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1 Abstract

For the statistical analysis and modeling of atmospheric boundary flows it is crucial to evaluate their
space-time correlations. Significant space-time correlations require high spatially- and temporally-
resolved data, which however are di�cult to measure in field experiments. Therefore, there is
an urge to estimate the correlations using easier accessible one-point measured data. The elliptic
model derived by He and Zhang [1] states that iso-correlation lines are elliptic shaped, of which
orientation and size is characterised by the mean velocity value U and the sweeping velocity V and
can therefore be conducted out of one-point correlations. The model has been proven to provide
valid results for several flows and could therefore be a basis for the estimation. But to also prove the
model’s validity for the atmospheric boundary flow, more studies concerning the application of the
elliptic model have to be conducted. In this thesis, I will analyse the shape of the spatio-temporal
correlation function CTT (r, ⌧) based on temporal fluctuating data conducted with the application
of distributed temperature sensing. The calculation of the characteristic parameters U and V

will be done using two di↵erent methods, the results of which are compared with the measured
velocities. My result show that most of the iso-correlation plots show the predicted elliptic lines and
that the scale of the measured sweeping V matches the calculates ones. But although the maxima
fit method results in a mean velocity that matches the calculated mean velocity, the elliptic fit
method results in values that are an order of magnitude smaller, which leads to the conclusion
that the elliptic fit method works better for low to zero mean velocity situations. In total, I can
conclude that the elliptic model is applicable to the measured data, but has great potential for
improvement when applied to higher temporal and spatial resolved data over a larger viewing area.
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2 Zusammenfassung

Die Untersuchung der Raum-Zeit-Korrelationen ist für eine statistische Analyse und Modellierung
atmosphärischer Grenzströmungen wichtig. Eine aussagekräftige Raum-Zeit-Korrelationen benötigt
jedoch räumlich und zeitlich hoch aufgelöste Daten, die in Feldexperimenten schwer zu messen sind.
Diese Beschränkung führt zum Versuch, die Korrelationen anhand von leichter zugänglichen Ein-
Punkt-Messdaten theoretisch herzuleiten. Ein theoretisches Modell, das diese ein- und zwei-Punkt
Korrelationen verbindet, ist das elliptische Modell [1] von He und Zhang. Das Modell besagt,
dass Isokorrelationslinien elliptisch geformt sind und daher mit einer Ellipse dargestellt werden
kann, deren Orientierung und Größe durch die mittlere Geschwindigkeit U und die “sweeping”
Geschwindigkeit V charakterisiert wird. Durch diese Annahme können die Iso-Korrelations Kon-
tour Linien aus Ein-Punkt-Korrelationen hergeleitet werden. Mehrere Experimente haben die
Anwendbarkeit des elliptischen Modells für verschiedene Strömungen verifiziert. Um jedoch die
Gültigkeit des Modells auch für die atmosphärische Grenzströmung zu analysieren und gegebe-
nenfalls zu bestätigen, müssen weitere Untersuchungen zur Anwendung des elliptischen Modells
durchgeführt werden. In dieser Arbeit wird die Form der räumlich-zeitlichen Korrelationsfunk-
tion CTT (r, ⌧) anhand von zeitlich fluktuierenden Temperaturdaten analysiert, die mit Hilfe von
Temperaturmessungen gewonnen wurden. Die Berechnung der charakteristischen Parameter U

und V wird mit zwei verschiedenen Methoden durchgeführt, deren Ergebnisse mit den gemessenen
Geschwindigkeiten verglichen werden. Meine Ergebnisse zeigen, dass die meisten Iso-Korrelations
Plots die vorhergesagten elliptischen Linien zeigen und dass die Skala der gemessenen Schwingun-
gen V mit den Berechneten übereinstimmt. Aber obwohl die Maxima-Fit-Methode zu einer mit-
tleren Geschwindigkeit führt, die mit der berechneten mittleren Geschwindigkeit übereinstimmt,
führt die elliptische Fit-Methode zu Werten, die eine Größenordnung kleiner sind, was zu der
Schlussfolgerung führt, dass die elliptische Fit-Methode besser für Situationen mit niedrigen bis
keiner mittleren Geschwindigkeiten funktioniert. Das Ergebnis der Arbeit ist, dass das elliptische
Modell auf die gemessenen Daten anwendbar ist, jedoch zu teilweise größeren Fehlern führt, was
auf die zeitlich und räumliche Auflösung der Daten zurück zu führen ist.
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3 Introduction

Atmospheric surface layers rule the turbulent exchange of heat, carbon, energy, and aerosols be-
tween the earth’s surface and the atmosphere. Their understanding is very important for climate
and weather modeling. [2] Due to the boundary of the earth’s surface, the fluid velocities in the
atmospheric boundary layer vary randomly in space and time, creating a highly chaotic and tur-
bulent flow [3].
This randomness results in a wide range of spatial and temporal scales and constant alteration due
to the swirling [4] and prevents a deterministic approach to the problem leading to the necessity of
a statistical approach for the analysis of turbulence data [5]. To understand and analyse the factor
of change of a variable, a correlation function is often applied. But due to the additional mutual
influence of the spatial and temporal variable, a simple one-dimensional correlation function is no
longer su�cient, as the connection of both variables is essential.
Therefore in the studies of turbulent flows an approach of 2-dimensional correlation functions, the
so called spatio-temporal correlation, has been focused on for decades. Over time, di↵erent theo-
ries have been developed using this statistical approach for modeling and analyzing turbulent flows
[6]. For good and accurate results of the correlation function, it is very important to have access
to high-resolution spatio and temporal data [6]. But due to the limitation of field equipment the
analysis was long restricted to numerical calculations for example the large eddy simulations. Even
though the possibilities of complex numeric data analysis were improved over the last years, the
reality of the atmospheric boundary layer consists of many di↵erent partly unknown parameters,
which cannot be predicted in advance leading to the necessity of field measured data.
But the di�culties of measuring such high-resolution data in the atmospheric boundary layer is
leading to a scarcity of experimental measured data. This limitation coupled with the lack of si-
multaneous measured data, presents a significant limitation for experimental studies and statistical
characterization exploring the relationships between space and time [6].
The absence of quantities for two-point-two time measurements, compared to the easier one-point
measurements in atmospheric boundary layer, results in a high demand for models that can esti-
mate space-time correlations from one-point measurement data [6]. The most important models
for the estimation of space-temporal correlation are the Taylor’s frozen-in-motion hypothesis and
the elliptic model. To test and verify the applicability of the models for the atmospheric boundary
layer in the reality it nevertheless is very important to have real measured data.
For measurements in the atmospheric boundary layer, distributed temperature sensing (DTS) has
become a crucial tool for obtaining data with high temporal and spatial resolutions. The fiber-
optic system accurately measures small-scale thermal structures in atmospheric flows under various
conditions, which can be used to directly estimate the length scales of turbulent motions [7]. The
utilization of high temporal and spatial frequency temperature data obtained through DTS and
the analysis and the comparison of it with a theoretical model was done by Han and Zhang [6]
who analyzed the space-temporal correlation function CTT (r, ⌧) and investigated the suitability of
the elliptic model in the atmospheric boundary layer and developed a method for estimating the
value of CTT (r, ⌧) based on this model.

The intention of this thesis is to analyse, whether the experimental set up of 2011 of the team
of Christoph Thomas can also be used for a comparison of the measured spatio-temporal correla-
tion and the elliptic model. This paper is organized as follows:
The first section introduces the elliptic model, its motivation and theoretical background and gives
detailed explanations for important keywords related to the model. The second section describes
the set up of the field experiment of Christoph Thomas conducted in the USA 2011 [7]. In addition
the regime classification and its characteristic parameters are explained and applied on the mea-
sured data and the limitations and its justifications for the used data is pointed out. A limitation
to the stable and labile regimes was applied due to the resolution of the data, which is further ex-
plained in the section. The wavelet filter function, used as a bandpass filter for separating low and
high frequency data is characterised and its characteristic separation parameter analysed. After
that, the two methods of calculating the two characteristic velocity parameters of the elliptic, the
mean velocity U and the random sweeping velocity V , is presented in detail. In the forth section,
the results are specified and in the further sections, the possibilities and limitations of the two
approaches discussed and the conclusions about it are drawn.
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4 Theoretical Part

As motivated in the introduction, the focus of this paper lies upon the analysis of atmospheric
boundary layer, which represents the lowest air layer of the atmosphere with direct connection
to the ground[8]. As the name implies, it represents a boundary situation for air flow, which is
leading to turbulent motion [9].
Turbulence is defined as a highly chaotic flow characterized by random fluctuations [3]. This
randomness prevents a deterministic approach to the problem leading to the necessity of a statistical
approach for the analysis of turbulence data [5].
A turbulent flow can be explained by breaking down the flow into clusters of flow particle packages
that have the same characteristics as velocity or energy content. These characteristics of these
so-called eddies break down in size and energy content in the dissipation process, which can be
determined by statistical methods, in the spectral or real space. A lot of spectral analysis has been
made, leading to theory of the “energy cascade” by Kolmogorov [10], which states that energy of
large scale eddies is transferred during the dissipation process to smaller and smaller structures in
the characteristic decay of �5/3. Besides the dissipation process, there is no

statistical interaction between two scales of motion[11].
This leads for the spatial spectrum to:

E(k) = ✏
2/3

k
�5/3

f(k/kc) (1)

The following analysis is based on the assumption of statistically steady, homogeneous, isotropic
and incompressible turbulence. In this paper I will focus on the analysis of turbulence in real
space. One of the possible approach to do so, is via the correlation function, which analyses the
degree of similarity between signals [5].
Besides the auto-correlation, which shows the self-similarity of a single variable, there is also the
possibility of connecting signals from two spatially separated measuring positions over time [12].
The so-called spatio-temporal correlation takes the time lag ⌧ in connection to the time t and the
spatial shift r to the spatial position x into account, which leads to the relation

C(r, ⌧) = hu1(x, t)u2(x+ r, t+ ⌧)i (2)

where h i marks averaging and u1 and u2 represent the two di↵erent measurement positions [12].
Due to the potential coupling spatial and temporal scales of motion in turbulence, the spatial-
temporal correlation has been employed to develop time-accurate turbulence models.But due to
the necessity of simplification of the chaotic flow, the usage and calculation of the correlation is
based on approximations and assumptions about turbulence movement.
The results of the correlation function applied to measured data of the atmospheric boundary
layer show a spatial and temporal decorrelation. This can be explained with two e↵ects. The
turbulent eddies are transported with a mean velocity leading to a spatial decorrelation, which is
explained theoretically in the frozen-flow-hypothesis by Taylor. In addition to the mean velocity
transportation, in a turbulent flow small eddies are advected with a local mean velocity, that
varies spatially and temporal in a random manner. This phenomenon of transportation is called
sweeping and results in a statistical distribution of time shifts for a specific spatial shift. This
phenomenon leading to the temporal decorrelation is theoretically described with the random
sweeping hypothesis of Tennekes and Kraichnan [11]. Since the results show a spatial, as well as
the temporal decorrelation, one needs a model that includes both. The model that incorporates
the Taylor’s frozen-in-flow and the random sweeping hypothesis is the elliptic model elaborated by
He and Zhang [1].
Due to the importance of understanding the physical phenomena of frozen in flow and the random
sweeping assumptions for the understanding of the elliptic model, I will dedicate a subsection each,
before describing the elliptic model in detail. In the end of this section I will give a short overview
of research that has been made so far analysing the elliptic model.

4.1 Taylor’s frozen-in-flow hypothesis

Taylor made one of the first approximations for the analysis of turbulent flows. The so-called
frozen-in-flow approximation proposes a “derivation of spatial fluctuations from temporal fluctua-
tions in one point” [9]. The approximation is based on the hypothesis, that the eddy characteristics
do not vary during advection and that the eddies are all only advected by the mean flow velocity.
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This assumption leads to the conclusion, that the characteristics of the eddies can be described by
measurements of only one measurement point, as the data about temporal fluctuations include all
information about spatial fluctuations [13].
The frozen-in-flow hypothesis only holds “if the velocity of the air stream carrying the eddies is
very much greater than the turbulent velocity” [9]. This means, that “the eddy structures have
to be moved past a stationary probe in a time smaller than the inherent evolution time of the
fluctuations” [14].
As one-point measurements are well measurable, the Taylor’s frozen-in-flow hypothesis states an
assumption, that transforms usual accessible temporal data into nontrivial accessible spatial tur-
bulent data. This potential for knowledge gain led to the realization of a lot of studies about the
hypothesis, including the analysis of spatial-temporal correlation. Due to the inclusion of all char-
acteristic data values in temporal data, the two-point spatial correlation function can be related
to the temporal auto-correlation function of turbulent velocity at a fixed point [13].
For the derivation of this statement, we start with a spatial pattern of turbulent motion that is
carried past a fixed point by the convection speed U without any essential changes:

u1(x+ r, t+ ⌧) = u1(x+ r � U · ⌧, t). (3)

where r is the spatially streamwise separation, and ⌧ is the temporal separation and inserted this
equation into the spatio-temporal correlation of streamwise velocity fluctuation 2 leads to the
auto-correlation

C(r, ⌧) = C(r � U · ⌧, 0) = c. (4)

One can see, that c is a constant, which implies straight iso-correlation contours lines with the
gradient of the mean velocity U [1]. But as numerical and experimental studies have shown, “iso-
correlation contours in turbulent shear flows are elongated and closed curves with a preference
direction” [1]. These result lead to the conclusion that the frozen-in-flow hypothesis does not
describe all physical phenomena of turbulent flows.

4.2 The random sweeping decorrelation hypothesis

The random sweeping decorrelation hypothesis is based on the assumption that small eddies are
advected in a turbulent flow with a local mean velocity by large eddies. The local velocity, by
which the eddies are transported, varies spatially and temporal randomly in its value, leading to
a statistical distribution of time shifts for a specific spatial shift. Tennekes suggests, that the
transport of these small scales is related to the energy content of the larger eddies, due to their
“direct contribution to the kinetic energy per unit mass of the smaller scales within the Eulerian
inertial subrange” [11]. Therefore, “the kinetic energy per unit mass of the larger scales ui should
be considered in the dimensional analysis of the inertial subrange in the Eulerian framework”.
Based on this argument, the Eulerian frequency spectra can be described as

E!(!) = ↵h✏i2/3hu2
i i1/3!�5/3 (5)

Due to the proportional relation of the kinetic energy per mass to the square of its velocity, we
can rewrite the equation into:

E!(!) = ✏
2/3

V
2/3

!
�5/3

f(!/!c) (6)

V represents the sweeping velocity, f(!/!c) represents a constant. Similar to the frozen-in-flow hy-
pothesis, this model also has limitations. In the paper [11] by Katul et al., two substantial assump-
tions of the model were analysed. These assumptions were “(i) the absence of large-scale/inertial
subrange interaction, and (ii) the absence of any eddy-motion distortions due to thermal distur-
bances”. For the atmospheric boundary flow, both assumptions didn’t completely hold, which
leads to the conclusion, that the hypothesis does not fully apply for atmospheric boundary flows
[11].

4.3 The Elliptic Model

The motivation of the elliptic model is that numerical simulations and experiments lead to elliptic
shaped iso-correlation contour lines [1]. An iso-correlation contour line is defined as representing
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a specific correlation value C(r, ⌧) = c. At a particular point, the iso-contour line cuts the spatial
shift axis r, which will be defined as point (rc, 0). This leads us to the connection of

C(r, ⌧) = c = C(rc, 0) (7)

The reason why the experiments do not show straight lines, is “largely because Taylor’s frozen
turbulence hypothesis is only a first-order approximation of iso-correlation contours” [1]. Therefore
to receive the elliptic approximation, the elliptic model introduces a higher-order approximation
to the iso-correlation contours of the frozen turbulence hypothesis by expanding the correlation
function C(r, ⌧) about the origin to second order in the Taylor series. For the derivation of the
elliptic model we follow the lines of the paper [1] by He and Zhang. The application of the Taylor
expansion leads us to the following equation

C(r, ⌧) = C(0, 0) +
�
2
C(0, 0)

�r�⌧
r⌧ +

1

2


�
2
C(0, 0)

�r2
+

�
2
C(0, 0)

�⌧2

�
. (8)

where �rC(0, 0) = 0 due to homogeneity and due to stationary �⌧C(0, 0) = 0.
To receive a relation for rc, the following substitution are used:

U = ��
2
C(0, 0)

�r�⌧


�
2
C(0, 0)

�r2

��1

(9)

V
2 =

�
2
C(0, 0)

�⌧2


�
2
C(0, 0)

�r2

��1

� U
2 (10)

and inserting it in the previous equation results in

C(r, ⌧) = C(rc, 0) = C(
p

(r � U⌧)2 + (V ⌧)2, 0). (11)

Therefore the elliptic model states that the iso-contour lines of a spatio-temporal correlation func-
tion can be described as ellipses fulfilling the relation

r
2
c = (r � U⌧)2 + (V ⌧)2. (12)

The derivation of the statement of U being the mean velocity and V representing the sweeping
velocity was done by He and Zhang and can be found in their paper [1]. In the particular case that
V is approximately zero, the equation can be simplified to the equation r

2
c = r+Ue ·⌧ , which is the

same result as the frozen-in-flow hypothesis, and is therefore also leading to straight iso-correlation
contour lines. So it becomes obvious that the frozen in flow hypothesis is a borderline case of the
elliptic hypothesis [1].
The elliptic model also incorporates the random sweeping hypothesis. To prove this statement, I
will transform the elliptic model in Fourier space and compare it with the results of the random
decorrelation sweeping hypothesis. The spatial correlation can be written as

