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Abstract

The sensitivity and predictive uncertainty of the Advanced Canopy-Atmosphere-Soil
Algorithm (ACASA) was assessed by employing the Generalized Likelihood Uncer-
tainty Estimation (GLUE) method. ACASA is a stand-scale, multi-layer soil-vegetation-
atmosphere transfer model that incorporates a third order closure method to simulate5

the turbulent exchange of energy and matter within and above the canopy. Fluxes sim-
ulated by the model were compared to sensible and latent heat fluxes as well as the
net ecosystem exchange measured by an eddy-covariance system above the spruce
canopy at the FLUXNET-station Waldstein-Weidenbrunnen in the Fichtelgebirge Moun-
tains in Germany. From each of the intensive observation periods carried out within the10

EGER project (ExchanGE processes in mountainous Regions) in autumn 2007 and
summer 2008, five days of flux measurements were selected. A large number (20 000)
of model runs using randomly generated parameter sets were performed and good-
ness of fit measures for all fluxes for each of these runs calculated. The 10% best
model runs for each flux were used for further investigation of the sensitivity of the15

fluxes to parameter values and to calculate uncertainty bounds.
A strong sensitivity of the individual fluxes to a few parameters was observed, such

as the leaf area index. However, the sensitivity analysis also revealed the equifinality of
many parameters in the ACASA model for the investigated periods. The analysis of two
time periods, each representing different meteorological conditions, provided an insight20

into the seasonal variation of parameter sensitivity. The calculated uncertainty bounds
demonstrated that all fluxes were well reproduced by the ACASA model. In general,
uncertainty bounds encompass measured values better when these are conditioned
on the respective individual flux only and not on all three fluxes concurrently. Structural
weaknesses of the ACASA model concerning the soil respiration calculations were25

detected and improvements suggested.
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1 Introduction

The exchange of energy and matter between the ground and the atmosphere is an
important process within an ecosystem and influences its meteorological, hydrological
and ecological properties. To model this exchange process and the corresponding sen-
sible and latent heat fluxes as well as the CO2 flux, soil-vegetation-atmosphere transfer5

(SVAT) models have been developed. Due to the large variety of model scopes, SVAT
models differ greatly in their complexity (Falge et al., 2005). Simpler model representa-
tions, so called “big leaf” models (e.g., Sellers et al., 1996), are applied when aiming for
larger temporal and spatial scales, such as in land surface schemes of climate models.
Within these models, the vegetation is depicted as one “big leaf” which represents the10

properties of the whole canopy and therefore is described with “effective” parameters.
In multilayer SVAT models (e.g., Wohlfahrt et al., 2001; Baldocchi and Meyers, 1998),
the emphasis is placed on a more detailed description of canopy processes and thus
the vegetation is represented with more than one layer. Such SVAT models incorporate
a large number of process descriptions varying in complexity, such as radiative transfer15

or photosynthesis schemes.
SVAT models can also be classified based on their implementation of turbulent trans-

fer within and above the canopy. The most common turbulence closure is the first-order
flux-gradient closure or K -theory. Here, fluxes of a meteorological variable are calcu-
lated from the gradients of the mean of this variable and an exchange coefficient K .20

This simple closure scheme works well in representing the turbulent exchange above
short canopies, but is limited in the correct reproduction of the turbulence structure
inside tall canopies such as forests (e.g., Shaw, 1977; Denmead and Bradley, 1985).
Higher-order closure schemes have been developed to adequately simulate the tur-
bulent structure and permit the simulation of second moments inside tall canopies.25

Second-order closure was proposed by Wilson and Shaw (1977) and Wilson (1988)
and a third-order closure was developed by Meyers and Paw U (1986), which was
successfully coupled to leaf energy balance equations and a radiative transfer model
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(Meyers and Paw U, 1987). Comparisons of these closure schemes found a similar
performance of second- and third-order closure for wind speed and scalar concentra-
tion profiles as well as fluxes (Katul and Albertson, 1998; Juang et al., 2008). However,
both closure schemes failed in reproducing the third moments close to the canopy-
atmosphere interface.5

All SVAT models, even the ones with less complexity, require a large number of model
parameters to be specified by the user, such as morphological and optical properties of
the vegetation or physical properties of the soil. The more processes that are explicitly
described in a SVAT model, the more parameters are needed. These parameters
are often not easily determined, as the scale at which they are measured in the field10

varies, such as the leaf scale for photosynthesis parameters and the stand scale for
plant morphological parameters.

When calibrating SVAT schemes against (eddy) flux measurements at high temporal
resolution, the problem of model equifinality has been reported (Franks et al., 1997;
Mo and Beven, 2004; Prihodko et al., 2008; Schulz et al., 2001). In all these stud-15

ies, there was not a single optimum parameter set but rather many different sets of
parameters that gave equally good fits to the observed data and were from physically
feasible ranges. The Generalized Likelihood Uncertainty Estimation (GLUE) method-
ology (Beven and Binley, 1992) addresses the problem of parameter equifinality and
assesses the predictive uncertainty of a model from the runs that are classified as20

“behavioral”. This method has been frequently applied in hydrological modeling, es-
pecially in run-off modeling (e.g., Beven and Freer, 2001; Freer et al., 1996; Choi
and Beven, 2007), but was also employed in other model applications such as the
estimation of critical loads (Zak and Beven, 1999) and the simulation of the nitrogen
budget (Schulz et al., 1999), as well as the analysis of ground heat flux calculation25

approaches (Liebethal et al., 2005). The GLUE methodology is also well suited to the
analysis of SVAT-models (Franks et al., 1997; Franks et al., 1999; Mitchell et al., 2009;
Mo and Beven, 2004; Prihodko et al., 2008; Schulz and Beven, 2003; Schulz et al.,
2001; Poyatos et al., 2007). In a study comparing uncertainty analysis techniques for a
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hydrological model application, the GLUE methodology achieved prediction uncertain-
ties similar to those of other methods (Yang et al., 2008).

