Introduction to soil chemistry

Minerals and rocks

Repetition: What are soils?

Chemical composition of the lithosphere

O + Si + Al > 80% of all mass of the lithosphere

Minerals are physically and chemically homogeneous, hard, inorganic entities usually of crystalline form and abiogenic in origin in the earth crust. They form rocks and the inorganic solid phase of soils.

Amorphous and crystalline minerals

Obsidian (SiO₂):

Amorphous structure

Quartz (SiO₂):

Crystalline structure

A) Crystal form

7 crystal systems

C) Luminescence

UV-Fluorescence

E) Fissionability

G) Hardness

Scratch

Hardness

according to Mohs

B) Color

D) Transparence

transparent, translucent, opaque

F) Density

- Density of mineral in soils: 2.65 g cm⁻³
- Heavey minerale > 2.9 g cm⁻³

A) Crystal form7 crystal systems

Crystal form of the seven crystal systems

A) Crystal form

7 crystal systems

C) Luminescence

UV-Fluorescence

E) Fissionability

G) Hardness

• Scratch

Hardness

according to

Mohs

B) Color

D) Transparence

transparent, translucent, opaque

F) Density

- Density of minerals in soils: 2.65 g cm⁻³
- Heavey mineral > 2.9 g cm⁻³

A) Crystal form

7 crystal systems

C) Luminescence

UV-Fluorescence

E) Fissionability

G) Hardness

Scratch Hardness according to Mohs

B) Color

D) Transparence

transparent, translucent, opaque

F) Density

Mohs Hardness Scale

Primary minerals

A) Primary Minerals

- Definition: Minerals that have crystalized from magma
- Fractional crystallisation in a magma
- Minerals have different melting points (1200°C \Rightarrow 600°C)

<u>olivine</u> crystallizes; 2: olivine and <u>pyroxene</u> crystallize;
pyroxene and <u>plagioclase</u> crystallize; 4: plagioclase crystallizes. At the bottom of the magma reservoir, a <u>cumulate rock</u> forms.

B) Secundary minerals

- Definition: Minerals that form during weathering and soil formation at the earth surface
- They comprise weathering products as well as minerals that newly from during weathering
- Examples: Al-, Fe- und Mn-Oxides/Hydroxides, clay minerals

I) Element

Example: Diamant, gold, copper

- II) Sulfide
 - Example: Pyrite (under anaerobic conditions)

III) Halogenide

• Compounds containing F, CI, Br, J

IV) Oxide und Hydroxide

• Example: Silicon, iron- and aluminiumoxide

V) Carbonate, Nitrate, Borate • Example: Calcite, dolomite

VI) Sulfate, Chromate, Molybdate

• Example: Gypsum

VII) Phosphate, Arsenate, Vanadate

• Example: Apatite

VIII) Silicate

• Bsp.: Primary and secundary silicates

A) Quartz (SiO₂):

• Mostly of magmatic origin (primary mineral) Scratch hardness according to Mohs = 7, weathering resistant

- Quartz is the second most abundant mineral in Earth's continental crust, after feldspar.
- SiO₂ is completely polymerized Silicic acid (H₄SiO₄):

Quartz

I) Element

Example: Diamant, gold, copper

- II) Sulfide
 - Example: Pyrite (under anaerobic conditions)

III) Halogenide

• Compounds containing F, CI, Br, J

IV) Oxide und Hydroxide

• Example: Silicon, iron- and aluminiumoxide

V) Carbonate, Nitrate, Borate • Example: Calcite, dolomite

VI) Sulfate, Chromate, Molybdate

• Example: Gypsum

VII) Phosphate, Arsenate, Vanadate

• Example: Apatite

VIII) Silicate

• Bsp.: Primary and secundary silicates

Aluminium oxide:

A) Gibbsite (Al(OH)₃:

- Secundary mineral, formed from weathering products of silicates (Release of Al³⁺and hydrolysis of the released Al³⁺)
- Solubility increased with decreasing pH

Iron oxide:

- Secundary minerals, Oxidation of Fe²⁺ released from primary minerals
- The ratio of oxidized iron to total iron characterizes the degree of weathering of a soil
- Solubility depends on redox potential and pH

Hematite (α -Fe₂O₃)

Ferrihydrite (5 Fe₂O₃ ·9H₂O)

Goethite (α-FeOOH)

Color of iron oxides

Carbonate, Sulfate:

- A) Carbonate:
 - Calcite (CaCO₃)
 - Dolomite (CaMg(CO₃)₂)
 - Magnesite (MgCO₃)
- Salts of carbonic acid (H₂CO₃), secundary minerals
- Main component of limestone
- Also important for limining in forests and croplands
- **B) Sulfate:**
 - ♦ Gypsum (CaSO₄ · 2 H₂O):
- Evaporite, high solubility

Building blocks of silicates

Isomorphic replacement: One of the central atoms is replaced by a an atom with a simiar size but a different charge \rightarrow Leads to negative charge

Primary silicates are differentiated according to the structure formed by the tetrahedons and octahedrons

- Nesosilicate (German: Inselsilikate)
- Inosilicate (Ketten-, Bandsilikate)
- Phyllosilicate (Schichtsilikate)
- Tectosilicate (Gerüstsilikate)