C(r, 0) =

Z
dkE(k) cos kr (13)

where E is the spectrum.
The temporal correlation is defined as

C(0, ⌧) =

Z
d!E!(!) cos(!⌧) (14)

which can be rewritten to the following equation using the sweeping hypothesis and the elliptic
model

C(0, ⌧) =

Z
dkE(k) cos(kV ⌧). (15)

By using the elliptic model I can write

C(r, ⌧) = C(rc, 0) =

Z
dkE(k) cos(2⇡krc(r, ⌧)) =

Z
dkE(k)exp[irk

p
(r � U⌧)2 + (V ⌧)2] (16)
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With a change of variables ! = V k, we obtain V E!(V k) = E(k). Therefore in the case of the
mean velocity U being equal zero, the equation becomes r2+V

2
⌧
2 = r

2
E resulting in elliptic shaped

iso-correlation contour lines with “their preference direction in the horizontal axis” [1]. This leads
to the conclusion that the “sweeping hypothesis is implying the same result as the elliptic model
up to second order” [1].
Therefore the elliptic model can be used to di↵erentiate between the two di↵erent turbulence
velocities, the mean velocity at which the eddies are transported, and the sweeping velocity. The
latter is “associated with the timescale at which the eddies break apart”[15]. The elliptic model is
used in the following analysis as a basis to describe the results of the spatial-temporal correlation
of the measured data in the atmospheric boundary layer.

4.4 Literature overview for the application and the usage of the elliptic
model

Due to the benefit of the elliptic model of incorporating both, the frozen-in-flow hypothesis and
the random sweeping hypothesis, a lot of research has been dedicated to the model. In this section
I will list a selection of the research so far that has been conducted using simulations laboratory
and field experiments.

• The elliptic model has been applied by He and Zhang to space-time correlations of streamwise
velocity fluctuation in turbulent shear flows based on data from direct numerical simulation.
The application lead to iso-correlation contour lines that are ”like the elliptic curves in
alignment with a straight line of the slope U”, where U is the mean streamwise velocity [1].

• He and Tong have applied the elliptic model to the space-time correlation function in turbu-
lent Rayleigh–Bénard convection. The analysed convective flow “is generated in a confined
system between two horizontal plates separated by a distance L and heated from below in the
presence of gravity”. The investigation was done at di↵erent representative locations in the
convection cell leading to results supporting the validity of the elliptic model for the velocity
and local temperature fields[16].

• The validity of the elliptic model is also demonstrated by Zhang and Wan using numerical
large eddy simulation data representing a turbulent jet flow. The analysis of the space-time
correlations C(r, ⌧) leads to the conclusion that the calculated elliptical curves match very
well the iso-contour lines as well as that the measured mean velocity U and the sweeping
velocity V are strongly correlated with the calculated U and V [17].

• Wang et al. [18] showed that the performance of the elliptic model can also be assessed by
the data of a turbulent boundary layers flow measured by tomographic time-resolved particle
image velocimetry.

• Wilczek and Narita proposed a derivation of an energy model spectrum “in the wave-
number–frequency domain including the mean and sweeping velocities” that can be com-
pared with the elliptic model, in real space. Despite the di↵erent approaches of the model
spectrum and the elliptic model, the model “been shown to be closely related to the recently
introduced elliptic model” [19].

• The elliptic model was applied to the longitudinal space–time correlations of temperature
fluctuations, that were directly measured in the near-neutral, unstable, and stable atmo-
spheric boundary layer. Additionally to the calculation of the elliptic model based on the
measured data, Han and Zhang suggest a possible method for estimating the correlation
function CTT (r, ⌧) from the elliptic method. As space–time correlations are often restricted
to the requirements of high spatially- and temporally-resolved data which is technically dif-
ficult to implement, the proposed method could be a promising contribution to the analysis
of the atmospheric boundary layer [6].
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5 Experimental Set-Up and Declaration of Data

First the setup of the field experiment is described in detail. Then the limitation for filtering the
data using specific criteria in this thesis are motivated and applied, resulting in an overview of the
used observations for the ensuing analysis. Lastly, the wavelet filtering method, which was applied
prior to statistical analysis, is described in detail.

5.1 Description of the field experiment set up and the measured air
temperature data

The temperature data were measured with the fiber-optic distributed sensing (FODS,best use [7],
or [20]) technology using a fiber-optic cable interrogated by a Distributed Temperature Sensing
(DTS) instrument. This technology uses Raman spectra scattering in an optical fiber to measure
temperature along its length. The FODS array was installed at the Botany and Plant Pathology
laboratory of the Oregon State University, Oregon, USA. Its setup and geometry is described in
[21]. Observation were collected between 23 August and 14 October 2011. The geometry of the
set up can be described as a quasi-3-dimensional construction consisting of a vertical plane in the
north-south direction and three perpendicular vertical planes in the east-west direction [21]. The
dimensions of the constructions were 42 m long, 12m wide, and 4.2 m high. The planes are made
of wooden structures, which provide a support structure for the measurement fibre. This fibre
was spanned in regular spaced vertical strands each consisting of 35 measurement points, equally
spaced every 0.1273 m along the fiber. The lateral separation of the vertical strands is 0.255 m,
which in total represent 276 vertical profiles. The measured air temperature data were averaged
for each spatial point, resulting in a 1 s average every 5.2 s. The whole set-up was oriented with a
6� degree o↵set to the direct north direction. A visualisation of the field set up can be seen in the
figure. A more detailed report of the observation site, experimental setup, and the FODS system
can be found in [21] by Zeeman et al.

(a) (b)

Figure 1: Sketch of the visualisation of the field measurement construction.
a) Structure sketch of the quasi-3-dimensional construction. The orange plane represents the
middle plane, and the red line represents its height of 3m on which we will focus on in the analysis
of this thesis.
b) The front view of the middle plane and a close up to one of the frames including the 23 vertical
strands and the measurement points of the height 3m is displayed for better comprehensibility

In addition to the quasi-3-dimensional structure explained before, an ultrasonic anemometer
was operated at the height of 3m. The sonic recorded the atmospheric turbulent flow at 20 Hz
sampling frequency, and allowed for computing diverse parameters including the direction and
speed of the wind mean velocity, the turbulent buoyancy flux, and the friction velocity needed to
derive atmospheric stability. Due to the storage of the data in 60min files, I will use these packages
in my analysis and will refer to them as data files.
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With the parameters that the ultrasonic anemometer provides, one can cluster the data pool into
di↵erent sections and limit it for reasonable analysis. Four filtering criteria were applied and are
listed and justified in the following. The first one is the restriction to the measured data of the
long vertical middle plane as it provides the longest continuous measurement series. That can be
seen in the figure 1(a). This is important as data for “space-time correlations are restricted to the
requirements of highly spatially and temporal-resolved data” [6].
The second requirement is limiting the accepted wind direction. This limitation is done as “direct
measurements of CTT (r, ⌧) requires that the direction of the optic cable is the same as the direc-
tion of the streamwise velocity component (along wind direction)”[6]. But due to the dynamic
situation of wind in the Atmospheric boundary there are only few situations of the wind flowing
exactly along the long vertical plane compared to the total amount of measured data. Therefore
the restriction of the wind direction to less and equal than 15 degree di↵erence to the perpendicular
vertical plane along northing was made. The wind that was measured with an angle range of 351�

to 21� is a north wind and the wind measured with an angle range of 171� to 201� is a south
wind. The sketch of it can be seen in the figure 2, in which the blue lines pictures the maximum
of possible angle of the wind permitted in this thesis.
Third, to gain the measurement situation of having an optic cable in the along wind direction, only
measurement points at one height of the vertical strands is taken figure 1(b). The height of 3 m
above ground was selected matching that of the measurement height of the ultrasonic anemometer
for error minimization.

Figure 2: Sketch of permitted wind origin direction including the o↵set orientation of the quasi-
3-dimensional construction towards the northing. The top view of the construction is displayed.
The orange line represents its middle plane and the black line its three perpendicular vertical
planes. The blue lines pictures the maximum of the wind angle permitted in this thesis. The red
line represents the north-south direction, to which the construction is oriented with an o↵set of 6
degrees.

