Modelling of Tc migration in an un-oxidized fractured drill core from Äspö, Sweden

Florian Huber1, Yuri Totskiy1, Vanessa Montoya1, Frieder Enzmann2, Michael Trumm1, Achim Wenka1, Horst Geckeis1, Thorsten Schäfer1
1 KIT
2 Johannes Gutenberg Universität Mainz

O 4.7 in Endlager und Untertagedeponien

15.04.2016, 11:45-12:00, Audimax A, Geb. 30.95

 

The radionuclide retention of redox sensitive radionuclides (e.g. Pu, Np, U, Tc) in crystalline host rock greatly depends on the rock matrix and the rock redox capacity. Preservation of drill cores concerning oxidation is therefore of paramount importance to reliably predict the near-natural radionuclide retention properties. Here, experimental results of HTO and Tc laboratory migration experiments in a naturally single fractured Äspö un-oxidized drill core are modelled using two different 2D models. Both models employ geometrical information obtained by µ-computed tomography (µCT) scanning of the drill core. The models differ in geometrical complexity meaning the first model (PPM-MD) consists of a simple parallel plate with a porous matrix adjacent to the fracture whereas the second model (MPM) uses the mid-plane of the 3D fracture only (no porous matrix). Simulation results show that for higher flow rates (Peclet number > 1), the MPM satisfactorily describes the HTO breakthrough curves (BTC) whereas the PPM-MD model nicely reproduces the HTO BTC for small Pe numbers (<1). These findings clearly highlight the influence of fracture geometry/flow field complexity on solute transport for Pe numbers > 1 and the dominating effect of matrix diffusion for Peclet numbers < 1. Retention of Tc is modelled using a simple Kd-approach in case of the PPM-MD and including 1st order sorptive reduction/desorption kinetics in case of the MPM. Batch determined sorptive reduction/desorption kinetic rates and Kd values for Tc on non-oxidized Äspö diorite are used in the model and compared to best fit values. By this approach, the transferability of kinetic data concerning sorptive reduction determined in static batch experiments to dynamic transport experiments is examined.



Export as iCal: Export iCal