Here, the multi-layer terrestrial biosphere-atmosphere model ACASA (Advanced
Canopy-Atmosphere-Soil Algorithm, University of California, Davis, Pyles et al., 2000)
that incorporates a third-order turbulence closure (Meyers and Paw U, 1986) is used to5

model the turbulent fluxes of heat and water vapor as well as the CO2 exchange within
and above a tall spruce canopy. We focus on the evaluation of the sensitivity of the
modeled above-canopy fluxes to the parameters and the uncertainty of these fluxes
simulated with the ACASA model by employing the GLUE method. Thereby the per-
formance for individual fluxes and not only the overall model performance is of special10

interest. We preferred the GLUE methodology to parameter optimization techniques,
as we did not intend to achieve optimized parameter values but rather to analyze the
structure and behavior of the ACASA model. We aim at the identification of the most
influential model parameters, the evaluation of the seasonal variation of parameter sen-
sitivity and the detection of weaknesses in process representations within the ACASA15

model.

2 Material and methods

2.1 The Waldstein-Weidenbrunnen site

The FLUXNET-station Waldstein-Weidenbrunnen (DE-Bay) is located in North-Eastern
Bavaria (50◦ 08′ N, 11◦ 52′ E, 775 m a.s.l.) in the Fichtelgebirge Mountains, which is20

a low mountain range typical for Central Germany. The spruce forest (Picea abies) has
a mean canopy height hc of 25 m and a plant area index (PAI) of 5 m2 m−2 with the
main leaf mass concentrated within 0.5–0.8hc and a second smaller maximum in the
PAI profile at approximately 0.3hc (Fig. 1). The sparse understorey vegetation consists
of small shrubs and grasses. More information about the experiment site can be found25

in Gerstberger et al. (2004) and Staudt and Foken (2007).
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Within the EGER project (ExchanGE processes in mountainous Regions), aiming at
the detailed quantification of relevant processes within the soil-vegetation-atmosphere
system by observing diurnal and annual cycles of energy, water and trace gases, two
intensive measuring campaigns were carried out at the Waldstein-Weidenbrunnen site.
The first intensive observation period (IOP-1) took place in September and October5

2007, and the second (IOP-2) was conducted in June and July 2008.

2.2 Experimental setup and data

During the intensive observation periods, high frequency turbulence measurements
were performed on a 36-m-tall, slim tower (“turbulence tower”) at six heights within and
above the canopy. As this sensitivity study concentrates on the above canopy fluxes,10

only flux data for the uppermost height of the turbulence tower (36 m) was considered
for comparisons of measured and modeled data. This eddy-covariance system con-
sisted of a sonic anemometer (USA1 Metek GmbH) to detect horizontal and vertical
wind components as well as the sonic temperature, and a fast-response gas analyzer
(LI7500, LICOR Biosciences) to measure the density of carbon dioxide and water va-15

por (for a more detailed description of the experimental setup see Serafimovich et al.,
2008). Raw flux data (20 Hz) was processed with the TK2 software package, developed
at the University of Bayreuth (Mauder and Foken, 2004), including several corrections
and quality tests. Flux data were filtered using quality flags after Foken et al. (2004)
and allowing flux data with a quality flag of 6 and better for further analysis.20

The ACASA model requires half-hourly meteorological input values as well as the
initial soil profiles (temperature, moisture), which were provided by the routine mea-
surements at a second, more massive tower (“main tower”) at an approximate distance
of 60 m, and at a clearing nearby. Meteorological input parameters for the model and
the instrumentation for the Waldstein-Weidenbrunnen site are listed in Table 1. Only25

small gaps in the data occurred due to power shortages and were filled with linear
interpolation methods.
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Within this sensitivity study, five days from each IOP that were chosen due to the
good weather conditions and the good performance of the measuring devices were
considered (IOP-1: 20–24 September 2007, day of year 263–267; IOP-2: 28 June–
2 July 2008, day of year 180–184). IOP-1 was carried out during a relatively wet
and cool autumn, whereas during IOP-2 hot and dry summer weather prevailed, which5

allows us to investigate different meteorological periods. The meteorological conditions
during the two five-day periods are shown in Fig. 2. During IOP-1, global radiation,
temperature and vapor pressure deficit were lower than during IOP-2. The wind speed
reached comparable magnitudes during both IOPs. Soil conditions differed greatly
during both IOPs, with a colder and wetter soil during IOP-1.10

2.3 The ACASA model

The Advanced Canopy-Atmosphere-Soil Algorithm (ACASA, Pyles, 2000; Pyles et al.,
2000), which was developed at the University of California, Davis, was used to model
the turbulent fluxes of heat, water vapor and CO2 within and above the canopy.
This multi-layer canopy-surface-layer model incorporates a diabatic, third-order closure15

method to calculate turbulent transfer within and above the canopy on the theoretical
basis of the work of Meyers and Paw U (1986, 1987). The multi-layer structure of
ACASA is reflected in 20 atmospheric layers evenly distributed between the canopy
and the air above extending to twice the canopy height, and in 15 soil layers. Leaf,
stem and soil surface temperatures are calculated using the fourth-order polynomial20

of Paw U and Gao (1988), allowing the calculation of temperatures of these compo-
nents where these may deviate significantly from ambient air temperatures. Energy
flux estimates consider multiple leaf-angle classes and direct as well as diffuse radia-
tion absorption, reflection, transmission and emission. Plant physiological response to
micro-environmental conditions is calculated by a combination of the Ball-Berry stom-25

atal conductance (Leuning, 1990; Collatz et al., 1991) and the Farquhar and von Caem-
merer (1982) photosynthesis equation following Su et al. (1996). The soil module used
to calculate soil surface evaporation, soil moisture, and soil temperature is adapted

4229

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

from MAPS (Mesoscale Analysis and Prediction System; Smirnova et al., 1997, 2000).
Additionally, canopy heat storage and canopy interception of precipitation are included
in ACASA.

