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Summary
Preferential flow of water in soil is now recogridzas a common phenomenon. It results in

complex flow patterns that can be visualized by dygcers and increases the risk of
pollutants’ reaching greater depths. We analyzedbtshaviour of a risk index for vertical
solute propagation based on extreme value thedng fisk index can be calculated from
binary images of dye stained soil profiles and &ireed as the form parameter of the
generalized Pareto distribution. We did five traggperiments with Brilliant Blue and iodide
under changing experimental (variable initial sobisture) and initial conditions (different
irrigation rates). Our results indicate some pé&aise of the risk index against small changes
of experimental conditions such as the irrigatiater On the other hand, it seems to be
affected by initial soil moisture. Comparisons ofll&ant Blue and iodide patterns show that
the form parameter alone is not sufficient to eatarnthe risk of vertical solute propagation.
Therefore we propose to combine the risk index whih scale parameter of the generalized

Pareto distribution.

I ntroduction

Although preferential flow of water in soil was divered in the late 19th century
(Schumacher, 1864; Lawex al, 1882), it was considered for a long time as eticegl.
Today, it is regarded as a common phenomenon #pendls on the spatial heterogeneity and
intensity of rainfall (Gishet al, 2004), water repellency (Hendriclet al, 1993; Ritsema &
Dekker, 2000; Wangt al, 2000), soil structure (Flurgt al, 1994; Kulli et al, 2003; Vogel

et al, 2006) and biological factors such as the distiims of roots (Mitchelkt al, 1995) and
earthworm burrows (Farenhorst al, 2000; Shusteet al, 2002; Weiler & Naef, 2003).
Preferential flow results in complex flow pattertigat can be visualized by dye tracers.
Brilliant Blue is frequently used in vadose zonealtojogy for such tracing studies although
its adsorption behaviour is non-linear and depemussoil properties (Ketelsen & Meyer-
Windel, 1999; German-Heins & Flury, 2000; Kasteeal, 2002). However, it is readily seen
against most soil colours and has acceptable tmgaal characteristics for environmental
use (Flury & Fluhler, 1994; Moat al, 2006).

Usually, the main information obtained from dyeirstd profiles are binary images —
photographs of soil profiles that are classifiecsiained (black) and unstained (white) parts.
They are used for qualitative description of floegimes and for the visualization of
preferential flow (Ohrstémet al, 2002; Kulli et al, 2003; Weiler & Naef, 2003). Recent

studies, however, took a quantitative approachrdoet studies in soils by establishing dye



concentration maps (Aebst al, 1997; Forreret al, 1999; Forreret al, 2000). This method
needs calibration because the same dye concentiai® different hues depending on soil
colour. Forreret al. (2000) reported 203 calibration samples in a lfauniform Eutric
Cambisol’ on an agricultural field. Morris & Moong2004) used 100 samples to assess
concentrations in a small intact soil block (200 mr200 mm x 200 mm).

Such a calibration becomes complicated for soilth yrogressively changing colours
because the number of calibration samples increapadly. This is the case at our study site.
Indeed, we can distinguish four or five differendimhues in our soil and varying degrees of
their combinations. Each of these hues needs its oalibration between the possible
concentration range of Brilliant Blue and the réagl RGB (Red, Green and Blue) values on
images. Therefore, we needed some other approautdm quantitative information on flow
processes from stained profiles, one that does raqtuire any information on dye
concentrations in the soil. Schlather & Huwe (20pE)pose a risk index for groundwater
vulnerability to pollutants based on extreme valueory. It can be calculated from binary
images of dye stained soil profiles and does nqtire any additional information on soil
properties. The goal of our study is to considedatail the behaviour of the risk index for

