 0.3 m and −25 hPa at 1.0 

m depth. Plot 2 was additionally irrigated with 64 mm of water just before tracer application. 

Prior to irrigation, we removed the spruce cones as they covered a large portion of the soil 

surface, but left the litter untouched. Table 1 summarizes the experimental boundary 

conditions. 

Table 1 Experimental conditions for dye tracer experiments. 

 

Plot 

 

Initial moisture 

Irrigation rate 

/mm hour-1 

1 ‘moist’a 64 

2 ‘moist’ 64b 

3 ‘natural’c 64 

4 ‘dry’d 64 

5 ‘dry’ 32 

acovered for approximately 2 weeks 
bpre-irrigated with 64 mm of water just before tracer application 
cnot covered 
dcovered for approximately 5 weeks 

The day after the irrigation, six vertical 1 m × 1 m soil profiles were excavated at 

intervals of 20 cm in the central part of the plot. We lit them by halogen projectors to 

supplement the natural daylight in the forest and photographed them with a CCD camera in 
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RAW format. In this lossless format the image is not processed by the camera software and 

must be transformed in JPEG or TIFF by appropriate graphics software. Thus finer control is 

gained over white balance, sharpness or colour space. A rectangular frame and a grey scale 

were placed around the profiles for later correction of distortion and white balance 

adjustment. Soil samples were taken for texture analysis in the laboratory, and Figure 1 

summarizes the results. Nine profiles (one, two or three per plot) were treated with the 

indicator solution of iron(III) nitrate and starch to visualize iodide. They were photographed 

the same way as Brilliant Blue patterns. 

In some sections of plot 3, large blocks of stone prevented us from digging deep enough. 

So we were obliged to diminish the spacing between profiles to 10 cm to prepare them in 

sections without blocks. Nevertheless, only four profiles had the desired depth of about 1 m 

and were suitable for further analysis. 

 

Figure 1 Particle-size distributions of the soil fine fraction on plots 1 (a) to 5 (e). Sand 
fraction is defined as 2000 - 63 µm, silt 63 - 2 µm and clay < 2 µm. The different depth 
sections correspond to soil horizons. 

Image processing 

The profiles were lit by halogen projectors, with the result that the colour temperature of the 

images differed from that of daylight. Therefore white balance was adjusted in Photoshop 

CS2 RAW-Converter (Adobe, 2005) via the grey scale. Then the photographs were corrected 

for perspective and radial distortion with the software PTGui (New House Internet Services 



 6

B.V., 2005). Radial distortion is due to imperfections of the lens and was modelled by a 

fourth degree polynomial: 

( ) dest
2

dest
3

dest
4

destsrc 1 rcbarcrbrar −−−+++= ,  (1) 

where rsrc is the radius between a pixel and the center of the original image (source, measured 

in pixels), and rdest is the radius in the corrected image (destination, measured in pixels). The 

radii rsrc and rdest are scaled such that the value 1 corresponds to: 

height) (width,max
2
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 of the image. Parameters a, b and c are so-called lens parameters and can be adjusted in 

PTGui. Furthermore, the software  PTLens (Niemann, 2005) offers a database of these values 

for many different types of cameras. Besides radial distortion, perspective distortion occurred 

because of rotation of the camera with respect to the photographed profile. We corrected it by 

setting control points all along the sides of the rectangular frame and adjusting them to 

horizontal and vertical lines. To decrease computing time, the image size was reduced such 

that 1 cm corresponded approximately to six pixels. This reduction did not affect further 

calculations as preliminary tests with different image resolutions had shown. In some images 

parts of the plot surfaces or shadows of the frame were visible. These regions would disturb 

further processing and were cut off. So the upper boundary of the output image corresponded 

to the first line in the photograph where the plot surface was no longer visible. Using Matlab 

7.1 (The MathWorks, 2005b) and the Image Processing Toolbox (The MathWorks, 2005a), 

we extracted the blue patterns from Brilliant Blue stained images by a colour-based 

segmentation by k-means clustering (MacQueen, 1967) in the CIE 1976 L*a*b* colour space. 