The last restriction was done using the regime classification, which was applied with the inten-
tion of better evaluation of the application of the elliptic model.
There are two parameters that are used for evaluating the stability of the atmospheric boundary
layer and classifying the states of the atmospheric surface layer leading to four di↵erent regimes:
the shear regime, the labile regime, the quiescent regime and the stable (submeso) regime [7]. The
first parameter used for the classification is the Monin-Obukhov stability parameter ⇣ = z/L in
which z is the height, and L is the Obukhov length [6]. The Obukhov length L is defined as [22]

L =
Tu

3
⇤

g(!T + 0.61T!q)
(17)

where  is the von-Kármán constant, g = 9.81m/s
�2 is the acceleration due to gravity, and T is

the mean temperature. The friction velocities u⇤, surface sensible heat fluxes H, and surface latent
heat fluxes E are calculated using the eddy-covariance method and therefore are

u⇤ = (u!2 + ⌫!
2)1/4,

H = ⇢Cp!T ,
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E = ⇢L⌫!q,

where u,⌫ is the the streamwise, and ! are the spanwise, respectively the vertical velocity com-
ponent. q is the specific humidity and the parameter ⇢ is the air density. The parameter Cp and
L⌫ are the air specific heat capacity at constant pressure respectively the latent heat of vaporiza-
tion of water. The kinematic heat flux !T is calculated by averaging the covariance between the
fluctuating vertical velocity component ! and fluctuating temperature T, !q is calculated by aver-
aging the covariance between the fluctuating vertical velocity component ! and specific humidity
q, where the overline represents a temporal average. This definition and further information to the
Obukhov length can be found in the paper [22] by Li and Bou-Zeid. The second parameter used
for the regime classification is the mean velocity Umean. This parameter for the horizontal wind
speed is limited by the resolution of the set up and the height of the measurement points. As the
height is 3 m the value of Umean is limited to less or equal 1 ms�1 for the analysis of the data
measured with the above described construction [7]. This limitations leads to the impossibility of
observing the shear flow regime due to its definition of mean wind velocities of higher than 1.6
ms�1. In addition the analysis of the quiescent regime is not done in this thesis, due to the regimes
definition of dominating fine-scale turbulent eddies, which can not be dissolved with the spatial
and temporal resolution of the measurement.
This leads to the focus on the labile and the stable regime in this thesis. In the following tabular,
one can see the parameter values of the regime classification of the labile and the stable regime
and a figure each representing a moment of the temperature distribution [22].

Labile regime Stable regime

⇣  �0.3 and Umean  1m
s ⇣ � 0.3 and Umean  1m

s

Table 1: Regime classification for the labile and the stable regime. The figures of the temperature
distribution are plotted along the height and the y-axis of the measurement structure. The chosen
moment of time for each figure is representative for each regime. The figure (a) displays the data
for the labile regime of the No.19, 09:03h and the data for figure (b) was measured in the stable
regime of the data set No.23, 20:03h

In the following tables the starting points of time of the 60-minute data sets fulfilling the above
described restrictions are listed for each the labile (in table 2) and the stable regime (in table ??)
including the values of zeta, the o↵set angle between the measurement fibre, the measured mean
velocity Umeas and the standard derivation of the measured crosswind velocity Vmeas, representing
the sweeping velocity.
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No. Date Angle [�] Zeta Umeas [m/s] Vmeas [m/s]
1 28.08. 07 11 -0.38 0.3 0.37
2 28.08. 10 357 -0.35 0.64 0.85
3 04.09. 09 185 -1.7 0.86 0.54
4 07.09. 08 198 -0.39 0.59 0.44
5 07.09. 11 199 -1.29 0.5 0.71
6 08.09. 09 188 -1.28 0.54 0.56
7 12.09. 14 194 -0.96 0.95 0.77
8 13.09. 09 190 -0.96 0.52 0.49
9 15.09. 09 190 -0.9 0.4 0.67
10 16.09. 09 19 -0.53 0.44 0.52
11 16.09. 12 10 -0.31 0.58 0.88
12 16.09. 13 20 -0.3 0.86 0.84
13 20.09. 09 15 -0.47 0.77 0.65
14 20.09. 12 4 -1.79 0.21 0.81
15 22.09. 12 188 -1.54 0.64 0.59
16 22.09. 13 199 -0.46 0.8 0.5
17 23.09. 07 199 -0.36 0.85 0.5
18 23.09. 09 175 -0.87 0.57 0.58
19 24.09. 09 175 -0.63 0.95 0.61
20 29.09. 12 18 -0.78 0.89 0.73
21 30.09. 09 175 -1.27 0.68 0.55
22 01.10. 08 193 -0.4 0.76 0.29
23 02.10. 08 186 -0.36 0.9 0.47
24 06.10. 12 195 -0.45 0.74 0.62

Table 2: Table of data sets fulfilling the restrictions for the labile regime. The date represents
the day and the starting point of time of the one hour data set, the angle representing the o↵set
angle between the measurement fibre and the wind direction, the measured mean velocity Umeas

represents the average velocity over one hour each. Vmeas is the standard derivation of the crosswind
velocity.

No. Date Angle [�] Zeta Umeas [m/s] Vmeas [m/s]
25 04.09. 22 355 0.63 0.22 0.23
26 09.09. 20 199 0.38 0.31 0.25
27 09.09. 23 181 0.72 0.4 0.18
28 10.09. 18 1 0.51 0.67 0.29
29 10.09. 22 176 0.49 0.63 0.23
30 15.09. 21 13 0.44 0.05 0.43
31 15.09. 22 13 0.36 0.2 0.22
32 19.09. 19 10 0.43 0.41 0.3
33 23.09. 00 175 0.66 0.84 0.28
34 23.09. 01 191 0.35 0.29 0.46
35 23.09. 20 198 0.41 0.85 0.25
36 24.09. 02 182 0.73 0.15 0.16
37 28.09. 20 185 0.4 0.12 0.18

Table 3: Table of data sets fulfilling the restrictions for the stable regime. The date represents
the day and the starting point of time of the one hour data package, the angle representing the
o↵set angle between the measurement fibre and the wind direction, the measured mean velocity
Umeas represents the average velocity over one hour each. Vmeas is the standard derivation of the
crosswind velocity.

5.2 Wavelet high-pass filtering applied prior to analysis

The motivation for applying a preliminary filtering function to the data is the importance of se-
lecting the scales of turbulence only.
The surface heating as a result of the incoming solar radiation during the day produces motions
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larger than those typically found in atmospheric turbulence, which creates lower frequency contri-
butions in empirical power spectra of air temperature and wind velocity components.
To limit the significant temperature changes at the turbulence time scales, a wavelet high-pass
filter is applied to the FODS temperature data [21] prior to further analysis. The wavelet function
is “a bandpass filter of uniform shape and varying location and width” [23] and enables one to
“unfold a signal into both space and scale” [24]. This is done “by decomposing a time series into
time–frequency space to determine both the dominant modes of variability and how those modes
vary in time” [23].
The wavelet filter applied for this analysis is based on the biorthogonal set of wavelets BIOR5.5,
which is used for “separating the low frequencies of coherent motion from high frequent turbulence”
[25]. By comparing the unfiltered and filtered generated signal with steadily increasing parameter
a, one can evidently notice that the wavelet filter divides the oscillations to the lower frequencies
and higher frequencies depending on the wavelet scale a.

Figure 3: Temperature course after high and low pass filtering for di↵erent parameter a of the day
10.09.2011 which is a representative daily course for the display of this application)

In this figure 3 of the temperature course one can conclude that the main warming signal is
directly related to the daily course of the sun. Due to the indirect proportionality of time range
length and frequencies, the lower frequencies represent the daily course and therefore include the
incoming solar forcing. Separating the high frequencies from the low frequencies by applying the
wavelet function, is therefore leading to a separation of the incoming energy and the high frequency
turbulent range.
For the justification of the choice of the value of the wavelet parameter a, the power spectrum of
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the data is shown. As discussed in the section before, the dissipation range equals a decay of the
power spectrum of the value -5/3, which also should be seen in the power spectrum of the data.
The following figure show the power spectrum of temporal fluctuating temperature calculated from
the measured data before and after the usage of the wavelet bandpass filter with the parameter a.

(a) (b)

Figure 4: Averaged power spectrum of temporal fluctuating temperature calculated from the
measured data sets in the labile regime. The average was calculated over all data sets in the
labile regime. The figures show the averaged power spectrum a) before and b) after the wavelet
application with the wavelet parameter a = 12.

(a) (b)

Figure 5: Averaged power spectrum of temporal fluctuating temperature calculated from the
measured data sets in the stable regime. The average was calculated over all data sets in the
stable regime.The figures show the averaged power spectrum a) before and b) after the wavelet
application with the wavelet parameter a = 12.