different experimental and initial conditions.
Materials and methods

Dye tracer experiments

We did five tracer experiments in a Norway sprumest in southeast Germany. The soil is a
Cambisol or a Cambic Podzol with loam or sandy I@drave loamy sand. The stone content
iIs medium to high and the pH is 4. We used BritliBlue FCF and iodide as tracers. The
latter served as reference because Brilliant Blag tre retarded with regard to infiltrating
water as a result of adsorption on soil particBswman (1984) reported that the sorption
behaviour of iodide is similar to that of bromidehich is considered as the most suitable
tracer for water movement in soil (Flury & Wai, Z)0In order to have the same spatial
resolution of flow patterns for both tracers, weualised iodide by a spray method proposed
by Lu & Wu (2003). Following this we applied a stidun of iron(lll) nitrate and starch
directly on the excavated soil profile. Iron(lllxidized iodide to iodine, which formed a
dark-blue complex with starch. This method workesllwhowever, the time reported by Lu
& Wu (2003) of about 1 to 2 hours for the colouagton was not sufficient for a good
contrast to Brilliant Blue dye, and we let it deyelduring the night. Lu & Wu (2003) also



proposed a visualization method for bromide, bet Brussian blue complex formed has a

blue colour that would be too difficult to distingh from Brilliant Blue.

We applied 64 mm of tracer solution on plots ofwth® nf using a sprinkler similar to
that proposed by Ghodrat al. (1990). The irrigation rate was either 32 mm Ho(referred
to as ‘low’) or 64 mm hout (‘high’), and the concentration of both tracerstie solution was
5 g I*. The maximum 10-minutes intensity recorded atstinely site between 1999 and 2006
was 22 mm and the maximum 1-hour intensity was &3 o the applied irrigation rate was
fairly high but not unrealistic. Before the expeemb, plots 1 and 2 were covered for
approximately 2 weeks and are referred to as ‘momots 4 and 5 were covered for
approximately 5 weeks and are called ‘dry’. Théiahimatric potential before the plots were
covered was —-157 hPa at 0.2 m, -53 hPa at 0.3 mbhdtiPa at 1.0 m depth. Plot 3 was not
covered and represented the actual field moistomeitons of the study site. Here, the matric
potential before tracer application was —52 hP@&2im, —46 hPa at 0.3 m and —-25 hPa at 1.0
m depth. Plot 2 was additionally irrigated with ®dn of water just before tracer application.
Prior to irrigation, we removed the spruce coneshay covered a large portion of the soil
surface, but left the litter untouched. Table 1 marnzes the experimental boundary

conditions.

Table 1 Experimental conditions for dye tracer experiments

Irrigation rate

Plot Initial moisture /mm hout*
1 ‘moist™® 64

2 ‘moist’ 64

3 ‘natural® 64

4 ‘dry’ 64

5 ‘dry’ 32

%overed for approximately 2 weeks

Ppre-irrigated with 64 mm of water just before tnaapplication
‘not covered

dcovered for approximately 5 weeks

The day after the irrigation, six vertical 1 m xni soil profiles were excavated at
intervals of 20 cm in the central part of the pldie lit them by halogen projectors to

supplement the natural daylight in the forest ahdtpgraphed them with a CCD camera in



RAW format. In this lossless format the image i$ pcessed by the camera software and
must be transformed in JPEG or TIFF by appropgadghics software. Thus finer control is
gained over white balance, sharpness or colouresgacectangular frame and a grey scale
were placed around the profiles for later correctiof distortion and white balance
adjustment. Soil samples were taken for texturdyaisain the laboratory, and Figure 1
summarizes the results. Nine profiles (one, twothoee per plot) were treated with the
indicator solution of iron(lll) nitrate and starth visualize iodide. They were photographed
the same way as Brilliant Blue patterns.

In some sections of plot 3, large blocks of storevented us from digging deep enough.
So we were obliged to diminish the spacing betweaeriiles to 10 cm to prepare them in
sections without blocks. Nevertheless, only fowfipgs had the desired depth of about 1 m
and were suitable for further analysis.
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Figure 1 Particle-size distributions of the soil fine friact on plots 1 (a) to 5 (e). Sand

fraction is defined as 2000 - §@n, silt 63 - 2um and clay < 2um. The different depth

sections correspond to soil horizons.