Segmentation of iodine–starch patterns by k-means clustering algorithm was not good enough 

because the colour of the iodine–starch complex and that of the upper soil horizons were 

similar. Therefore we tried a classification based on hyper cuboids, an approach implemented 

in HALCON (MVTec Software GmbH, 2005). Finally, after segmentation, we generated 

binary images with stained parts in black and non-stained in white and calculated the dye 

coverage function p(d) (the number of stained pixels per depth d). 

Extreme value model 

Schlather & Huwe (2005) proposed a method for quantitative analysis of images from dye 

tracer experiments based on extreme value theory (see Coles, 2001, for an introduction). They 

applied the generalized Pareto distribution, a limit distribution of the extreme value theory 
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with two parameters, to an idealized model of dye drops that run through soil along paths. The 

main idea is that the maximum depth z of a dye stained path after n drops converges to the so 

called generalized extreme value distribution (GEV), if n → ∞ and the following assumptions 

as stated in Schlather & Huwe (2005) are satisfied: 

‘(i) any drop stains the path continuously up to the travel distance; 

(ii) z is in the maximum domain of attraction of the generalised extreme value distributions 

(Resnick, 1987); 

(iii) the travel distances of the drops are independent and identically distributed.’ 

Statement (ii) means that the maxima of z become GEV distributed. Excesses below greater 

depths converge to the generalized Pareto distribution H: 
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where D is the threshold depth beyond which the data are assumed to follow closely the 

Pareto distribution, d is the profile depth (d and D are measured in pixels on a photograph, d > 

D), ξr is the form parameter (ξr ∈ℝ) and s is the scale parameter (s > 0), such that (1 + ξr (d − 

D) / s) > 0. Schather & Huwe (2005) argued that the dye coverage function p(d) is an estimate 

of the probability that a path is stained at least down to this depth, modulo a constant factor m. 

The distribution 1 − H is fitted to the normalized dye coverage function p(d)/m and describes 

the conditional probability that a path is still stained to a depth d, given that it is stained to the 

depth D (for d > D). The form parameter ξr is defined as a risk index for vulnerability of 

groundwater to pollutants. Although the theoretical model describes drops travelling along 

distinct paths, Schather & Huwe (2005) stated that it could be applied both to preferential and 

matrix flow. In the case of matrix flow, paths are replaced by micropaths and drops by 

infinitesimal volumes of dye (the terms ‘micro’ and ‘infinitesimal’ are used in the sense of 

Marshall et al., 1996). So the model always describes the predominant flow regime. 

In this study we slightly modified the interpretation of the risk index. We think that the 

form parameter of the generalized Pareto distribution should be interpreted as a risk index for 

vulnerability of groundwater to pollutants only in regions with fairly homogeneous geological 

material between the soil surface and the water table, as in sedimentary basins with shallow 

water tables. The groundwater at our site is 8 to 10 m below the surface, and so we prefer to 

qualify ξr as a risk index for vertical solute propagation. 
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The parameter ξr determines the form of the generalized Pareto distribution. If it is 

negative, the distribution has an upper end point, i.e. dye infiltration stops before attaining a 

certain depth and the dye coverage function reaches zero. In this case, there is a low risk of 

solute’s propagating in greater depths. If ξr is positive then the distribution has no finite upper 

point, it decreases slowly and does not reach zero. Therefore the risk of solute propagation is 

high. Values of ξr around 0 describe a transition zone. The scale parameter s ‘stretches’ the 

distribution and can easily be interpreted for negative form parameters. Given a fixed negative 

ξr, s depends monotonically on the maximum infiltration depth, i.e. the deeper the maximum 

infiltration depth the larger the value of s. So for the same value of ξr, the risk of solute 

propagation increases with larger values of s (Figure 2). For positive form factors, s is 

difficult to measure in the field. But for a fixed positive ξr, the portion of the stained area in a 

certain depth is greater for larger values of s. Indeed, as s ‘stretches’ the distribution, larger 

values of 1 − H, i.e. larger portions of stained pixels, can be found deeper in the soil. 