As we now have evidence that the separated high-pass filtered air temperature observations
represent atmospheric turbulence, we can now start the analysis of the spatio-temporal correlation
of the multi-point temperature data measured by FODS [20].
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6 Methods

In this section, the methods of deriving the characteristic parameters of the elliptic model, the
convection velocity U and the sweeping velocity V , are explained in detail. In this paper we
follow two di↵erent methods to derive these parameters. For traceability the parameters will have
indices that clarifies the origin of its derivation method. First we will obtain the parameters Um

and Vm with the maxima fit method, by using a maxima determination, for which the paper [6]
by Han and Zhang is being followed. Secondly, the parameters Ue and Ve are determined by
fitting an ellipse to the iso-correlation contour lines and extracting the parameters by calculation
from the characteristic elliptic values. I will name this method elliptic fit method from now
on. The motivation behind this method is, that the elliptic model states that the iso-contour
lines equal oblique ellipses. Therefore we can describe the contour lines with the equation r

2
c =

(r � U · ⌧)2 + (V · ⌧)2, where rc is the point on the r-axis, where the ellipse cuts the axis. This
relation has been described and discussed in the section Theoretical Part before, where you can
find further information in more detail.
As both methods are based on the correlation function, the spatio-temporal correlation C(x, ⌧) is
described upfront. In the section experimental set up, I explained that the data we use is temporal
fluctuating data. Therefore the spatio-temporal correlation represents the autocorrelation of the
temporal fluctuating data the correlation function. To clarify this connection, I will use the label
’TT ’ along the correlation function. Therefore C(r, ⌧) = CTT (r, ⌧). The expression for CTT (r, ⌧)
is given by

CTT (r, ⌧) =

⌧
hT (x, t)T (x+ r, t+ ⌧)itp
Var(T (x))

p
Var(T (x+ r))

�

x

(18)

Based on the assumption of statistically steady and homogeneous fluctuations, temporal and spatial
averaging is applied to the correlation function, which is indicated with h it and h ix. Important
here is to state, that the correlation function is taken at every single measurement point in both
directions along the measurement cable. This leads to di↵erent numbers of correlation samples for
di↵erent spatial spacing. For example we have 138 correlation samples for the spatial spacing r =
0m and only one for each r = ±40m. So the averaging was done by dividing each summed value
for the specific r with the numbers of resulted correlation functions.
The correlation function is also standardised, which leads to the advantage of better comparison
between the correlation results of the data sets.
Due to its dependence on r and ⌧ , the correlation function CTT (r, ⌧) can be plotted in a 3-
dimensional plot or can be visualised in its contour plot. The contour plot is used as the basis for
the further analysis.
The figures in this section are chosen for their visualisation of the explanations of the models.

6.1 Extraction of parameters Um and Vm using a maxima determination

For the velocity calculation based on the extraction of the parameters Um and Vm by using a
maxima determination we follow the steps in the paper [6] by Han and Zhang. It is important to
be aware of the renaming that was made in comparison to the paper.
The parameters Um and Vm can be derived from the relation of the elliptic model r2c = (r�Um⌧)2+
(Vm⌧)2. We can get the velocity Um via

�rc

�r

���
⌧
= 0 ! ⌧ = CUrp =

1

Um
rp (19)

The variable rp represents the spatial shift r that maximizes CTT (r, ⌧) for a constant ⌧ . The
requirement of ⌧ being constant is defined by the mathematical spelling |⌧ . We will see later on,
that Um can be obtained from the gradient CU with the relation Um = 1/CU when we plot rp

against ⌧ . We follow a similar path for the derivation of the sweeping velocity Ve, thus

�rc

�⌧

���
r
= 0 ! ⌧p = CV r =

h
Um

(U2
m + V 2

m)

i
r (20)

where ⌧p maximizes CTT (r, ⌧) for a given r. Similar to above, the spelling |r states that r is re-
quired to be constant and we can obtain V from the gradient CV = Um

(U2
m+V 2

m) , by plotting r against
⌧p.
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The actual implementation is as follows: To obtain the gradient CV in equ. (20), we plot the cor-
relation function CTT (r, ⌧) of various specific r against the time shift ⌧ . Analog we plot CTT (r, ⌧)
of various specific ⌧ against the spatial shift r to receive the gradient CU in equ. (19). Therefore
both equations imply keeping one variable (r, respectively ⌧) fixed while plotting the correlation
function against the other variable (⌧ , respectively r).
Conceptually we can break down this approach to the illustration of a grid overlay to the iso-
correlation contour lines, which you can see in the following figure, where the red lines represent
the fixed values of r in fig. 6a, respectively ⌧ in fig. 6b.

Figure 6: Illustration of the concept behind the approach of plotting the Correlation function
CTT (r, ⌧) versus r respectively ⌧ to obtain the velocity parameters Um and Vm. The black lines
represent the iso-correlation contour lines that enclose areas of the same correlation value. The
correlation values of the colors of the areas are displayed in the color bar on the right. In a) the red
lines represent the correlation function CTT (r, ⌧) with a fixed spatial shift value r, plotted against
⌧ . Displayed are the values r = [0m,±5.1m,±8.5m,±11m,±15m,±17.5m]
In b) the red lines represent the correlation function CTT (r, ⌧) with a fixed value of ⌧

plotted against the spatial shift r. Displayed are the temporal shift values ⌧ = [0s,
±5.2s,±10.3s,±15.5s,±20.7s,±25.9s]

The conceptual approaches of obtaining the coe�cients CV and CU are done analogously.
Therefore we will only focus on the approach of receiving the coe�cient CV in this methodical
description. In a first step, the correlation function CTT (r, ⌧) is plotted against the temporal
spacing ⌧ for di↵erent constant values of r, which can be seen in figure 7. In a second step, we
apply a parabola fit function to the correlation function of each values of r to obtain its maximum.
The ⌧ -position of the correlation maximum represents the wanted value of ⌧p. I visualised this
approach in the figure 8. In this figure we can also see that the correlation functions drop to
di↵erent degrees and therefore are partly very pointed. For these cases the fitted parabola does
not represent the correlation value perfectly. But as we only need the value of ⌧ for the di↵erent
correlation functions CTT (r, ⌧), this approach leads to the valid parameters ⌧p. In the last step of
the maxima fit method we plot the measured peak position ⌧p as a function of r and apply a linear
fit to the scatter plot to obtain the gradient CV . The choice of the linear regression fit is based
on the expectation that the relation of r and ⌧p is linear increasing for increasing values of r. I
use the implemented MatLab function fitlm as the linear regression fit. This whole procedure was
repeated for obtaining the value of the gradient CU . We can now calculate Um and Vm by using
the equations (19) and (20) and the obtained values of CU and CV . The r-⌧p plot and the linear
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regression fit as well as the calculated values of Um and Vm can be found in the result section.
To improve the results of the to parameters, I applied the limitation to the maximum value of
CTT (r, ⌧) > 0.2. This leads to a limitation to the used range of the spatial and temporal shift
values for the data sets.
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Figure 7: Space-time correlation CTT (r, ⌧) of the data No.19 for di↵erent values of r plotted against
⌧ . The higher the value of r the darker its correlation function line. The values of r are: r = [0m,
1.27m, 2.54m, 3.81m, 5.08m, 6.35m, 7.26m, 8.25m]. For clarity this figure only shows the positive
r values.
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Figure 8: Parabola fit to CTT (r, ⌧) of data set No.19 for di↵erent values of r to obtain the maximum.
The red graphs represent the correlation function CTT (r, ⌧) for di↵erent values of r plotted against
⌧ . The higher the value of r the darker its correlation function line. The values of r displayed are:
r = [0.95m, 2.54m, 7.26m]. The green lines are the parabola fit with their marked maximum as a
blue star. The horizontal distance of the maximum to the value ⌧ = 0 represents the value of ⌧p

6.2 Extraction of parameter Ue and Ve by fitting an ellipse to the iso-
contour lines of the correlation function

The second method of deriving the values of Ue and Ve is the elliptic fit method. The motivation
of the method is based on the assumption of the elliptic model, that the iso-contour lines of the
spatio-temporal correlation are elliptic shaped with a expansion and orientation connected to the
parameters Ue and Ve. To extract the ellipse parameters, an ellipse is fitted to an iso-correlation
contour line. The approach can be seen in the figure 9.
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Figure 9: Conceptual description of the elliptic fit method. The exemplary correlation function
used in this figure is the data set No. 16. In the subfigure a) we can see the iso-contour plot of the
correlation function with a highlighted contour line of the value CTT (r, ⌧)=0.62 marked as a thick
black line. In b) the iso-contour points representing the line are plotted as black circled dot. The
red ellipse is the elliptic fit. In c) we can see the same iso-correlation contour plot as in a) with
the elliptic fit in red.