Image processing

The profiles were lit by halogen projectors, wille result that the colour temperature of the
images differed from that of daylight. Thereforeitehbalance was adjusted in Photoshop
CS2 RAW-Converter (Adobe, 2005) via the grey scaleen the photographs were corrected
for perspective and radial distortion with the s@fte PTGui (New House Internet Services



B.V., 2005). Radial distortion is due to imperfecis of the lens and was modelled by a

fourth degree polynomial:

— 4 3 2
r.src =a r.dest +b r.dest +C r.dest + (1_ a-b- C) r.dest' (l)

whererg. is the radius between a pixel and the centerebtiginal image (source, measured
in pixels), andr qestis the radius in the corrected image (destinatimeasured in pixels). The

radii rsrcandrgestare scaled such that the value 1 corresponds to:

% max(width, height), )

of the image. Parametess b andc are so-called lens parameters and can be adjusted
PTGui. Furthermore, the software PTLens (Niem&005) offers a database of these values
for many different types of cameras. Besides radigtbrtion, perspective distortion occurred
because of rotation of the camera with respediegphotographed profile. We corrected it by
setting control points all along the sides of tleetangular frame and adjusting them to
horizontal and vertical lines. To decrease computime, the image size was reduced such
that 1 cm corresponded approximately to six pix@&lsis reduction did not affect further
calculations as preliminary tests with differentage resolutions had shown. In some images
parts of the plot surfaces or shadows of the fraraee visible. These regions would disturb
further processing and were cut off. So the uppeindary of the output image corresponded
to the first line in the photograph where the @otface was no longer visible. Using Matlab
7.1 (The MathWorks, 2005b) and the Image Processowbox (The MathWorks, 2005a),
we extracted the blue patterns from Brilliant Blg&ined images by a colour-based
segmentation bit-means clustering (MacQueen, 1967) in the CIE 19%8 b* colour space.
Segmentation of iodine—starch patternskbyeans clustering algorithm was not good enough
because the colour of the iodine—starch complex that of the upper soil horizons were
similar. Therefore we tried a classification basedhyper cuboids, an approach implemented
in HALCON (MVTec Software GmbH, 2005). Finally, aft segmentation, we generated
binary images with stained parts in black and rtamed in white and calculated the dye

coverage functiop(d) (the number of stained pixels per degth

Extreme value model

Schlather & Huwe (2005) proposed a method for dtaivte analysis of images from dye
tracer experiments based on extreme value theeey@sles, 2001, for an introduction). They
applied the generalized Pareto distribution, atlidistribution of the extreme value theory



with two parameters, to an idealized model of dyapd that run through soil along paths. The
main idea is that the maximum deptbf a dye stained path afterdrops converges to the so
calledgeneralizeextreme value distributiofGEV), if n — « and the following assumptions

as stated in Schlather & Huwe (2005) are satisfied:
‘(i) any drop stains the path continuously up te tlavel distance;

(i) zis in the maximum domain of attraction of the gafised extreme value distributions
(Resnick, 1987);

(iii) the travel distances of the drops are indejeem and identically distributed.’

Statement (ii)) means that the maximazdfecome GEV distributed. Excesses below greater

depths converge to tlyeneralized Pareto distribution:H

H(d,¢ ,9) :1—{1+M}_5 , 3)

S

where D is the threshold depth beyond which the data aseiraed to follow closely the

Pareto distributiond is the profile depthdandD are measured in pixels on a photograph,

D), & is the form parametef(JR) ands is the scale parametexX 0), such that (1 & (d —

D) / s) > 0. Schather & Huwe (2005) argued that the dye ramefunctiorp(d) is an estimate
of the probability that a path is stained at lekmstn to this depth, modulo a constant factor
The distribution 1 H is fitted to the normalized dye coverage funcipgd)/m and describes
the conditional probability that a path is stithisted to a deptH, given that it is stained to the
depthD (for d > D). The form parametef; is defined as a risk index for vulnerability of
groundwater to pollutants. Although the theoreticaddel describes drops travelling along
distinct paths, Schather & Huwe (2005) stated itheduld be applied both to preferential and
matrix flow. In the case of matrix flow, paths amplaced by micropaths and drops by
infinitesimal volumes of dye (the terms ‘micro’ afidfinitesimal’ are used in the sense of
Marshallet al, 1996). So the model always describes the predmmifow regime.

In this study we slightly modified the interpretatiof the risk index. We think that the
form parameter of the generalized Pareto distiimushould be interpreted as a risk index for
vulnerability of groundwater to pollutants onlynegions with fairly homogeneous geological
material between the soil surface and the watde ta@s in sedimentary basins with shallow
water tables. The groundwater at our site is 8dtanlbelow the surface, and so we prefer to

qualify & as a risk index for vertical solute propagation.