Schlather & Huwe (2005) affirmed that the scale parameter s depends strongly on 

experimental conditions such as the amount of sprinkled tracer solution or the time between 

irrigation and excavation of profiles. The behaviour of the form parameter ξr under changing 

initial or experimental conditions is not clear, even though it seems to show some persistence 

against small variations. 

For a reliable estimation of the risk index of a soil, Schlather & Huwe (2005) proposed 

taking at least 15 pictures. We used 28 pictures from five different experiments. Our goal was 

not to characterize the site but rather to understand the behaviour of the risk index under 

various initial and boundary conditions. 

 

Figure 2 Effect of increasing values of 
scale parameter s on the probability 
distribution 1 − H. Form parameter ξr is 
fixed to −0.3, scale parameter s equals 100 
(solid line), 200 (dashed line) and 300 
(dotted line), D equals 0. 
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Parameter estimation 

As stated above, the generalized Pareto distribution describes excesses below greater depths, 

so we may not consider processes near the soil surface. We first estimated the parameter ξr 

and then s. The estimation of ξr is complex and recalls the ideas of Schlather & Huwe (2005) 

that are summarized in the following (see also the extension package SoPhy ver 1.0.25 

(Schlather, 2005) of R (R Development Core Team, 2007)). Assume that we know the 

threshold D beyond which the data follow (approximately) the Pareto distribution. Then the 

parameter ξr and the parameter s can simultaneously be estimated by a non-linear parameter 

optimization, e.g. non-linear least squares or maximum likelihood. Since we do not know D, 

ξr has to be estimated for a range of values of D. We might expect to get the same value of ξr 

for any D, except for some (small) error. This, however is not true, and ideally ξr(D) behaves 

as in the sketch in Figure 3. 

 

Figure 3 Schematic evaluation of the form 
parameter ξr with changing threshold depth 
D. The horizontal line designates the true 
value of ξr and the two vertical lines mark 
three areas of D: in the middle ξr is correctly 
estimated; to the left, D is not large enough 
and the data cannot be approximated by a 
Pareto distribution; to the right, the number 
of data is small, so that larger variations in 
the estimation are visible. 

The horizontal line designates the true value of ξr and the circles indicate the estimated values 

of ξr depending on the threshold depth D. Three areas of D can be distinguished, marked by 

the two vertical lines. The middle part gives the correct estimation of ξr. To the left, D is not 

large enough, so that we are outside the assumed 

asymptotics, i.e. the assumption that the data can be approximated by a Pareto distribution 

below such a threshold D is wrong. To the right, the number of data available below the 

(large) threshold of D is small, so that larger variations in the estimation are visible. 

Schlather & Huwe (2005) aimed (i) to find the middle part, (ii) to estimate ξr from the 

middle part and (iii) to do it automatically. To achieve (iii) they suggested to take as middle 

part the values of D, where the maximum number of stained pixels of p(d) (d > D) lies 
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between 50% and 80%. For robustness, the median of the corresponding values of ξr(D) is 

taken to get a final estimate for ξr. In contrast to ξr, the scale parameter will depend on D even 

under idealized conditions. Hence, we cannot get a final estimate for s in a similar way. 

Instead, we chose as the value of D the depth where p(D) equalled 80%, and we estimated s in 

a next step whilst keeping ξr and D fixed. The maximum likelihood estimator is frequently 

used for fitting parameters, since it is possible to calculate confidence intervals because of its 

approximate normality (Coles, 2001). However, the maximum likelihood estimator did not 

behave well for our data, and so we preferred the least-squares estimator until a better 

estimator that provides confidence intervals is found. 

For stratified soil as at our study site, to find the middle part to estimate ξr was more 

complex. The dye coverage functions were multimodal with a more or less pronounced 

second maximum in the lower soil (see Figure 4d, the first maximum is at the soil surface, the 

second one in about 130 pixels depth). So, following the proposition in Schlather & Huwe 

(2005), we applied the Pareto distribution only to the lowest part of the soil profile. 