The operating principles of the elliptic fit is based on a minimization concept. The sum of
the quadratic distance between the points on the iso-contour and the values of the elliptic fit is
minimised in both the horizontal and vertical direction. The fit goes through several iterations.
The elliptic fit then outputs the parameters a and b of the two semi-axes and the value of the angle
↵ by which the fitted ellipse is rotated against the horizontal axis.
We apply the elliptic fit to several iso-correlation contour lines. The correlation value range for
the application is determined as follows: The minimum value was elected by the biggest enclosed
iso-contour line of the iso-correlation contour plot. I chose the maximum of the correlation contour
value by containing a minimum of 10 points. I divided the range into 40 equally spaced iso-contour
values and applied the elliptic fit to each value. We can see the application of the elliptic fit method
with all 40 fitted ellipses in figure 10. We calculate the value of U⇤

e and V
⇤
e for each fitted ellipse

and average it for each data set. The designation ⇤ marks that the parameters of U⇤
e and V

⇤
e are

the result of a single fitted ellipse. After calculating all values, we take the mean of U⇤
e and V

⇤
e ,

which leads to the representative value Ve = Ve and Ue = Ue for each data set. I did the renaming
for better clarification in the discussion section.
For the calculation of U⇤

e and V
⇤
e we start with the conversion of the elliptic parametric form into

the normal form. We can describe an oblique ellipse as an ellipse with its semi axes a and b which
is transformed by a rotation matrix Z by the angle ↵. We can write the relation in the parametric
form as

✓
⌧

r

◆
=

✓
cos↵ � sin↵
sin↵ cos↵

◆
·
✓
a cos t
b sin t

◆
= Z ·

✓
x

y

◆
, (21)

where the vector
�
x y

�T
describes the unrotated ellipse with the same semi-axes a and b. We can

now rewrite the equation to receive the normal form of the oblique ellipse. To do so, the Matrix
Z is inverted leading to the relation:

✓
a cos t
b sin t

◆
=

✓
cos↵ sin↵
� sin↵ cos↵

◆
·
✓
⌧

r

◆
(22)

We divide by the values of the semi axes a as well as b and take its absolute value, which leads us

21



to the relation

1 = (
sin↵2

a2
+

cos↵2

b2
)r2 + (

2 cos↵ sin↵

a2
� 2 sin↵ cos↵

b2
)⌧r + (

cos↵2

a2
+

sin↵2

b2
)⌧2. (23)

We now rewrite the equation (12) stated by the elliptic model to

r
2
c = r

2 � 2U⇤
e r⌧ + (U⇤2

e + V
⇤2
e )⌧ (24)

which is rewritten to:

1 =
1

r2c

r
2 � 2U⇤

e r⌧

r2c

+
(U⇤2

e + V
⇤2
e )

r2c

⌧ (25)

The comparison leads us now to the following relations:

1

r2c

= (
sin↵2

a2
+

cos↵2

b2
) (26)

U
⇤
e = r

2
c cos↵ sin↵(

1

a2
� 1

b2
) (27)

V
⇤
e =

r
(
cos↵2

a2
+

sin↵2

b2
) · r2c � U⇤2

e (28)

The averaging of all calculated parameters V ⇤
e and U

⇤
e leads us to the following equations:

Ve =
1

40

40X

i=1

Ve
⇤
i (29)

Ue =
1

40

40X

i=1

Ue
⇤
i (30)

Figure 10: Application of the elliptic fit method to the iso-correlation contour plot of the data
No.2. The red ellipses represent the elliptic fits fitted to equally spaced iso-contour values. The
determined correlation-value-range is CTT (r, ⌧) = [0.43 : 0.85].
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7 Results

I will first display the di↵erent types of the correlation patterns seen in the data. Then I will present
the calculated velocities Um and Vm of the maxima fit method and the calculated velocities Ue and
Ve of the elliptic fit method.

7.1 Characteristic types of iso-contour plots

In figure 11 an iso-correlation contour plot with elliptic shaped iso-contour lines is displayed. The
correlation value ranges from 0.1 to 1. The iso-correlation contour lines represent elliptic shaped
lines. In figure 12(a) we can see a sharp correlation value, from CTT (r, ⌧) = 1 to CTT (r, ⌧) =0.3
in less than r = 0.25m and less than ⌧ = 5s. A very slow drop of the correlation value can be
seen in figure 12(a). For some correlation functions the iso-contour lines di↵er from elliptic shaped
lines. In the figure 13(a) we can see an iso-correlation contour plot that shows almost no spatio
correlation, leading to straight contour lines parallel to the spatio axis. This iso-correlation contour
pattern applies to the data of No.1, No.3 and No.28. A correlation function that shows no visible
correlation can be seen in the figure 13(b). This iso-correlation contour pattern can be found in
the data set No.4, No.5, No.6.

Figure 11: Iso-correlation contour pattern of the correlation CTT (r, ⌧) of the data No. 15. The
maximum value of the CTT (r, ⌧) occurs at the origin with CTT (0, 0) = 1. The two-dimensional
iso-contour lines of the measured correlation function form elliptic shaped enclosed lines. The value
of the CTT (r, ⌧) declines with increasing separation of r respectively ⌧ .
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Figure 12: Iso-correlation contour pattern. The black lines are the iso-contour lines separating the
areas of the same correlation value. The color bar represents the values of the correlation function
ranging from -0.4 to 1.
a) Iso-contour pattern of the correlation function CTT (r, ⌧) data of No 8.
b) Iso-contour pattern of the correlation function CTT (r, ⌧) of No 24.

Figure 13: Iso-contour plot of the correlation function CTT (r, ⌧). The black lines are the iso-contour
lines separating the areas of the same correlation value. The color bar represents the values of the
correlation function ranging from -0.1 to 1.
a)Iso-contour plot of the correlation function CTT (r, ⌧) of the data No.3 in the labile regime.
b)Iso-contour plot of the correlation function CTT (r, ⌧) of data No. 5 in the labile regime.
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7.2 Results of parameters Um and Vm using the maxima determination
method

The results for the specific streamwise spacing r plotted versus its corresponding value of ⌧p is
illustrated in the figure 14(a) for the labile regime and in figure 15(a) for the stable regime. It
shows a linear increase of r with increasing ⌧p. A linear regression fit of MatLab called fitlm
was used to determine the gradient coe�cient CV = r/⌧p. This procedure was also done for the
maximum value of CTT (r, ⌧) for various temporal spacings ⌧ resulting in the gradient coe�cient
CU = ⌧/rp and can be seen in the figures 14(b) and figure 15(b) These values of the gradient
coe�cients can be calculated into the values of Um and Vm with the equations (19) respectively
(20). The errors for the values Um and Vm were calculated by the fit function. We can find the
values of the data sets representing the labile regime in table 4 and the stable regime in table 5.
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Figure 14: Result of the application of the maxima fit method to the data set No.16 in the labile
regime. a) Spatial shift r versus ⌧p. The blue crosses represent each the temporal spacing ⌧p which
maximises the correlation function CTT (r, ⌧) for specific values of streamwise spacing r. The red
line is a linear fit to these data points. The fit is done with the prefabricated fit function fitlm in
MatLab. The fit returns the value of the gradient coe�cient CV = r/⌧p and its error.
b) Temporal shift ⌧ versus rp. The blue crosses represent each the spatial spacing rp that maximises
the correlation function CTT (r, ⌧) for the values of specific temporal shifts ⌧ . The red line is a
linear fit to these data points. The fit is done with the prefabricated fit function fitlm in MatLab.
The fit returns the value of the gradient coe�cient CU = r/⌧p and its error.
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Figure 15: Result of the application of the maxima fit method to the data set No.26 in the stable
regime. a) Spatial shift r versus ⌧p. The blue crosses represent each the temporal spacing ⌧p which
maximises the correlation function CTT (r, ⌧) for specific values of streamwise spacing r. The red
line is a linear fit to these data points. The fit is done with the prefabricated fit function fitlm in
MatLab. The fit returns the value of the gradient coe�cient CV = r/⌧p and its error.
b) Temporal shift ⌧ versus rp. The blue crosses represent each the spatial spacing rp that maximises
the correlation function CTT (r, ⌧) for a values of specific temporal shifts ⌧ . The red line is a linear
fit to these data points. The fit is done with the prefabricated fit function fitlm in MatLab. The
fit returns the value of the gradient coe�cient CU = r/⌧p and its error.
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No Um ErrorU Vm ErrorV

1 -0.09 1.88 1.03 0.70
2 -0.16 0.25 0.56 0.02
3 -1.40 0.56 13.28 9.10
4 121.02 0.37 138.06 24.88
5 -19.49 0.31 31.05 0.96
6 -5.52 0.33 24.04 6.46
7 0.30 0.47 1.11 0.17
8 0.24 0.14 0.68 0.08
9 0.30 0.19 0.83 0.10
10 -0.26 0.24 0.75 0.04
11 -0.16 0.36 0.67 0.07
12 -0.66 0.09 1.00 0.02
13 -0.52 0.12 0.96 0.21
14 -0.24 0.61 0.67 0.09
15 0.54 0.06 0.74 0.02
16 0.63 0.04 0.86 0.01
17 0.16 1.26 0.63 0.08
18 0.20 0.73 0.85 0.04
19 0.89 0.10 1.16 0.01
20 -0.17 1.47 0.57 0.02
21 0.54 0.04 1.06 0.21
22 0.26 0.22 0.82 0.21
23 0.41 0.09 1.29 0.18
24 0.20 0.40 0.96 0.05

Table 4: Values of the calculated velocities Um, Vm and their errors EU and EV calculated using
the maxima fit method for the data sets conducted in the labile regime

No Um ErrorU Vm ErrorV

25 0.06 1.18 0.56 0.64
26 -0.25 0.11 0.81 0.02
27 -0.18 0.30 1.15 0.08
28 -0.12 0.67 0.95 0.07
29 -0.36 0.20 0.70 0.05
30 -0.08 1.20 0.57 0.57
31 0.04 1.89 0.51 0.39
32 -0.04 5.52 0.53 0.45
33 0.29 0.18 0.87 0.05
34 0.06 0.78 0.65 0.42
35 0.05 6.65 0.61 0.27
36 -0.15 0.44 1.27 0.28
37 -0.20 0.18 0.79 0.09

Table 5: Values of the calculated velocities Um, Vm and their errors EU and EV calculated using
the maxima fit method for the data sets conducted in the stable regime

7.3 Results of the values Ue and Ve extracted by the ellipse fit method

Before displaying the results for Ue and Ve conducted with the elliptic method, I would like to
point out this method is not applicable to the correlation function of some data sets. The require-
ment of the elliptic fit method are elliptic shaped iso-contour lines to which the elliptic fit can
be applied. We can find the iso-correlation contour patterns that are unfitting for this method in
figure 13(a) and 13(b) as the iso-contour lines of these patterns don’t fulfil the requirement. Due to
the impossibility of applying this method to these iso-correlation contour plots, the data of No.1,
No.3, No.4, No.5 and No.6 are left for the analysis using the elliptic fit method.