The parametet; determines the form of the generalized Paretariligton. If it is
negative, the distribution has an upper end paiat,dye infiltration stops before attaining a
certain depth and the dye coverage function reazbes In this case, there is a low risk of
solute’s propagating in greater depths lis positive then the distribution has no finitgpap
point, it decreases slowly and does not reach Zdrerefore the risk of solute propagation is
high. Values off, around O describe a transition zone. The scalenpaters ‘stretches’ the
distribution and can easily be interpreted for niegaorm parameters. Given a fixed negative
&, s depends monotonically on the maximum infiltrataepth, i.e. the deeper the maximum
infiltration depth the larger the value ef So for the same value d&f, the risk of solute
propagation increases with larger valuessoffFigure 2). For positive form factors, is
difficult to measure in the field. But for a fixgubsitive&;, the portion of the stained area in a
certain depth is greater for larger values.oindeed, as ‘stretches’ the distribution, larger
values of 1 H, i.e. larger portions of stained pixels, can hanfibdeeper in the soil.

Schlather & Huwe (2005) affirmed that the scaleapsters depends strongly on
experimental conditions such as the amount of kf@ihtracer solution or the time between
irrigation and excavation of profiles. The behaviofithe form parametef, under changing
initial or experimental conditions is not cleargavthough it seems to show some persistence

against small variations.

Figure 2 Effect of increasing values of
scale parameteyon the probability
distribution 1 —-H. Form parametef; is
fixed to —0.3, scale parameteequals 100
(solid line), 200 (dashed line) and 300
(dotted line) D equals O.
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For a reliable estimation of the risk index of a,s8chlather & Huwe (2005) proposed
taking at least 15 pictures. We used 28 pictures fiive different experiments. Our goal was
not to characterize the site but rather to undedsthe behaviour of the risk index under

various initial and boundary conditions.



Parameter estimation

As stated above, the generalized Pareto distribudescribes excesses below greater depths,
SO we may nhot consider processes near the sodcguriNVe first estimated the paramefer
and thers. The estimation of; is complex and recalls the ideas of Schlather &#l{2005)
that are summarized in the following (see also ¢keension package SoPhy ver 1.0.25
(Schlather, 2005) of R (R Development Core Tean)720 Assume that we know the
thresholdD beyond which the data follow (approximately) therd?o distribution. Then the
parametet; and the parametarcan simultaneously be estimated by a non-lineearpater
optimization, e.g. non-linear least squares or manxn likelihood. Since we do not knaw,

& has to be estimated for a range of valueB.dfVe might expect to get the same valué;of
for anyD, except for some (small) error. This, howeveras tnue, and ideally(D) behaves

as in the sketch in Figure 3.

Figure 3 Schematic evaluation of the form
parametek; with changing threshold depth

|

: o © D. The horizontal line designates the true

: Q?(% value of&, and the two vertical lines mark

| & three areas of D: in the middieis correctly
_ . estimated; to the left, D is not large enough

and the data cannot be approximated by a
Pareto distribution; to the right, the number
of data is small, so that larger variations in
the estimation are visible.

Form parameter ¢

Threshold depth D

The horizontal line designates the true valué aind the circles indicate the estimated values
of & depending on the threshold dehThree areas dD can be distinguished, marked by
the two vertical lines. The middle part gives tloerect estimation of;. To the left,D is not

large enough, so that we are outside the assumed

asymptotics, i.e. the assumption that the databeaapproximated by a Pareto distribution
below such a threshol® is wrong. To the right, the number of data avadabelow the
(large) threshold oD is small, so that larger variations in the estioraare visible.