The model was adapted from a version from October 2009. The model source code
was modified in two parts. The first change concerns the soil respiration calculations.5

A soil moisture attenuation factor that is meant to reduce microbial soil respiration when
soil moisture falls below the wilting point soil moisture was disabled in this study, as it
not only reduced soil microbial respiration during dry periods but also enhanced respi-
ration rates to unreasonably high values during wet periods, a finding that is consistent
with Isaac et al. (2007). As in the original ACASA version, respiration RT at tempera-10

ture Ts is calculated with an Arrhenius type equation with basal respiration rate R0 at
0 ◦C and the Q10 as input parameters (e.g., Hamilton et al., 2001):

RT =R0 ·exp(0.1 ·Ts · ln(Q10)) (1)

Here, R0 is given in (µmol m−2 s−1), based on the surface area of the roots or mi-
crobes. Soil respiration is simulated for microbes and roots separately, using Eq. (1),15

and summed up to form the total soil respiration. Each of the two components is the
sum of the respective respiration contributions from the 15 soil layers, weighted by the
root fractions of these layers. To obtain the total soil respiration per ground surface
area, it is assumed that the sum of the total root and microbe surface area resemble
the leaf area index.20

The second change in the source code was made within the plant physiology sub
models in the calculation of photosynthesis. The temperature dependence of the max-
imum catalytic activity of Rubisco at saturated ribulose biphosphate (RuBP) and satu-
rated CO2, Vcmax (µmol m−2 s−1) follows a third-order polynomial given by Kirschbaum
and Farquhar (1984), which was derived from measurements made in a temperature25

range of 15 to 32 ◦C. For temperatures below 10 ◦C this third-order polynomial results in
an unrealistic increase of Vcmax, as was already noticed by Leuning (1997). As temper-
atures of less than 10 ◦C are very common at our site, the third-order polynomial was
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replaced by the temperature dependence of Vcmax as used in the C3 leaf sub-module
PSN6 of the model SVAT-CN (Falge et al., 1996, 2005):

Vcmax = Vcmax25
exp[∆Ha · (TK −Tref)/(R ·TK ·Tref)] · (1+exp[(∆S ·Tref−∆Hd)/(R ·Tref)])

1+exp[(∆S ·TK −∆Hd)/(R ·TK )]
(2)

where TK is the leaf temperature (in K), R is the gas constant (8.31 J mol−1 K−1), Vcmax25
is the maximum carboxylation rate at a reference temperature Tref of 298.15 K, ∆S is5

an entropy term (655 J mol−1 K−1), and ∆Ha and ∆Hd are the activation energy and
energy of deactivation (both in J mol−1, ∆Hd set to 200 000 J mol−1), respectively.

The output of the ACASA model comprises profiles of mean quantities, flux profiles
including the components of the CO2 exchange, profiles of the third order moments
and profiles of the soil properties. For the purpose of the sensitivity analysis, only the10

turbulent and radiative fluxes above the canopy were considered. The performance of
other quantities at our site, such as the flux profiles, was assessed in a different study
(Staudt et al., 2010).

2.4 The GLUE methodology

To evaluate the sensitivity and uncertainty of the ACASA model, the Generalized Likeli-15

hood Uncertainty Estimation (GLUE) method, which has been proposed by Beven and
Binley (1992) and is described in detail in Beven et al. (2000), was employed here. The
basic idea of the GLUE methodology is the principle of equifinality, which here means
that one does not expect a single optimum parameter set for a model but rather many
sets of parameters that give equally good model results. In a Monte Carlo simulation20

framework, a large number of random sets of parameters are derived from uniform
distributions across specified parameter ranges. The model results are then evaluated
through the calculation of likelihood measures (see below). Based on the values of
these likelihood measures and a predefined threshold value to distinguish between ac-
ceptable and not acceptable runs, “behavioral” parameter sets can be identified and25
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“non-behavioral” parameter sets rejected from further analysis. In a next step, uncer-
tainty bounds for each time step are deduced from the cumulative distribution of the
output variables ranked by the likelihood measure.

A number of subjective decisions have to be made within the GLUE methodology.
These are the definition of the parameter ranges and the prior parameter distributions5

as well as the choice of the likelihood measure applied and the corresponding value of
the threshold of acceptability. However, these decisions have to be made explicitly and
are therefore open to debate.

The data preparation and the analysis following the GLUE methodology was done
with the statistical and graphics software package R (R Development Core Team,10

2008).

2.4.1 Parameters and parameter ranges

The original version of the ACASA model requires a number of “external”, user defined
geographical, morphological and physiological parameters (see upper part of Table 2).
In this study constant values were used over the whole profile to keep the number of15

investigated parameters limited. The overall number of the external parameters used
within this study is 16, and a few external parameters were held constant, such as the
soil type and the measured normalized LAI profile (Fig. 1b, fitted following Simon et al.,
2005).

Additionally, 8 parameters from the photosynthesis and stomatal conductance sub-20

models were included in this sensitivity analysis (see lower part of Table 2, in the fol-
lowing called “internal” parameters). In the original version of the ACASA model, only
Vcmax25 and a so-called “water use efficiency factor” can be defined by the user. Jmax25
is then defined as 2.41·Vcmax25. The “water use efficiency factor” wue alters the leaf
stomatal conductance to water vapor gs,w (Su et al., 1996) calculated with the Ball-25

Berry formula.

gs,w =
(

cm ·
An

cs
·rhs+cb

)
· 1
wue

(3)
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with An the net CO2 uptake rate at the leaf surface, cs the CO2 concentration, rhs
the relative humidity at the leaf surface and cb the intercept and cm the slope of the
Ball-Berry formula. For the remaining plant physiological parameters, values from the
literature were adapted (Su et al., 1996). However, we chose to independently vary
all listed photosynthesis and stomatal conductance parameters in this sensitivity study,5

thus wue was set to 1 and the ratio of Vcmax25 and Jmax25 was not fixed.
The parameter ranges for this sensitivity analysis include the original parameter val-

ues used in ACASA and PSN6, which are listed as reference values in Table 2. Fur-
thermore, values from the literature for spruce or coniferous forests in general were
collected to cover a realistic range of values. Where possible, parameter ranges were10

determined from direct measurements.
As there was no evidence for other statistical distributions, all parameter ranges

were assigned a uniform distribution. Random sets of parameters were produced for
a large number of model runs (20 000). Parameters were independently randomized,
with the exception of the parameters for microbial and root respiration which were set15

to the same values, meaning that root and microbial respiration each contribute 50%
to total soil respiration (mean of values for temperate coniferous forests, as listed in
Subke et al., 2006). Even though RuBP carboxylation and regeneration are linked to
each other, the parameters Jmax25 and Vcmax25 were varied independently. The chosen
parameter ranges allowed a ratio of Jmax25 and Vcmax25 between 0.8 and 6.5, but values20

between one and three as found to be typical by Kattge and Knorr (2007) were most
frequent.