Undocumented comparisons between different fitting procedures showed best results when 

we used the part of the dye coverage function where p(D) lies between 0% and 80% of the 

number of stained pixels at its second maximum. We took the median of these values to 

calculate the final ξr. We estimated the scale parameter s in R (R Development Core Team, 

2007) by unweighted non-linear least-squares regression using the form parameter ξr 

determined in SoPhy (Schlather, 2005) and taking the depth where p(D) equals 80% of the 

number of stained pixels at the second maximum, as D. In forthcoming versions of SoPhy, the 

final estimation of the scale parameter s will be implemented. As a measure of goodness of 

fit, we calculated the coefficient of determination R2 defined as 

∑
∑

−
−

−=
2
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2
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))(ˆ)((
1

pdp

dpdp
R ,  (4) 

where p(d) is the number of stained pixels in the depth d (d > D), )(ˆ dp  is the estimated 

number of stained pixels in the depth d and p is the mean number of stained pixels in the part 

of the profile used for fitting the 1 − H distribution. The coefficient of determination can be 

negative if the enumerator is larger than the denominator i.e. if the adjusted function fits the 

data worse than a strait line through the mean of the data (Kvalseth, 1985). 

Results 

Qualitative analysis of flow patterns 
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In the following section we adopt the nomenclature proposed by Weiler & Flühler (2004) to 

describe flow processes based on the appearance of flow patterns. Figure 4 shows examples of 

binary images and their corresponding dye coverage functions. The soil profiles we excavated 

had a litter layer up to 10 cm thick and its first few centimetres were homogenously stained on 

all plots. The infiltration front broke into preferential paths in the lower part of the litter layer. 

Thus infiltration into the loamy upper soil (see Figure 1 for soil texture data) was 

inhomogeneous, and water flow bypassed large portions of the soil matrix in the upper 10 to 

20 cm of the profiles. Accordingly, the dye coverage function decreased rapidly. In the upper 

soil, we found blue stained roots, indicating that there had been macropore flow in root 

channels. 

The maximum of the dye coverage function was represented by large stained spots found 

between 20 and 40 cm. Texture analysis did not indicate any abrupt changes, but the root 

system was less dense. So one possible explanation is that macropore flow in root channels 

decreased and the flow regime changed to predominantly heterogeneous matrix flow. Further 

studies should investigate if the root system is really responsible for this transformation of 

flow regime. 

In the lower soil, heterogeneous matrix flow and fingering dominated, but water flowed 

along macropores containing both dead and living roots when these were encountered. This 

was especially the case on plots 1 and 2. The exchange of water and solute between 

macropores and soil matrix was greater on ‘moist’ plots (1, 2 and 3) than on ‘dry’ plots (4 and 

5). The effect of pre-irrigation on plot 2 supported this observation, since the stained spots on 

this plot were larger than on plot 1. 

Plots 1, 2 and 3 were stained down to the bottom of the profile, i.e. 1 m, whereas on plots 

4 and 5 dye infiltration stopped at between 70 and 80 cm. On plot 3 less dye infiltrated in 

greater depths than on plots 2 and 3 as indicated by a smaller portion of blue stained surface. 

The surfaces of the stones in plot 3 served as preferential flow routes and were stained. 

Figure 5 shows an example of Brilliant Blue and iodine−starch patterns on plot 4. In the 

upper 10 cm of the soil, there was no significant difference between the two tracers, neither in 

the location of the tracers inside the profile nor in the covered surface (see Figure 5, 0 to 40 

pixels depth). But lower in the soil the iodine−starch spots were larger and the infiltration 

depth of iodide was greater than that of Brilliant Blue. 

Two critical aspects remain when we compare the infiltration depths of Brilliant Blue and 

iodide. First, the redistribution time was different for Brilliant Blue and iodine−starch 

profiles, as the last were allowed to react over night. Lu & Wu (2003) stated in their work that 
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1 to 2 hours of reaction are sufficient for the development of the iodine−starch complex. At 

our site the first colour reaction was visible after approximately 2 hours. So there was indeed 

fixation of iodide after only a few hours of reaction. Once fixed, iodide becomes much less 

mobile as the molecules of the iodine−starch complex are large. But the contrast to Brilliant 

Blue, especially in areas stained by both tracers, was too low, and therefore, the iodine−starch 

complex was allowed to develop over night. Thus, even if there was a difference in 

redistribution times, it was less than 12 hours. Second, the minimum concentration still visible 

on a profile might be different for the two tracers, and so the actual infiltration depth could be 

greater. 
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Figure 4 Example images from dye tracer experiments on plots 1 (a) to 5 (e). Six pixels 
correspond to 1 cm. Left column: binary images from Brilliant Blue stained profiles with blue 
parts in black and non-stained regions in white. Right column: the corresponding dye 
coverage functions. 