Schlather & Huwe (2005) aimed (i) to find the miglgiart, (ii) to estimaté, from the
middle part and (iii) to do it automatically. Tohaeve (iii) they suggested to take as middle

part the values oD, where the maximum number of stained pixelsp) (d > D) lies



between 50% and 80%. For robustness, the medisimeoforresponding values é{D) is
taken to get a final estimate f§r In contrast ta@, the scale parameter will depend@reven
under idealized conditions. Hence, we cannot géhal estimate fors in a similar way.
Instead, we chose as the valuéahe depth wherp(D) equalled 80%, and we estimateith
a next step whilst keepin§j andD fixed. The maximum likelihood estimator is freqtlgn
used for fitting parameters, since it is possibledlculate confidence intervals because of its
approximate normality (Coles, 2001). However, thaximum likelihood estimator did not
behave well for our data, and so we preferred #astisquares estimator until a better
estimator that provides confidence intervals isnfihu

For stratified soil as at our study site, to firlek tmiddle part to estimatg was more
complex. The dye coverage functions were multimodd#h a more or less pronounced
second maximum in the lower soil (see Figure 4d filst maximum is at the soil surface, the
second one in about 130 pixels depth). So, follgwiime proposition in Schlather & Huwe
(2005), we applied the Pareto distribution only thee lowest part of the soil profile.
Undocumented comparisons between different fitpngcedures showed best results when
we used the part of the dye coverage function whépg lies between 0% and 80% of the
number of stained pixels at its second maximum. tdék the median of these values to
calculate the finat;. We estimated the scale parametém R (R Development Core Team,
2007) by unweighted non-linear least-squares rsgmesusing the form parametef
determined in SoPhy (Schlather, 2005) and takimgdépth wherg(D) equals 80% of the
number of stained pixels at the second maximur,.ds forthcoming versions of SoPhy, the
final estimation of the scale paramesawill be implemented. As a measure of goodness of
fit, we calculated the coefficient of determinati@ndefined as
. > (p(d) - p(d))*?

> (p(d)-p)?

(4)

wherep(d) is the number of stained pixels in the degtfd > D), p(d) is the estimated
number of stained pixels in the deptland pis the mean number of stained pixels in the part

of the profile used for fitting the 1 H distribution. The coefficient of determination che
negative if the enumerator is larger than the denator i.e. if the adjusted function fits the

data worse than a strait line through the meaheftiata (Kvalseth, 1985).
Results

Qualitative analysis of flow patterns
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In the following section we adopt the nomenclatoreposed by Weiler & Fluhler (2004) to
describe flow processes based on the appearaffiosvgiatterns. Figure 4 shows examples of
binary images and their corresponding dye covehaigetions. The soil profiles we excavated
had a litter layer up to 10 cm thick and its fiestv centimetres were homogenously stained on
all plots. The infiltration front broke into prefamtial paths in the lower part of the litter layer.
Thus infiltration into the loamy upper soil (seegliie 1 for soil texture data) was
inhomogeneous, and water flow bypassed large pariod the soil matrix in the upper 10 to
20 cm of the profiles. Accordingly, the dye coverdgnction decreased rapidly. In the upper
soil, we found blue stained roots, indicating thiare had been macropore flow in root
channels.

The maximum of the dye coverage function was regmesl by large stained spots found
between 20 and 40 cm. Texture analysis did notcatdi any abrupt changes, but the root
system was less dense. So one possible explanattbat macropore flow in root channels
decreased and the flow regime changed to predothyriagterogeneous matrix flow. Further
studies should investigate if the root system alyeresponsible for this transformation of
flow regime.

In the lower soil, heterogeneous matrix flow antyéring dominated, but water flowed
along macropores containing both dead and livimmsravhen these were encountered. This
was especially the case on plots 1 and 2. The egehaf water and solute between
macropores and soil matrix was greater on ‘moisitgp(1, 2 and 3) than on ‘dry’ plots (4 and
5). The effect of pre-irrigation on plot 2 suppakthis observation, since the stained spots on
this plot were larger than on plot 1.

Plots 1, 2 and 3 were stained down to the bottoth@fprofile, i.e. 1 m, whereas on plots
4 and 5 dye infiltration stopped at between 70 8accm. On plot 3 less dye infiltrated in
greater depths than on plots 2 and 3 as indicateddmaller portion of blue stained surface.
The surfaces of the stones in plot 3 served agmetial flow routes and were stained.

Figure 5 shows an example of Brilliant Blue andinedstarch patterns on plot 4. In the
upper 10 cm of the soil, there was no significaffecence between the two tracers, neither in
the location of the tracers inside the profile mothe covered surface (see Figure 5, 0 to 40
pixels depth). But lower in the soil the iodine+staspots were larger and the infiltration
depth of iodide was greater than that of BrilliBhie.