The model was run for the two chosen time periods for all randomly generated pa-
rameter sets and the resulting radiative and turbulent fluxes and the net ecosystem
exchange (NEE) above the canopy stored for further evaluation.25

2.4.2 Likelihood measures

The choice of a likelihood measure to evaluate the performance of the model runs is
crucial to the analysis, but subjective. A wide range of likelihood measures is suitable
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and has been used in previous studies (Beven et al., 2000). For each of the radiative
and turbulent fluxes and the NEE above the canopy, likelihood measures were calcu-
lated for 20000 runs from the observed and the simulated data:

L(θj |Y )=
E
C

(4)

Here, L(θj |Y ) is the likelihood measure for the j th model run with parameter set θj5

conditioned on the observations Y . The normalizing constant C was set to 1 in our
study. E is the coefficient of efficiency (Nash and Sutcliffe, 1970)

E =1−
∑

(Oj −Pj )
2∑

(Oj −O)2
(5)

where O is observed and P model simulated data. The coefficient of efficiency E varies
from minus infinity to 1, and values close to 1 indicate a good agreement of modeled10

and measured data. This goodness of fit measure has the advantage that the value
of zero serves as a convenient reference point, indicating that model runs that result
in coefficients of efficiency of zero are as good as the observed mean and those that
correspond to negative values perform worse than the observed mean (Legates and
McCabe, 1999). The coefficient of efficiency is a widely used likelihood measure within15

GLUE studies (e.g., Freer et al., 1996; Schulz et al., 1999, 2001; Liebethal et al., 2005;
Franks et al., 1997; Choi and Beven, 2007; Poyatos et al., 2007).

The second subjective element mentioned above is the definition of the behavioral
threshold. Likelihood measures that are lower than the behavioral threshold are given
a value of 0, which means that these parameter sets are excluded from further analysis.20

A different approach was followed by Prihodko et al. (2008) and Lamb et al. (1998) who
used the top 10% runs for further analysis instead of defining a threshold value. We
also chose the top 10% runs, which has the advantage that the number of behavioral
runs for all variables considered is the same, despite considerably deviating ranges of
the likelihood measures achieved by the different fluxes.25
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To combine two or more likelihood measures, various combination equations are
possible (Beven and Freer, 2001). Here, combined likelihoods are achieved by applying
Bayes equation in the following form:

L(θj |Y )=
L1(θj |Y ) ·L2(θj |Y ) ·L3(θj |Y )

C
(6)

which means that the normalized likelihood measures L1, L2 and L3 are treated as5

a priori distributions and are rescaled. The normalizing constant C was again set to 1.
We applied this equation to the best 10% model runs of the sensible and latent heat
fluxes and the NEE for the two IOPs separately.

While other GLUE studies on SVAT-models (e.g., Prihodko et al., 2008; Mo and
Beven, 2004) concentrate on a combined likelihood measure to achieve the best overall10

performance for all fluxes which is a precondition for land surface schemes, this study
also focuses on the performance of individual fluxes as we are highly interested in short
term fluctuations of these fluxes.

2.4.3 Parameter sensitivity

The GLUE methodology focuses on the model response to parameter sets rather than15

to single parameter values. Nevertheless, the sensitivity of single parameters can
be evaluated with the help of sensitivity graphs, which are scatter plots of likelihood
measures versus parameter values for the behavioral parameter sets. Thus, the mul-
tidimensional parameter response surface is projected onto a single parameter axis
(Fig. 3a–f for the sensible heat flux (H), the latent heat flux (LE) and the NEE against20

leaf area index, lai, during IOP-1 and IOP-2).
In a next step, cumulative frequencies of the parameters for the final behavioral

model runs were compared to the original uniform distribution (Franks et al., 1999;
Schulz et al., 1999, Fig. 3g and h for leaf area index lai during IOP-1 and IOP-2).
Here, the three single-objective as well as the combined likelihood measures were an-25

alyzed. The original uniform distribution forms a diagonal line from the left-low corner
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to right-up corner of the cumulative distribution plots. If there is no difference in the
original distribution and the distribution of the behavioral simulations, the parameter is
considered as insensitive, whereas a deviation from the diagonal line indicates param-
eter sensitivity. The shape of the cumulative frequency curves gives an idea of optimal
parameter values, as the area of steepest slope points out where the majority param-5

eter values are found (Prihodko et al., 2008). With a Kolmogorov-Smirnov (K-S) test
the equality of the cumulative frequency of the behavioral model runs and the original
uniform distributions can be tested and the significance of any differences determined.
The parameters to which the model is sensitive were identified if the K-S test statistic
was significant at the p=0.01 level. The K-S value was used to rank the parameters10

according to their significance, with higher K-S values indicating a higher sensitivity.
This approach was followed by Prihodko et al. (2008) in analyzing a SVAT-model and
was also successfully used in previous sensitivity tests for other model classes (e.g.,
Meixner et al., 1999; Spear and Hornberger, 1980).