As explained in detail in the Method section, I determined a range of CTT (r, ⌧) for every data
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set suitable for applying the elliptic fit method. In this range I applied the elliptic fit to 40 equally
spaced iso-correlation contours, resulting in values for Ue and Ve for specific correlation values,
which are calculated with the equations (27) and (28) and displayed in the figure 16. The red
dots describe the values of Ue(CTT ) and Ve(CTT ) and the blue horizontal line represents the mean
value of Ve or Ue. For every data set, the calculated values Ue and Ve were averaged resulting in
the mean velocity Ue and sweeping velocity Ve. We can find these averaged velocities Ue and Ve

in the table 6 for the labile regime and in the table 7.
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Figure 16: Calculated values of Ue(CTT ) and Ve(CTT ) of the data No.2 in the labile regime. The
minimum of the range of CTT (r, ⌧) was determined by the lowest value that provides an enclosed
line, the maximum was determined by the maximum value of the contour line that consists of a
minimum of 10 data points.
a) The red dots are the value of Ve(CTT ) calculated with the equation (28). The blue line is the
Ve, the average of Ve.
a) The red dots are the value of Ue(CTT ) calculated with the equation 27. The blue line represents
Ue, the average of Ue.
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No. Ue Ustd Ve V std

2 -0.06 0.03 0.6 0.2
7 -0.04 0.14 0.7 0.3
8 -0.02 0.10 0.6 0.3
9 0.03 0.03 0.6 0.2
10 -0.01 0.04 0.5 0.2
11 -0.02 0.04 0.6 0.3
12 0.05 0.16 0.9 0.4
13 -0.05 0.05 0.7 0.3
14 0.00 0.13 0.5 0.3
15 -0.01 0.08 0.7 0.3
16 -0.1 0.23 0.8 0.4
17 -0.03 0.07 0.7 0.4
18 -0.01 0.06 0.8 0.4
19 -0.28 0.41 1.2 0.4
20 -0.04 0.05 0.7 0.2
21 -0.04 0.12 0.9 0.4
22 0.02 0.14 0.7 0.7
23 -0.02 0.05 0.9 0.3
24 0.00 0.09 0.8 0.4

Table 6: Results of the averaged Ve and Ue calculated by using the elliptic fit model of the data
sets in the labile regime.
No.1, No.3, No.4, No.5 and No.6 are not listed here, as their resulting iso-correlation contour plot
doesn’t fulfill the requirement of elliptic shaped iso-contour lines for the elliptic fit method, which
leads to the impossibility of applying this method to their iso-correlation contour plots.
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Figure 17: Calculated values of Ue(CTT ) and Ve(CTT ) of the data No. 26 in the labile regime. The
minimum of the range of CTT (r, ⌧) was determined by the lowest value that provides an enclosed
line, the maximum was determined by the maximum value of the contour line that consists of a
minimum of 10 data points.
a) The red dots are the value of Ve(CTT ) calculated with the equation (28). The blue line is Ve,
the average of Ve.
a) The red dots are the value of Ue(CTT ) calculated with the equation (27). The blue line represents
Ue, the average of Ue.
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No. Ue Ustd Ve V std

25 0.02 0.02 0.3 0
26 -0.06 0.02 0.6 0.1
27 -0.04 0.02 0.6 0.1
29 -0.05 0.06 0.7 0.2
30 -0.02 0.03 0.5 0.2
31 -0.01 0.02 0.4 0.2
32 -0.01 0.02 0.6 0.4
33 -0.02 0.07 0.9 0.4
34 0.02 0.02 0.6 0.2
35 0.00 0.04 0.7 0.2
36 -0.03 0.02 0.7 0.2
37 -0.02 0.04 0.6 0.3

Table 7: Results of the averaged Ve and Ue calculated by using the elliptic fit model of the data
of the stable regime. No.28 is not listed here, as its resulting iso-correlation contour plot doesn’t
fulfill the requirement of elliptic shaped iso-contour lines for the elliptic fit method, which leads to
the impossibility of applying this method to their iso-correlation contour plots.
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8 Discussion

To discuss the applicability of the elliptic model to the measured data sets we compare the results
of the two applied methods with the measured data. The outcome will show whether the applica-
tion of the elliptic model to the data is valid or not. I will first discuss the correlation between the
measured velocities and the calculated velocities by the Maximum method respectively the Elliptic
fit method. To do so, the measured mean velocity Umeas is plotted against Um and Ue and by
analogy the measured sweeping velocity Vmeas against Vm and Ve. The outcome can be seen in 18
for the labile and in 19 for the stable regime. In both figures, the five nonfunctional data (No.1,
No.3, No.4, No.5 and No.6) are left out due to the lack of calculations of the elliptic model. The
omission is also further motivated in the following discussion.
A recognizable coincidence between two variables plotted against each other would be evident by
the points forming an increasing line, which can’t be observed in either of these eight plots. This
leads to the conclusion that there is no correlation between the measured velocities and the calcu-
lated ones using the methods.
This uncorrelatedness is the result of various causes, which we will now look at individually.
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Figure 18: Correlation between Umeas and Um respectively Ue and the correlation between Vmeas

and Vm respectively Ve of the labile regime

Significance of iso-correlation contour patterns Firstly we discuss the visual result of the
iso-correlation contour plots as it can be a possible explanation for the uncorrelatedness between
the calculated and measured velocities. In the beginning of the result section I displayed di↵erent
types of iso-contour plots. The missing of elliptic lines in the iso-contour plots of figure 13 leads
to the impossibility of applying the elliptic fit method, and also the application of the maxima fit
method leads to unsatisfying results. Reason for this assumption are the high errors we can see in
table 6 of Vm of No.3, No.4, No.6 and the error of Um of No.1, leading to no meaningful results for
the velocities Um and Ve. In addition even though No.5 does not have a high error, one can see
in figure ??(a) that the relation of r and ⌧p is not linear increasing. A similar result can be seen
in figure ??(b) for ⌧ and rp, as they are also not linear increasing. Therefore the applications of
the maxima fit method with the equations (19) and (20) is not leading to informative results for
Um and Vm. This data set is an example to state that for some data sets there is a discrepancy of
expectable values of Um and Vm, but which are based on non linearly increasing scatter plot of r
and ⌧ , and therefore not results. Therefore apart from the results of Um and Vm and their error
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Figure 19: Correlation between Umeas and Um respectively Ue and the correlation between Vmeas

and Vm respectively Ve of the stable regime

values, it is important to control the plotted figures.
In the figure 12(a) we can see a very sharp drop of the correlation value from CTT (r, ⌧)=1 to
CTT (r, ⌧)=0.3 in less than r = 0.25m respectively ⌧ = 5s. The data set displayed is No.8, but the
phenomenon also applies to several other data. The application of the elliptic fit method to this
data is possible, but the di↵erence of correlation values between the value of the biggest enclosed
iso-contour line and the value of the smallest enclosed line consisting of a minimum of 10 points
is smaller than �CTT (r, ⌧) = 0.1 on average. This short range leads to no representative velocity
results for the data sets.
Another pattern of iso-correlation contour plots to be found, is a result of very slow decorrelation of
the data and can be seen in figure 12(b) for the data set No.24. The analysis about the informative
power of its results for Ue and Ve can leads to analogous conclusions as the analysis about the
sharp decorrelation. The correlation value range for applicability of the elliptic fit method is very
on average �CTT (r, ⌧) = 0.19. The average of the calculated Ve(CTT ) and Ue(CTT ) is due to its
short iso-contour value range also not leading to a representative outcome for the data set. This
phenomenon also applies to the data of No.28 and No.32, and can be seen as extremely high errors
of the mean velocity Um in the table 5.