Two critical aspects remain when we compare théretion depths of Brilliant Blue and
iodide. First, the redistribution time was diffetefor Brilliant Blue and iodine-starch

profiles, as the last were allowed to react ovghniLu & Wu (2003) stated in their work that
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1 to 2 hours of reaction are sufficient for the elepment of the iodine—starch complex. At
our site the first colour reaction was visible afipproximately 2 hours. So there was indeed
fixation of iodide after only a few hours of reaxti Once fixed, iodide becomes much less
mobile as the molecules of the iodine-starch comple large. But the contrast to Brilliant
Blue, especially in areas stained by both tracess, too low, and therefore, the iodine-starch
complex was allowed to develop over night. Thuserevf there was a difference in
redistribution times, it was less than 12 hourgo8d, the minimum concentration still visible

on a profile might be different for the two tracesad so the actual infiltration depth could be

greater.
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Figure 4 Example images from dye tracer experiments on plofa) to 5 (e). Six pixels
correspond to 1 cm. Left column: binary images f@rniliant Blue stained profiles with blue
parts in black and non-stained regions in whiteghRicolumn: the corresponding dye

coverage functions.

Figure 5 Example of Brilliant Blue
(black) versus iodine—starch (grey)
patterns on plot four. Six pixels
correspond to 1 cm.
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Risk indices
In order to balance small fluctuations in the dgeerage function, we superposed all Brilliant

Blue stained profiles of the same plot. Figure évahthese superposed profiles and the fitted
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distribution 1 —H. Table 2 presents the risk indicésand the scale parametess To
demonstrate the variations of the risk indices betwprofiles of one plot, minimum and
maximum of estimates df on single profiles are shown in the columns ‘Miomn of &’ and
‘Maximum of &'. We used only single profiles where 1H-was successfully fitted (visual
check) and wherB? exceeded 0.5 to calculate the minima and maxima.

Except on plot 3, the calculated risk indices agative. It means that the dye infiltration
will stop before reaching a certain depth. Thusehs a low risk of solute moving to greater
depth below the analysed part of the profile. Tisk index on plot 3 equals 0. Here, the dye
coverage function decreases exponentially and wloieeach 0, but the amount of dye carried
to greater depth below the analysed profile mighhegligible (Schlather & Huwe, 2005).

On plots 1 and 2, several Brilliant Blue profilesdha multimodal dye coverage function
with two similar maxima in the lower soil (as ingbre 4a, depths 200 and 530 pixels
respectively), so even superposing them did natirésa monotonically decreasing function.
Especially on plot 1, the third maximum appearethm last third of the profile and led to a
poor fit. One possible reason for this is the awttad procedure to determine the starting
point of the fit. Another reason is that the geheea Pareto distribution does not reflect flow
processes in soils completely as the model theoryased on idealized assumptions. The
distribution 1 —H is a monotonically decreasing function, and thalityiof the fit depends
strongly on the monotonicity of the dye coveragacfion. Therefore, the model is not
suitable for dye coverage functions with pronounerdtimodal behaviour as on plot 1.

Table 2 Calculated risk indices for superposed profiles.

Plot & S R Minimum of &2 Maximum ofé& 2
1 -0.9 377 -0.49 0.4 1.3

2 -1.1 334 0.62 -1.0 0

3 0 94 0.99 0 0.1

4 -0.3 118 0.97 -0.9 0.0

5 -0.2 61 0.98 -0.1 0.5

Minimum and maximum of; for single (not superposed) profiles show theatan of the
risk index within the plot. Results are presentadairofiles where 1 H was successfully
fitted (visual check) and wheR¢ exceeded 0.5.

°A negativeR? indicates that the adjusted curve fits the datese/than a straight line through
the mean value of the data.

14
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Figure 6 Dye coverage function of superposed profiles (dmtsl fitted distribution 1 H
(line) on plot 1 (a) to plot 5 (e). Six pixels cespond to 1 cm.