2.4.4 Uncertainty estimation15

Uncertainty bounds were calculated for each flux at each time step t for the single-
objective and the combined measures with (Beven and Freer, 2001):

P (Ẑt <z)=
B∑
i=1

L
[
M(θi )|Ẑt,i <z

]
(7)

where Ẑt,i is the value of variable Z at time t simulated by model M(θi ) with parameter
set θi . Output variables from the behavioral runs for each time step were ranked and its20

likelihood measures, scaled to a sum of unity (Eqs. 4 and 6), maintained. From these

likelihood weighted cumulative distributions, the prediction quantiles P
(
Ẑt<z

)
can be

selected. The 5 and 95% quantiles were chosen to represent the model uncertainty.
For a more detailed description of the computation of uncertainty bounds see Prihodko
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et al. (2008). Beven and Freer (2001) note that these quantiles are conditional on the
model input data, the parameter sets, the observations and the choice of likelihood
measure.

3 Results

3.1 Ranges of likelihood measure5

The maximum values as well as the ranges of the coefficient of efficiency E (Table 3)
were very different for the seven fluxes considered here. Only for net radiation (Rn)
and the short-wave radiation budget (Rn(sw)) were values of 1 reached for both IOPs,
which shows, in combination with a small variability of the likelihood measures, a very
good agreement of observed and modeled data. The maximum values for the sensible10

heat flux (H) were close to the values for net radiation, whereas the range was larger.
For the latent heat flux (LE) and NEE, the variability was much wider. The ranges of the
coefficient of efficiency for the sensible heat flux, the latent heat flux and the NEE were
considerably larger for IOP-2 than for IOP-1. Maximum values for the sensible heat
flux and the NEE were similar for both IOPs, whereas there were differences between15

the IOPs for the latent heat flux with larger values during IOP-1. For the radiation
budgets, only the long-wave radiation budget had a larger range and a slightly lower
maximum value during IOP-1 than during IOP-2. Maximum coefficients of efficiency for
the ground heat flux (G) reached only very low values.

For further analysis, we retained the top 10% runs and concentrated on the sensible20

and latent heat fluxes and the NEE. For all fluxes except the NEE during IOP-2, the
coefficients of efficiency of the best 10% runs were in the range between one and zero
(Fig. 3). Negative coefficients of efficiency indicate that the simulation is worse than
the observed mean, thus such model runs are unwanted. These model runs were also
excluded from further analysis, resulting in only 1901 model runs (9.5%) for the NEE25

during IOP-2.
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For all tested runs, the modeled radiative flux budgets, with exception of the long
wave radiation budget during IOP-1, were in very good agreement with the measured
values. Therefore, the effort to better parametrize the model will be directed to the other
fluxes. The ground heat flux proved to achieve only small likelihood measure values,
especially during IOP-2. This is mainly attributable to the ground heat flux measure-5

ments, which are single-point measurements and were, in our case, influenced by
sunspots in the late afternoon resulting in very high ground heat fluxes lasting for only
a short period. As the model represents an area rather than a point, any direct compar-
ison of these data has to be done carefully, and thus the ground heat flux was excluded
from further analysis. For sensible and latent heat flux as well as the NEE, the footprint10

of the measurements (Siebicke, 2008) is well within the range of the horizontal spatial
scale of the ACASA model, which represents a flux footprint of about 104 to 106 m2.

The performance of the parameter sets for the three fluxes are compared in Fig. 4
(4a–c for IOP-1, 4d–f for IOP-2). There was a correlation of the coefficients of efficiency
for the sensible and the latent heat flux with a similar relative model performance for15

all parameter sets, but there is no correlation for the sensible and latent heat fluxes
with the NEE. The number of parameter sets that are within the 10% best parameter
sets for all three fluxes is very much reduced from the 2000 (1901 for NEE in IOP-
2) parameter sets to 94 for IOP-1 and 87 for IOP-2. The last three panels of Fig. 4
compare each of the coefficients of efficiency for the three fluxes for IOP-1 with those20

for IOP-2. For the NEE, there is a good correlation between the two IOPs, whereas
for the other two fluxes the scatter plots are somewhat bow-shaped. Combining the
coefficients of efficiency for all three fluxes for the two IOPs yielded only 7 behavioral
parameter sets.

3.2 Sensitivity graphs25

The sensitivity graphs for the 10% best model runs for IOP-1 and IOP-2 for the leaf area
index, lai, (Fig. 3a–f) again reflect the differences in the ranges of the likelihood mea-
sures for the different fluxes as well as for the same fluxes for the two IOPs. Especially
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for the latent heat flux, there was a large difference of ranges of coefficients of effi-
ciency for the 10% best model runs for the two IOPs with values for IOP-1 that were all
larger than the maximum values for IOP-2. All fluxes show a high degree of sensitivity
to the lai for both IOPs, with a higher frequency of lai values within the lower half of the
lai range for all fluxes. Only for the latent heat flux for IOP-1 does the distribution peak5

at a higher value of approximately 4 m2 m−2 and does not cover values smaller than
2 m2 m−2.

To directly compare the sensitivity of the parameters for the different fluxes, the cu-
mulative frequency of each of the parameters for the 10% best runs were plotted and
compared to a uniform parameter distribution, indicated by the diagonal line (Fig. 3g10

and h). Slopes of the cumulative frequency curves that deviate from the slope of the di-
agonal line indicate parameter sensitivity and more or less frequent parameter ranges
for larger or smaller slopes, respectively. For the lai, the features as explained above
can easily be seen in the plots of cumulative frequency. For all fluxes the steepest
slopes in the curves (i.e. the largest derivative) and therefore the optimal parameter15

values are in a range of lai values of 0.5 to 5 m2 m−2, which is lower than the reference
value for the Waldstein-Weidenbrunnen site of 5 m2 m−2. For the sensible heat flux for
IOP-1 and the latent heat flux for both IOPs, lai values lower than a certain thresh-
old were not found in the behavioural parameter sets, indicated by no increase in the
cumulative frequency curves across the lower parameter range. Similarly, lai values20

larger than a certain threshold value did not appear within the behavioural parameter
sets for the sensible heat flux for both IOPs and for the latent heat flux for IOP-2. The
cumulative frequency curves for the combined coefficients of efficiency for both IOPs
have a more pronounced shape than the other curves, indicating optimal lai values of
approximately 2 m2 m−2 and no lai values below and above a lower and upper lai value,25

respectively.
Figures 5 and 6 display the sensitivity of the model to another six parameters. The