 

Figure 5 Example of Brilliant Blue 
(black) versus iodine−starch (grey) 
patterns on plot four. Six pixels 
correspond to 1 cm. 
 

Risk indices 

In order to balance small fluctuations in the dye coverage function, we superposed all Brilliant 

Blue stained profiles of the same plot. Figure 6 shows these superposed profiles and the fitted 
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distribution 1 – H. Table 2 presents the risk indices ξr and the scale parameters s. To 

demonstrate the variations of the risk indices between profiles of one plot, minimum and 

maximum of estimates of ξr on single profiles are shown in the columns ‘Minimum of ξr’ and 

‘Maximum of ξr’. We used only single profiles where 1 − H was successfully fitted (visual 

check) and where R2 exceeded 0.5 to calculate the minima and maxima. 

Except on plot 3, the calculated risk indices are negative. It means that the dye infiltration 

will stop before reaching a certain depth. Thus there is a low risk of solute moving to greater 

depth below the analysed part of the profile. The risk index on plot 3 equals 0. Here, the dye 

coverage function decreases exponentially and does not reach 0, but the amount of dye carried 

to greater depth below the analysed profile might be negligible (Schlather & Huwe, 2005). 

On plots 1 and 2, several Brilliant Blue profiles had a multimodal dye coverage function 

with two similar maxima in the lower soil (as in Figure 4a, depths 200 and 530 pixels 

respectively), so even superposing them did not result in a monotonically decreasing function. 

Especially on plot 1, the third maximum appeared in the last third of the profile and led to a 

poor fit. One possible reason for this is the automated procedure to determine the starting 

point of the fit. Another reason is that the generalized Pareto distribution does not reflect flow 

processes in soils completely as the model theory is based on idealized assumptions. The 

distribution 1 − H is a monotonically decreasing function, and the quality of the fit depends 

strongly on the monotonicity of the dye coverage function. Therefore, the model is not 

suitable for dye coverage functions with pronounced multimodal behaviour as on plot 1. 

Table 2 Calculated risk indices for superposed profiles. 

Plot ξr s R2 Minimum of ξr
 a Maximum of ξr

 a 

1 −0.9 377 −0.49b 0.4 1.3 

2 −1.1 334 0.62 −1.0 0 

3 0 94 0.99 0 0.1 

4 −0.3 118 0.97 −0.9 0.0 

5 −0.2 61 0.98 −0.1 0.5 

aMinimum and maximum of ξr for single (not superposed) profiles show the variation of the 
risk index within the plot. Results are presented for profiles where 1 − H was successfully 
fitted (visual check) and where R2 exceeded 0.5. 
bA negative R2 indicates that the adjusted curve fits the data worse than a straight line through 
the mean value of the data. 
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Figure 6 Dye coverage function of superposed profiles (dots) and fitted distribution 1 − H 
(line) on plot 1 (a) to plot 5 (e). Six pixels correspond to 1 cm. 

We did not superpose iodine−starch stained profiles because there were too few. Risk 

indices based on these patterns were compared to those of Brilliant Blue of the same profile. 

The maximum difference in length between Brilliant Blue and iodine−starch profiles on the 

same plot was 26 pixels or 4 cm. Table 3 shows the results for profiles where 1 − H was 

successfully fitted (visual check) and where R2 exceeded 0.5 for Brilliant Blue as well as for 

iodine-starch patterns. 

Table 3 Risk indices for profiles with Brilliant Blue and iodide-starch patterns. 