We did not superpose iodine-starch stained problesause there were too few. Risk
indices based on these patterns were compareade tf Brilliant Blue of the same profile.
The maximum difference in length between Brilli@itle and iodine—starch profiles on the
same plot was 26 pixels or 4 cm. Table 3 showsrélsalts for profiles where 1 H was
successfully fitted (visual check) and wh&eexceeded 0.5 for Brilliant Blue as well as for

iodine-starch patterns.

Table 3 Risk indices for profiles with Brilliant Blue anddide-starch patterns.

Brilliant Blue lodide-starch
Plof & S R & S R
2 -0.9 46 0.85 -1.0 245 0.71
3 0.1 74 0.89 3.5 5 0.54
4 -0.5 159  0.87 -1.4 659 0.80
5 0 58 0.96 -0.9 261 0.96

®Adjustments on plot 1 did not give satisfying résul

Except on plot 3, wher® was small, risk indice& for iodine—starch are less than those
for Brilliant Blue patterns, indicating a lower kifor propagation of iodide. This is in

contradiction with the greater infiltration depthtbis solute and is discussed below.
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Discussion

Risk index for stratified soils

As mentioned by Schlather & Huwe (2005), especiailystratified soils with pronounced
differences in physical properties between horiztims application of the generalized Pareto
distribution to several strata is problematic. At gtudy site, the stratification seems to be
due to changes in root distribution between 204hdm depth. Macropore flow that starts in
the upper soil ends as matrix flow in lower horiganth a less dense root system. When the
flow process changes as a result of varying phiysioaperties the dye coverage function
cannot be represented by one single distributierHL The evident solution is to use only the
lowest part of the profile to fit the distributi@s we did it in our study. This accords with the
limit law of the extreme value theory stating thi@ behaviour of the process at great depths
is independent of the behaviour near the origimi@ber & Huwe, 2005).

Furthermore, Schlather & Huwe (2005) stated inrtlp@iper that preferential flow is
frequently linked to a positive risk index and maftow to a negative one. This is not longer
true for stratified soils because only the lowesst f the profile is considered. At our study
site, despite the occurrence of macropore flovhenupper soil, the calculated risk indices are
negative, as the distribution 1H-is fitted only to the lowest strata. And there ttmminant
flow regime is inhomogeneous matrix flow. So forreat assessment of risk of vertical

solute propagation, the analysed profile depth khbe taken into account.

Combination of form and scale parameters

Smaller risk indices for propagation of iodide areontradiction with the greater infiltration
depth of this solute. It is not surprising that fbem parameter changes, as Brilliant Blue and
iodide have different sorption characteristics. desplly in the lower soil where
heterogeneous matrix flow and fingering dominatadljiant Blue was retarded with regard
to iodide and their respective dye coverage funetidiffered in shape. We can resolve the
contradiction by using both parametefs,and s, to estimate the risk of vertical solute
propagation. As mentioned before, the scale paemsestretches’ the generalized Pareto
distribution. So for the same risk indéxthe probability to find stained pixels at a certai
depth increases with larger valuessofThe combination of. ands determines a complete
probability distribution. Figure 7a shows the rehifference between the risk of solute
propagation based on Brilliant Blue (solid linedandine-starch patterns (dashed line) (see
Figure 5 for patterns). The length of both profilesed for the adjustment of the generalised
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Pareto distribution differs by only 7 pixels (abdutm). The dashed line is situated right of

the solid line indicating a higher risk for iodigeopagation.
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Figure 7 (a): Probability distribution for Brilliant Bluesflid line) and iodine-starch patterns
(dashed line) on plot 4. (b): Probability distriloums of the superposed Brilliant Blue stained
profiles. The depth of the profiles is about 60%efs, so in case of plots 1, 2 and 3 the dye
reached the bottom of the profile.

The same procedure should be applied to assessskhef Brilliant Blue propagation.
Plots 4 and 5 are good examples. Here, the estinretle indices are similar, but the scale
parameters vary as predicted by Schlather & HuW@3p because of changing experimental
and initial conditions. So the estimated actudt o solute propagation is different on these
plots. In Figure 7b we show the probability disttions 1 —H for the five superposed
Brilliant Blue profiles (see Table 2 for paramejerBor correct interpretation the fitted
distributions are plotted for the part of the pifihey were calculated for, i.e. beyond the
threshold depthD. Despite the negative risk indices, it is cleaattipreferential flow is
responsible for deep infiltration of the tracersBd on our data, the estimated risk for solute

propagation tends to increase from ‘dry’ to ‘mojfsbts.