Q10 for stem respiration, q10s, is one of the parameters the model is not sensitive to
for all fluxes for both IOPs, as none of the cumulative frequency curves in Fig. 5a and b
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deviates much from the diagonal line representing the uniform distribution. As stem
respiration contributes little to total respiration, it is not surprising that parameters for
stem respiration are not among the influential model parameters. The cumulative fre-
quency curves of the other two parameters displayed in Fig. 5, the quantum efficiency,
iqe (c and d), and the basal respiration rate for soil microbes, r0m (e and f), deviate5

from the diagonal for one or all fluxes. The parameter iqe, a parameter utilized in the
plant physiology sub-modules, appears as an influential parameter for all three fluxes.
For the sensible and latent heat fluxes, the cumulative frequency curve has a similar
shape with a larger slope for lower values and a smaller slope for high iqe values. The
shape for the NEE curve is the opposite, with smaller gradients for low iqe values.10

The NEE is strongly sensitive to the value of the microbe basal respiration rate r0m
with a steeper slope of the curve at lower basal respiration rates and a lesser slope
for values in the upper range of the basal respiration rates, indicating optimal param-
eter values within the lower third of the parameter range. For r0m and iqe for IOP-1,
the curve for the combined likelihood measure follows the NEE curve closely, whereas15

the combined likelihood measure is not sensitive to iqe for IOP-2, probably due to the
opposing cumulative frequency curves for the NEE and the other two fluxes.

Whereas all parameters in Fig. 5 showed a similar behavior in both IOPs, the three
parameters displayed in Fig. 6 experience a different response for the two IOPs. For
the near-IR leaf reflectivity, pr0, the curves for latent heat flux and the NEE in Fig. 6a20

and b do not deviate from the diagonal line, thus these fluxes show no sensitivity to
the value of pr0. Only the curve for the sensible heat flux for IOP-1, but not for IOP-
2, indicate a higher frequency of higher pr0 values. Lower values of the intercept of
the Ball-Berry formula, cb, are more frequent within behavioral parameter sets for the
sensible and latent heat fluxes for IOP-2 (Fig. 6c and d). Values for cb in behavioral25

parameter sets for the NEE during IOP-2 and all three fluxes for IOP-1 are uniformly
distributed, as indicated by the curves that follow the diagonal line very closely. The
curves of the cumulative frequency for the slope of the Ball-Berry formula, cm, (Fig. 6e
and f) indicate a strong sensitivity of all fluxes, especially for the sensible and latent
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heat fluxes. Whereas for the NEE for both IOPs the behavioral parameter sets contain
more values from the upper half of the parameter range, the cumulative frequency
curves for the other two fluxes suggest optimal parameter values from the lower half
of the parameter ranges, with a much stronger response for IOP-2, where values are
completely confined to the lower half of the parameter range.5

To quantify whether the distribution of parameter values for the 10% best model runs
follows the uniform distribution or not, and thus to identify the parameters the model
is sensitive to and to list these parameters in order of importance, the Kolmogorov-
Smirnov test was performed. Table 4 gives an overview of the sensitive model param-
eters for the respective fluxes according to the Kolmogorov-Smirnov test for IOP-1 and10

IOP-2.
There was a difference in the number of sensitive parameters between the two IOPs

with a larger number of sensitive parameters for NEE for IOP-1 than for IOP-2 and
a larger number of sensitive parameters for the combined fluxes for IOP-2 than for
IOP-1.15

As the lai appears as the first or one of the first parameters in the parameter rankings
for all fluxes, the importance of this parameter as one of the most influential parameters
is illustrated once more. The other two plant morphological parameters, the canopy
height, hc, and the mean leaf diameter, xldiam, are not listed among the influential
parameters. The leaf drag coefficient, drx, used in the third order closure turbulence20

subroutines only appears in the parameter rankings for the sensible heat flux.
Also among the most influential parameters for all fluxes are the parameters de-

termining leaf respiration, with the leaf basal respiration rate, r0l, and the Q10 of leaf
respiration, q10l. The parameters for stem respiration (r0s, q10s) do not appear in
the parameter rankings, whereas the parameters for root and microbial respiration (r0r,25

q10r, r0m, q10m) are listed amongst the most influential parameters for the NEE and
also appear for the combined fluxes. Radiation parameters (pr0, pv0, tr0, tv0) only
appear for IOP-1, with the sensible heat flux being sensitive to pr0 and pv0.
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The parameters of the photosynthesis and stomatal conductance subroutines con-
tribute to the ranked parameters in roughly the same proportion as they do to the over-
all number of investigated parameters for the sensible heat flux and the NEE, but in
a larger proportion for the latent heat flux and in a smaller proportion for the combined
fluxes. Of the parameters that determine the temperature dependence of the maximum5

catalytic activity of Rubisco Vcmax, only the maximum rate of carboxylation, vcmax25,
appears to be influential for the NEE for IOP-1. The corresponding activation energy,
eavc, does not appear in the parameter rankings. The picture for the maximum rate of
whole-chain electron transport at saturated light Jmax is different, with the potential rate
of electron transport at 25 ◦C, jmax25, appearing as an influential parameter for the10

NEE for both IOPs and the latent heat flux for IOP-1, and the activation energy, ejmax,
appearing also for NEE for IOP-1.