 Brilliant Blue  Iodide-starch 

Plota ξr s R2  ξr s R2 

2 -0.9 46 0.85  -1.0 245 0.71 

3 0.1 74 0.89  3.5 5 0.54 

4 -0.5 159 0.87  -1.4 659 0.80 

5 0 58 0.96  -0.9 261 0.96 

aAdjustments on plot 1 did not give satisfying results. 

Except on plot 3, where R2 was small, risk indices ξr for iodine−starch are less than those 

for Brilliant Blue patterns, indicating a lower risk for propagation of iodide. This is in 

contradiction with the greater infiltration depth of this solute and is discussed below. 
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Discussion 

Risk index for stratified soils 

As mentioned by Schlather & Huwe (2005), especially in stratified soils with pronounced 

differences in physical properties between horizons, the application of the generalized Pareto 

distribution to several strata is problematic. At our study site, the stratification seems to be 

due to changes in root distribution between 20 and 40 cm depth. Macropore flow that starts in 

the upper soil ends as matrix flow in lower horizons with a less dense root system. When the 

flow process changes as a result of varying physical properties the dye coverage function 

cannot be represented by one single distribution 1 − H. The evident solution is to use only the 

lowest part of the profile to fit the distribution as we did it in our study. This accords with the 

limit law of the extreme value theory stating that the behaviour of the process at great depths 

is independent of the behaviour near the origin (Schlather & Huwe, 2005). 

Furthermore, Schlather & Huwe (2005) stated in their paper that preferential flow is 

frequently linked to a positive risk index and matrix flow to a negative one. This is not longer 

true for stratified soils because only the lowest part of the profile is considered. At our study 

site, despite the occurrence of macropore flow in the upper soil, the calculated risk indices are 

negative, as the distribution 1 − H is fitted only to the lowest strata. And there the dominant 

flow regime is inhomogeneous matrix flow. So for correct assessment of risk of vertical 

solute propagation, the analysed profile depth should be taken into account. 

Combination of form and scale parameters 

Smaller risk indices for propagation of iodide are in contradiction with the greater infiltration 

depth of this solute. It is not surprising that the form parameter changes, as Brilliant Blue and 

iodide have different sorption characteristics. Especially in the lower soil where 

heterogeneous matrix flow and fingering dominated, Brilliant Blue was retarded with regard 

to iodide and their respective dye coverage functions differed in shape. We can resolve the 

contradiction by using both parameters, ξr and s, to estimate the risk of vertical solute 

propagation. As mentioned before, the scale parameter s ‘stretches’ the generalized Pareto 

distribution. So for the same risk index ξr the probability to find stained pixels at a certain 

depth increases with larger values of s. The combination of ξr and s determines a complete 

probability distribution. Figure 7a shows the real difference between the risk of solute 

propagation based on Brilliant Blue (solid line) and iodine−starch patterns (dashed line) (see 

Figure 5 for patterns). The length of both profiles used for the adjustment of the generalised 
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Pareto distribution differs by only 7 pixels (about 1 cm). The dashed line is situated right of 

the solid line indicating a higher risk for iodide propagation. 

 

Figure 7 (a): Probability distribution for Brilliant Blue (solid line) and iodine−starch patterns 
(dashed line) on plot 4. (b): Probability distributions of the superposed Brilliant Blue stained 
profiles. The depth of the profiles is about 600 pixels, so in case of plots 1, 2 and 3 the dye 
reached the bottom of the profile. 

The same procedure should be applied to assess the risk of Brilliant Blue propagation. 

Plots 4 and 5 are good examples. Here, the estimated risk indices are similar, but the scale 

parameters vary as predicted by Schlather & Huwe (2005) because of changing experimental 

and initial conditions. So the estimated actual risk of solute propagation is different on these 

plots. In Figure 7b we show the probability distributions 1 − H for the five superposed 

Brilliant Blue profiles (see Table 2 for parameters). For correct interpretation the fitted 

distributions are plotted for the part of the profile they were calculated for, i.e. beyond the 

threshold depth D. Despite the negative risk indices, it is clear that preferential flow is 

responsible for deep infiltration of the tracer. Based on our data, the estimated risk for solute 

propagation tends to increase from ‘dry’ to ‘moist’ plots.  