Nesosilicate Inosilicate

A) Nesosilicate (Inselsilikate)

- Greek, nesos, island
- SiO₄-tetrahedron are not connected through joint O-atoms but through Fe and Mg ions
- \Rightarrow Olivine: (Mg, Fe)₂SiO₄
- Olivine is and important Mg source in igneous rock (basalt)

B) Inosilicate (Pyroxene, Amphibole) (Ketten-, Bandsilikate)

- Si⁴⁺ in the tetrahedron is replaced by Al³⁺ (= isomorphic substitution)
- Balance of negative charge by incorporation of cations such as

Ca²⁺, Mg²⁺, Fe²⁺ into the mineral

 $\frac{\text{Augite}}{(\text{Ca, Mg, Fe, AI})_2(\text{Si, AI})_2\text{O}_6}$

Hornblende (Mg, Fe, Al)₅(Si, Al)₈O₂₂(OH)₂

C) Tectosilicates (Feldspar, Plagioclase) (Gerüstsilikate)

- 20-50% of all Si⁴⁺ in the tetrahedron are replaced by Al³⁺ (= isomorphic substitution).
- Balance of negative charge by incorporation of cations such as
- K⁺, Na⁺, Ca²⁺, Mg²⁺ into the mineral
- ⇒ Kalifeldspar (Orthoclase):
- ⇒ Natronfeldspar (Albite):
- ⇒ Calciumfeldspar (Anorthite):
- Feldspars are important sources of nutrients

Building block of silicates

SiO₄-tetrahedron

AlO₆-octahedron

D) Phyllosilicate (Mica) (Schichtsilikate)

- Built of (Si, Al)O₄-tetrahedron and (Al, Mg, Fe)(O, OH)₆-octahedron
- Connection of tetrahedrons and octahedrons via joint O and OH.

• Isomorphic substitution occurs in the octahedron layer and in the tetrahedron layer and charge is balanced by incorporation of cations

- D) Phyllosilicate (Mica) (Schichtsilikate)
- ⇒ Muscovite KAI₂(Si₃AI)O₁₀(OH)₂ : Isomorphic replacement occurs in the tetrahedron layer by AI³⁺ Charge-balancing by incorporation of K⁺
- ⇒ Biotite K(Mg, Fe, Mn)₃(Si₃Al)O₁₀(OH)₂ : Structured similar to muscovite, but Al³⁺ in the center of the octahedron is replaced by bivalent cation (low weathering resistance)

- Clay minerals belong to the phyllosilicates (similar structure)
- They form during weathering
- Clay minerals are divided into 2-layer and 3-layer clay minerals

A) Kaolinite

- 2-layer clay mineral
- No isomorphic substitution
- Connection of layers by H-bridges
- In strongly weathered soils

B) Illite

- 3-layer clay mineral
- Stuctured as mica
- K⁺ between layers

C) Vermiculite, Smectite

- 3-layer clay mineral
- Structured as Illite but with cations in the interlayer
- Swellable

C) Vermiculite, Smectite

- 3-layer clay mineral
- Structured as Illite but with cations in the interlayer
- Swellable

- 3-layer clay mineral
- Al-hydroxy interlay
- Not swellable

Formation of secondary minerals (clay minerals)

Formation and reformation of clay minerals

Formation and reformation of clay minerals

Minerals in the particle size classes:

Minerals in particle size fractions in soils of the temperate zone

Chemical composition of the lithosphere

O + Si + Al > 80% of all mass of the lithosphere

Mineral composition of the lithosphere

Rocks are monomineralic of polymineralic aggregates of minerals in the Eath's crust

Rocks are monomineralic of polymineralic aggregates of minerals in the Eath's crust

Classes

Differentiation according to stucture and genesis

- A) Igneous
- **B)** Methamorphic
- **C) Sedimentary**

The rock cycle

> Changes in structure caused by hyigh temperature and presure

Dominant mineral	Type of rock	
	Sedimentary	Metamorphic
Calcite (CaCO ₃)	Limestone	Marble
Dolomite ($CaCO_3 \cdot MgCO_3$)	Dolomite	Marble
Quartz (SiO ₂)	Sandstone	Quartzite
Clays	Shale	Slate
Variable	Conglomerate ^a	Gneiss ^b
Variable	0	Schist ^b

\succ Example: Granite \rightarrow Gneiss

Sediments

Formation through weathering, transport and sedimentation on the Earth surface

A) Clastic Sediments:

- Mechanical transport (Wind, water, glaciar)
- Fractionation according to paticle size fractions
- Examples: claystone, sandstone, siltstone, loess

B) Chemical and biogenic sediments:

• Exampe: Limestone

Magmatic rock

Color of magmatic rock

Mineral composition of igneous rock

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Mineral composition of sedimentary rock

Minerals:

- Primary minerals
- Secondary minerals

Primary silicates :

- Nesosilicate
- Inosilicate
- Phyllosilicate
- Tectosilicate

Rock:

- Sedimentary
- Igneous
- Metamorphic

Seconday silicates (clay minerals):

- Two layer minerals (1:1)
- Three layer minerals (2:1)