Significance of smoothness of iso-correlation contour lines The elliptic fit algorithm works
on the minimization principle, which works better, the more elliptic shaped the iso-contour lines
are. We can see in figure 11 that the iso-contour lines are elliptic shaped, but not really smooth,
which a↵ects the functionality of the fit algorithm. Therefore we can find the degree of smoothness
strengthening the discrepancy of the measured and the calculated velocity values. The missing
smoothness of the iso-contour lines of the measured correlation function can be a result of the
complexity and uncontrollable atmospheric boundary conditions as it is discussed in the paper
[6] by Han and Zhang. Reasons for the deviation of the standard form of an ellipse have been
studied upon before and they came to the conclusion that the deviation can be attributed to the
asymmetric shape of thermal plumes, and temperature fluctuations becoming inhomogeneous [26].
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Figure 20: Result of the application of the maxima fit method to the data set No.5 in the labile
regime. We can see the in a the a) Spatial shift r versus ⌧p. The blue crosses represent each
the temporal spacing ⌧p which maximises the correlation function CTT (r, ⌧) for specific values of
streamwise spacing r. The red line is a linear fit to these data points. The fit is done with the
prefabricated fit function fitlm in MatLab. The assumption of the dots increasing linearly is not
fulfilled, as specific values of ⌧p are connected to di↵erent values of r. b) Temporal shift ⌧ versus rp.
The blue crosses represent each the temporal spacing rp that maximises the correlation function
CTT (r, ⌧) for a specific ⌧ . The assumption of the maxima fit method is a direct proportionality of
⌧ and rp, which is not fulfilled in this case, leading to no valid result for the gradient CU = 1/Um

and therefore not for Um

Significance of averaging measured parameters over one hour An other topic of concern
is the erroneous assumption of taking the value of Umeas as representative for the hourly situation.
The averaging over one hour of measured data leads to an error of the value of Umeas and Vmeas.
The wind velocity is a very dynamical parameter that can change very quickly over a short period
of time. Over such a period, the wind can vary its strength and therefore its velocity value and
could also change its direction. Therefore its mean does not represent the real situation, but a mix
of di↵erent occasions. Especially due to the restriction of the mean velocity to small velocity values
of 1 m/s or less, the value of the mean velocity Umeas could be the result of averaging of stronger,
but direction-changing-wind. Besides the mean velocity, all other measured parameters are also
averaged over the one hour period. This could lead to the case that we mix di↵erent regimes, as
the change of one regime to an other is not hourly restricted. Therefore it could happen, that
di↵erent situations were merged together, resulting in one regime by averaging.
But there is evidence, that for the labile regime the measured and averaged wind direction over one
hour is valid, because we can find a connection between the sign of Um and the angle of the wind
direction in the labile regime. As described in the section experimental set up, the wind that was
measured with an angle range of 351� to 21�, represents a north wind and the wind measured with
an angle range of 171� to 201� is a south wind. Despite these opposite directions of the wind, the
measured mean velocity is positive in both cases. This is based on the implementation method of
the velocity measurement, which only measures the absolute value of the velocity. But comparing
the sign of the calculated mean velocity Um and the angle of the wind leads to a direct coincident
between the origin of south and north wind and the sign of Um. We can therefore retract the winds
origin out of the sign of Um. The positive sign represents the south wind and the negative one
the north wind. The three data (No.3, No.5, No.6) not supporting this conclusion are the data
described as erroneous before.
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This conclusion does not apply for the stable boundary layer as 8 of the 13 data sets result in the
opposite conclusion. We can assume, that the origin of the wind for the conducted data in the
labile regime is more stable over the period of an hour, compared to the conducted once in the
stable regime.

Operability of the maxima fit method and the elliptic fit method Besides the shape of
the iso-correlation contour plots, the operability of the maxima and the elliptic fit method have to
be discussed. We can see in the table 6 that the value of the calculated mean velocity Ue is 19.2
times smaller than the measured Umeas in the labile regime and in table 7 that the factor is 14.5
times to the measured Umeas in the stable regime. Due to the independence of these factors to the
above discussed iso-correlation contour patterns, we can conclude that it is based on the operability
of the fitting algorithm. The reason for the mismatch is that the fitting algorithm of the elliptic fit
is not able of find the right angle of the oblique ellipse, when fitting to the iso-correlation contour
lines. This leads to erroneous values of the calculated mean velocity Ue and applies to the fitting
to all correlation iso-contour plots. This error results in an average angle of approximately zero
degree, which is directly proportional to the value of mean velocity and therefore Ue is approxi-
mately zero. We can conclude that the results of the elliptic fit method is therefore much better
for smaller U , as the iso-contour lines then represent ellipses which are not rotated. The error of
the elliptic fit method leading to this limitation could be fixed by implementing a better elliptic
fit algorithm that is able to adjust to the angle more precisely.
When we analyse the outcome of the maxima fit method in the figures 14(b) and 15(b), we can
see that there are only 12 points available for the fitting. This leads to a high uncertainty for the
gradient CU and with its direct relation of CU = 1/Um to a high uncertainty for the mean velocity
Um. The reason for the low data point availability is the low temporal resolution of �⌧ = 5.2s.
We can see by comparing the tables 2 to 7 that the magnitudes of the measured sweeping velocity
Vmeas and the calculated Vm and Ve match In addition the magnitudes of the measured mean ve-
locity Umeas and the calculated mean velocity Um using the maxima fit method match. Therefore
we can conclude that besides the before discussed uncorrelatedness between the measured veloc-
ities and the calculated velocities,we can conclude that the application and usage of the maxima
fit method and the elliptic fit methods to the measured data is valid and is leading to reasonable
results.
The last topic to discuss about my results before I summarize suggestion for improvement, is the
comparison of the results of the labile regime with those of the stable regime. There was no signifi-
cant di↵erence between the results of the data sets of the labile regime and the results of the stable
regime. I can therefore conclude, that the separation is important for the averaging done with the
wavelet function, but does not show in the results. With a higher spatio and temporal resolution
of further studies that could di↵er and should therefore considered to be subject of further studies.

Suggestions for improvement for further studies Future studies should take into account
that the accuracy of the mean velocity U is correlated with the temporal spacing. Therefore we
can conclude that higher temporal resolved data have a direct impact on the results. In addition
it is very important to have a bigger spatial field set-up. This is important as the ellipse method
has its lower limit at the correlation value of which its iso-contour line was still enclosed. A bigger
range of the spatial shift r would lead to a bigger range of enclosed iso-contour lines to which an
ellipse can be plotted to. As described in the method section, I averaged spatially with a di↵erent
number of samples for di↵erent spatial shift values r. This was necessary for conducting a spatial
normalisation without losing correlation data along the spatial shift direction. But this lead to
a distorted results as we only have one value for the spatial shift r = ±40m. Therefore a bigger
viewing field for conducting data would lead to a more valid averaging. Furthermore, the limited
conducting area can influence the shape of the iso-correlation contour lines due to the resulting
incomplete convergence as it is discussed in the paper [27] by Metzger. In addition the spatial
resolution should be considered to be conducted higher in further studies, as it would lead to
smoother iso-contour lines. As we discussed earlier, the smoothness is a factor for the operability
of the elliptic fit method and therefore we would achieve better results for the velocity calculations.
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9 Conclusion

The analysis of the space-temporal-correlation in the atmospheric boundary layer has shown how
the elliptic model can be applied using the maxima fit and the elliptic fit method.
The results of the calculated sweeping velocities V show the same magnitude as the measured one,
and the maxima fit method also results in the same scales for the mean velocity U as the measured
one. This leads to the conclusion that the mean velocity and sweeping velocity can be calculated
out of the temperature fluctuating data, conducted of the field experiment by applying the elliptic
model.
But apart from the scaling, the values of the calculated velocities di↵er a lot from the measured
ones leading to a high uncorrelatedness between the calculated and the measured velocity values.
These results can be based on iso-correlation contour patterns of the correlation functions, which is
the result of three di↵erent reasons. The first one is the resolution of the spatial and temporal data,
the second is the complexity and uncontrollablility of the atmospheric boundary condition and the
third is due to the averaging over one hour leading to errors introduced by averaging di↵erent
atmospheric boundary flows. The latter one leads to erroneous values for the measured mean
velocity Umeas, sweeping velocity Vmeas, and the spatial-temporal correlation, which can therefore
not be used for a valid comparison between the calculated velocities with the maxima fit method
and the elliptic fit method.
The comparison of my results of the spatio-temporal correlation and the calculated mean and
sweeping velocities with the results of the paper [6] by Han and Zhang lead to the conclusion, that
spatial and temporal resolution are directly related with the accuracy of the results. Therefore it is
important to review the analysis with data conducted with higher spatial and temporal dissolution
and a broader spatial range to further validate the elliptic model applied to atmospheric boundary
flow.
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