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Fluxes of reactive and non-reactive trace gases close to the forest floor
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Figure 1: Location of the Waldstein
research site (Gerstberger 2004).
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As the modelling sceme above lillustrates, two models are involved. Richter and
Skeib (1984 and 1991) developed a method (model 1) to determine turbulent
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Introduction

he EGER experiment takes place in the Fichtelgebirge, a low mountain
range In the northeast of Bavaria (Figure 1). Under direction of the
Department of Micrometeorology (University of Bayreuth) and the Max
Planck Institute for Chemistry in Mainz, soil-vegetation-atmosphere
exchange processes In a spruce forest are Investigated. Flux
measurement and modelling of reactive as well as non-reactive trace
gases Is an essential part. Not only in high vegetation and close to the
ground, the occurrence of unexpected results iIs common in meteorology
and air chemistry. By introducing a coupling events detecting and
identifying method, one element of uncertainty Is to be better understood
and considered. Two different modelling approaches, which help to
accomplish that, are explained in the following.
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Figure 2: Radon measurement setup during
EGER IOP2 (extended from Hens 2009).
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Figure 3: Comparison of
measured (black) and
effective surface
concentration (red) of
222Rn. Vertical teal lines
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INg air temperature as well as water vapour

06/29
00:00

06/29
12:00

06/30
00:00

06/30
12:00

07/01
12:00

07/01
00:00
time (MEZ)

07/02
00:00

07/02
12:00

07/03
00:00

References:

Comparison of fluxes

Among surface concentration
modelling, the hydrodynamical
multilayer model I1s used for
trace gas flux determination.

Figure 5 shows temporary
similarity and a curve
progression In the same

dimension of a modelled ozone
flux (red) and one, which was
measured by eddy covariance
technique (black). However, the
much higher similarity than In
Figure 6, between modelled
(blue) and static soil chamber
measured 22°Rn fluxes (black),
demands discerning reflection
of the soil chamber method.
This Is mainly, because eddy
diffusion coefficient (K) profiles
are to be determined partly by
static soil chamber measure-
ments. Figure 7 and 8 illustrate
possible changes of the K-
orofiles by using the fluxes of
~igure 6.
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Figure 5: Comparison of measured (black, by eddy
covariance method in 1 m) and modelled ozone flux (red,
by hydrodynamical multilayer model for 1 m).
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Figure 6. Comparison of measured (black, by static soil
chamber) and modelled 222Rn flux (blue, by
hydrodynamical multilayer model).
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Figure 7. Eddy diffusion coefficient (K) profile
determined by a static soil chamber flux and

profile measurement of %22Rn.

Conclusions
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Figure 8: Eddy diffusion coefficient (K) profile
determined by modelled surface flux and profile
measurement of 22?Rn.

- Further development of the coupling situation detection and classification
can provide explanation for trace gas characteristics.

- Static soil chamber measurements have to
be handeled with care In a scientific sense.
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