The radiation dependence of the potential rate of whole-chain electron transport is
affected by the curvature factor, theta0, and the quantum efficiency, iqe, with the latter
being influential for all fluxes except the combined fluxes, and the former not being15

influential for any flux. The slope of the Ball-Berry formula, cm, to calculate stomatal
conductance appears for all fluxes and the combined fluxes as the first or one of the
first parameters, thus as one of the most influential parameters. In contrast, the second
parameter in the Ball-Berry formula, its intercept cb, only appears for the sensible and
latent heat fluxes in IOP-2 in combination with cm.20

3.3 Model uncertainty

Predictive uncertainty bounds were calculated for each flux for the individual best 10%
model runs and the model runs resulting from the combination of all three likelihood
measures for both IOPs (Figs. 7 and 8). Table 5 lists the percentage of observations
that are enclosed by the uncertainty bounds and those that lie without. In general, the25

calculated uncertainty bounds capture the measured values for all three fluxes reason-
ably well. The narrowest uncertainty bounds were observed for the sensible heat flux.
Maximum daytime values as well as night-time values were simulated by the model

4242



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

quite well. But the model seems to respond to environmental conditions faster than
the observations, with an earlier onset of growing sensible heat fluxes in the morning
and of decreasing fluxes in the afternoon, resulting in a slight time shift. Therefore,
the percentage of observations within the uncertainty bounds for the sensible heat flux
is below 50% (Table 5). The model was not able to capture maximum daytime latent5

heat flux values for some days during both IOPs. During night time, latent heat fluxes
for IOP-1 were also frequently underestimated by the model. For latent heat fluxes the
percentage of observations within the uncertainty bounds is larger for IOP-2 than for
IOP-1, whereas for the other two fluxes it is very similar for both IOPs (Table 5). Un-
certainty bounds for the NEE are the largest of all fluxes, but also enclose the highest10

percentage of observations during both IOPs.
For all fluxes, there was a smaller percentage comprised of uncertainty bounds con-

strained on all three fluxes than those constrained on individual fluxes. This is espe-
cially evident for the NEE for IOP-2, where maximum daytime values are no longer
covered by the combined uncertainty bounds (Fig. 8).15

4 Discussion

First of all, it should be noted that the outcome of this sensitivity study only applies
for the Waldstein-Weidenbrunnen site and furthermore is only valid for these two time
periods, as results of an analysis following the GLUE methodology are always condi-
tional not only on the parameter sets and the choice of likelihood measure but also20

on the model input data and the observations (Beven and Freer, 2001). Additionally, it
has to be kept in mind that the eddy-covariance measurements, which served as com-
parison values to the modeled fluxes, might be afflicted with errors. The uncertainties
of eddy-covariance measurements are a recent field of research (e.g., Hollinger and
Richardson, 2005; Mauder et al., 2006; Foken, 2008). Following Mauder et al. (2006),25

the accuracy of eddy-covariance data measured with a type B sonic anemometer and
after applying the quality scheme after Foken et al. (2004) is 15% or 30 W m−2 for the
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sensible heat flux and 20% or 40 W m−2 for the latent heat flux. Mitchell et al. (2009)
considered the uncertainty in annual NEE estimates in the selection of behavioral pa-
rameter in a GLUE study. However, measurement uncertainties were not included in
our GLUE analysis.

4.1 Parameter sensitivity5

About one third to one half of the input parameters were identified as influential pa-
rameters, including internal as well as external parameters. However, the so-called
problem of parameter equifinality was detected in ACASA. For many parameters, very
good as well as very poor results for the sensible and latent heat flux and the NEE
were obtained for every parameter value in the examined parameter range. This was10

also reported in several studies examining the sensitivity of parameters in complex
process-based models (e.g., Franks et al., 1997; Schulz et al., 2001; Prihodko et al.,
2008).

The two periods of different meteorological conditions, a cold and wet autumn in
2007 and a hot and dry summer in 2008, allowed the study of seasonal variations in15

parameter sensitivity. The sensitivity of the fluxes to a range of parameters, such as
the basal soil respiration rates (see parameters in Fig. 5), was similar for both periods,
whereas a few parameters experienced a different response to the parameter values
for the two time periods (e.g. pr0 Fig. 6). This was especially evident for the slope of the
Ball-Berry formula, cm, with a stronger sensitivity of the latent and sensible heat fluxes20

to this parameter for IOP-2 (Fig. 6). For this drier and warmer period, the best model re-
sults were achieved with a lower cm value than for the colder and wetter IOP1. This is in
line with the suggestions of Tenhunen et al. (1990) and Baldocchi (1997) to reduce the
slope of the Ball-Berry formula with decreasing water availability for the simulation of
H2O and CO2 exchange of a Mediterranean and a temperature broad-leaved forest, re-25

spectively. However, Reichstein et al. (2003) found that reducing Vcmax but keeping the
Ball-Berry slope constant better reproduces NEE and LE from eddy-covariance. The
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number and ranking of influential parameters (Table 4) consequently varies for the two
time periods, indicating the need to seasonally adjust several parameter values. But
as only two short periods are considered here, such recommendations are of limited
justifiability. In order to draw general conclusions about the seasonality of parameters
and to cover all relevant processes, it is necessary to include much longer time peri-5

ods with a larger meteorological variability, as was done by Prihodko et al. (2008). An
extension of the time period studied was also suggested as a possible solution to the
parameter equifinality problem by Schulz et al. (2001).

Our findings of parameters that appeared to be influential in our sensitivity analy-
sis revealed similarities with results from other sensitivity studies or studies that used10

inversion methods for parameter estimation. Even though other models – including
different process descriptions and thus different parameters investigated – were anal-
ysed, stomatal parameters were also among the most sensitive or best constrained
parameters (Mitchell et al., 2009; Prihodko et al., 2008; Knorr and Kattge, 2005). Wang
et al. (2001) included the slope of the Ball-Berry formula in their parameter estimation,15

whereas all fluxes proved to be insensitive to the intercept of the Ball-Berry formula.
Our observations revealed a similar result, with the slope of the Ball-Berry formula
being among the most influential parameters and its intercept being not influential for
any flux. Furthermore, the parameter inversion performed by Knorr and Kattge (2005)
found that amongst the photosynthesis parameters most information was gained for20

quantum efficiency and maximum carboxylation rate. We found quantum efficiency to
be an influential parameter; however, maximum carboxylation rate was less influen-
tial. As in our study, strong sensitivity to the leaf area index was found by Mitchell
et al. (2009).