Dependence of the risk index on boundary conditions 

In our experiment, changing the irrigation intensity from 64 mm hour-1 to 32 mm hour-1 seems 

to not affect the risk index significantly. Indeed, ξr on plot 4 was −0.3 and on plot 5 −0.2 

(Table 2). But according to the theory, the scale parameter s changes (halves) as experimental 

conditions are modified. The combination of the two parameters indicates a higher risk of 

solute propagation on plot 4, i.e. for the higher irrigation rate. 

It is more difficult to see the effect of pre-irrigation on plot 2 as the fit is unsatisfactory. 

Moreover, it cannot be compared to plot 1 that has similar initial moisture conditions because 
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the distribution 1 − H could not be fitted properly on this plot either. But as indicated by the 

dye coverage function, the stained surface was larger on the pre-irrigated plot 2 than on plot 1. 

This would support the hypothesis that the initial soil moisture is an important factor. 

Compared to ‘dry’ plots 4 and 5, the risk index on plots 1 and 2 is lower, but s is much larger. 

The risk on plot 3 is the highest in accord with the highest initial moisture content. The tail of 

the distribution decreases exponentially (ξr = 0), and the dye penetrates deeper than on other 

plots. But as stated in Schlather & Huwe (2005), the transported mass might be negligible. 

Indeed, the dye-covered surface in the lower part of the profile is more important on plots 1 

and 2 than on plot 3. So after combining ξr and s, the complete distribution 1 − H supports a 

higher risk of vertical solute propagation for moist initial conditions. 

Actually, initial soil moisture seems to be a crucial factor. Dye coverage functions on 

‘moist’ plots fluctuated more than on ‘dry’ ones, so the quality of the fit was poorer, 

especially for single profiles. More rapid flow velocities and interactions between preferential 

flow paths and a moister matrix are one possible explanation. Hence, flow patterns are more 

complex, and the resulting dye coverage functions do not decrease monotonically. 

Finally, the risk index seems to depend on the tracer, but we need more data 

(iodine−starch stained profiles) to verify this. Although experimental and initial conditions for 

Brilliant Blue and iodide are the same, their risk indices and scale parameters tend to differ in 

the same profile. This phenomenon is probably due to different physical properties of the two 

tracers (especially their sorption behaviour) and is not a characteristic of the risk index. 

Conclusions 

We varied experimental and initial conditions for our tracer experiments and used two 

different tracers, Brilliant Blue and iodide, to study the behaviour of the risk index ξr. Our 

results support the hypothesis formulated by Schlather and Huwe (2005) that the risk index is 

to some degree invariant to changing experimental conditions (such as irrigation rate) and that 

the scale parameter s strongly depends on them. The initial soil moisture, however, seems to 

have a large influence on the risk index. 

We propose to combine the two parameters of the generalized Pareto distribution to 

estimate the risk of vertical solute propagation in soils. The scale factor s reflects the 

maximum infiltration depth (for negative risk indices) or the amount of stained area at a 

certain depth (for positive risk indices). This information is important to assess correctly the 

risk and should be taken into account. Furthermore, a complete probability distribution 1 − H 

allows us to compare plots with different initial and experimental conditions or various 
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tracers. For stratified soils, only the lowest part of the profile was used for the adjustment of 

the 1 − H distribution. Thus the depth should be explicitly included when one interprets the 

risk of vertical solute propagation.  

To deal with strongly fluctuating or not decreasing dye coverage functions, the theory 

should be improved to account for tortuosity of flow paths. Provided that the dye coverage 

function decreases monotonically, the estimated risk for solute propagation can serve to 

classify soils. In stratified soils, different flow regimes can occur in different regions of the 

profile. To asses the risk for vertical solute propagation the generalized Pareto distribution 

should be fitted to the lowest part of the soil profile. But it could possibly be applied to single 

horizons as well to characterize the various flow regimes within the profile. Further studies 

should help to identify homogenous zones of flow patterns corresponding to different flow 

regimes or reflecting different physical soil properties. Weiler & Flühler (2004), for instance, 

proposed an interesting classification approach using stereology. Applied to such 

homogenous zones, fitting results of the distribution 1 − H could be improved. 
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