Dependence of the risk index on boundary conditions

In our experiment, changing the irrigation intep$ibm 64 mm hout to 32 mm hotit seems
to not affect the risk index significantly. Indeed,on plot 4 was -0.3 and on plot 5 -0.2
(Table 2). But according to the theory, the scammetes changes (halves) as experimental
conditions are modified. The combination of the tparameters indicates a higher risk of
solute propagation on plot 4, i.e. for the highggation rate.

It is more difficult to see the effect of pre-iraigon on plot 2 as the fit is unsatisfactory.

Moreover, it cannot be compared to plot 1 thatdiaslar initial moisture conditions because
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the distribution 1 H could not be fitted properly on this plot eithBut as indicated by the
dye coverage function, the stained surface wagtarg the pre-irrigated plot 2 than on plot 1.
This would support the hypothesis that the inisail moisture is an important factor.
Compared to ‘dry’ plots 4 and 5, the risk indexpbots 1 and 2 is lower, bstis much larger.
The risk on plot 3 is the highest in accord with thighest initial moisture content. The tail of
the distribution decreases exponentially< 0), and the dye penetrates deeper than on other
plots. But as stated in Schlather & Huwe (2005, titansported mass might be negligible.
Indeed, the dye-covered surface in the lower plathe profile is more important on plots 1
and 2 than on plot 3. So after combinifigands, the complete distribution 1 H supports a
higher risk of vertical solute propagation for maistial conditions.

Actually, initial soil moisture seems to be a caldiactor. Dye coverage functions on
‘moist’ plots fluctuated more than on ‘dry’ onesy she quality of the fit was poorer,
especially for single profiles. More rapid flow @elties and interactions between preferential
flow paths and a moister matrix are one possibfgagation. Hence, flow patterns are more
complex, and the resulting dye coverage functianeat decrease monotonically.

Finally, the risk index seems to depend on theetrabut we need more data
(iodine-starch stained profiles) to verify thist#dugh experimental and initial conditions for
Brilliant Blue and iodide are the same, their lisilices and scale parameters tend to differ in
the same profile. This phenomenon is probably dugifterent physical properties of the two
tracers (especially their sorption behaviour) andat a characteristic of the risk index.

Conclusions

We varied experimental and initial conditions four dracer experiments and used two
different tracers, Brilliant Blue and iodide, taudy the behaviour of the risk ind€x Our
results support the hypothesis formulated by Skhtaand Huwe (2005) that the risk index is
to some degree invariant to changing experimemtadlicions (such as irrigation rate) and that
the scale parameterstrongly depends on them. The initial soil moisfurowever, seems to
have a large influence on the risk index.

We propose to combine the two parameters of theergéped Pareto distribution to
estimate the risk of vertical solute propagationswmils. The scale factos reflects the
maximum infiltration depth (for negative risk ind&) or the amount of stained area at a
certain depth (for positive risk indices). Thisdnhation is important to assess correctly the
risk and should be taken into account. Furthermam@mplete probability distribution 1H

allows us to compare plots with different initiahca experimental conditions or various
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tracers. For stratified soils, only the lowest parthe profile was used for the adjustment of
the 1 —H distribution. Thus the depth should be explicitigluded when one interprets the
risk of vertical solute propagation.

To deal with strongly fluctuating or not decreastige coverage functions, the theory
should be improved to account for tortuosity ofwflpaths. Provided that the dye coverage
function decreases monotonically, the estimatek fig solute propagation can serve to
classify soils. In stratified soils, different floregimes can occur in different regions of the
profile. To asses the risk for vertical solute propagatimn generalized Pareto distribution
should be fitted to the lowest part of the soilfijeo But it could possibly be applied to single
horizons as well to characterize the various flegimes within the profile. Further studies
should help to identify homogenous zones of flowtgyas corresponding to different flow
regimes or reflecting different physical soil prapes. Weiler & Fluhler (2004), for instance,
proposed an interesting classification approachngusstereology. Applied to such

homogenous zones, fitting results of the distrioutl —H could be improved.
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