The sensitivity to parameter values for the three studied fluxes was not the same25

for all parameters. There was a very similar response for all three fluxes to some
parameters (e.g. lai for IOP-2, Fig. 3), whereas other parameters were only influential
for one flux (e.g. r0m for the NEE, Fig. 5). But the sensitivity of the latent heat flux and
the NEE to some plant physiology parameters (cm, iqe, jmax25) was even opposite,
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with cumulative frequency plots indicating optimal parameter values from the lower part
of the parameter range for one flux and from the upper part of the parameter range for
the other flux (e.g. iqe in Fig. 5). Thus, difficulties arise when trying to deduce optimal
parameter values from the results of this study, and the model user has to decide in
favor of either the latent heat flux or the NEE. The sensible heat flux either showed5

a response similar to that of the latent heat flux or was not sensitive to the respective
parameter.

A complex process-based model like ACASA requires a large number of input pa-
rameters. In this study, 24 parameters were of interest and concurrently varied to create
20 000 random parameter sets, which is very few with regard to the number of param-10

eters. A much larger number of parameter sets would be required to sample the whole
range of variation in combinations of parameters, which would hardly be realizable due
to the large computational power required. However, as with Prihodko et al. (2008),
who had an even larger number of parameters, we expect that an important range of
the parameter space is already covered by 20 000 model runs.15

In order to not only cover a larger range of variation in combinations of parame-
ters but also to reduce the problem of parameter equifinality, the results of the present
GLUE analysis could be used to fix relatively insensitive parameter values, to constrain
parameter ranges and to improve the model structure for a subsequent GLUE analysis
(Prihodko et al., 2008). Alternatively, Schulz et al. (2001) not only suggest prescribing20

as many parameter values as possible using measurements to reduce the degrees of
freedom, but also mention the gap between scales of measured parameters and pa-
rameters needed to run models. For the photosynthesis parameters, this is especially
evident, where parameters of the gas exchange response of a few sample leaves is
used as average leaf parameterization of the entire stand.25

4.2 Identification of structural weaknesses of the model

As noted before, results of an analysis following the GLUE methodology are always
conditional on the model input data, the parameter sets, the observations and the
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choice of likelihood measure (Beven and Freer, 2001). Therefore, it is difficult to deter-
mine whether the observed errors are the result of structural weaknesses of the model
or errors in the input data or the observations. Nevertheless, Mitchell et al. (2009)
demonstrated how to use a GLUE study to detect problems in model structure. Our
analysis also revealed indications to structural weaknesses, such as in the soil respi-5

ration calculations of the model, which will be discussed in the following.
For the NEE, the basal respiration rates for the soil and the leaves as well as the lai

are the most influential parameters for both IOPs. On the one hand, this could suggest
respiration as the most important process for the CO2 exchange within the ACASA
model, but on the other hand could also be caused by an inappropriate choice of pa-10

rameter ranges, as the results are conditional on all the subjective choices concerning
likelihood measures, rejection criteria and parameter ranges. The equations governing
the soil respiration calculations were introduced in Chap. 2.3, with the basal soil res-
piration rates r0r and r0m being defined per root area and per microbial surface area,
respectively. The sum of the root and microbial surface areas are, in turn, assumed to15

be equal to the lai value. Thus, the effective basal respiration rate for the soil strongly
depends on the lai, and an interaction of these two parameters is expected. The scatter
plot of the parameters basal respiration rate of the roots, r0r, versus the leaf area index,
lai, for coefficients of efficiency for the NEE larger than 0.6 confirms this assumption
(Fig. 9). The effective basal respiration rate for the roots (r0r · lai) for most model runs20

was between 0.2 and 2 µmol m−2 s−1, which encompasses values measured for spruce
sites (0.65 to 1.16 µmol m−2 s−1, references see Table 2). Figure 9 also illustrates that
the parameter ranges as chosen result in a very large possible range for the effective
basal respiration rate, which leads to very large and inappropriate root respiration for
combinations of large r0r and large lai, dominating the NEE and leading to low model25

performances.
Measurements of the ratio of root area to leaf area are scarce, and do not necessarily

find values close to 0.5. Even though a value close to unity was found for some sites,
such as old-growth beech stands in Germany reported by Leuschner et al. (2004),
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there were variations of this ratio observed, for example variations with age for young
eucalyptus trees (O’Grady et al., 2006) and with elevation within a tropical mountain
forest in Ecuador (Röderstein, 2006). We therefore suggest using the basal root res-
piration rate based on the soil surface as it is measured at many sites, rather than
assuming a root respiration rate based on root surface and assuming the root surface5

as being equal to the lai. Such a reduction of complexity, even though it only con-
cerns one sub model, could help to reduce the problem of parameter equifinality, as
suggested by Schulz et al. (2001) and Franks et al. (1997).

4.3 Predictive uncertainty of the modeled fluxes

The ACASA model was capable of reproducing all fluxes reasonably well as reflected10

by the uncertainty bounds in Figs. 7 and 8. For the latent heat flux, maximum daily
values were not captured by the model for IOP-1. For the first days, this underestima-
tion can probably be attributed to evaporation from interception due to a rainy period
before day 263, which was not included in the simulation period and therefore cannot
be adequately represented by the model. During each of the IOPs there was one night15

where measured fluxes behaved differently than during all other nights, with all fluxes
being close to zero (night 265/266 for IOP-1 and night 181/182 for IOP-2). This diver-
gent behavior was not simulated by ACASA. Instead, the modeled fluxes during these
nights were comparable in magnitude to the fluxes of the other nights. During these two
nights measured wind speeds were much lower (Fig. 2), stabilities higher and friction20

velocities smaller than during the other nights, indicating decoupling of the canopy and
the air above. Close to the soil surface, decoupling was also observed during these
periods (Riederer, 2009). The ACASA model is probably not capable of representing
this process and therefore overestimates the fluxes above the canopy during periods
of strong decoupling.25

It is suspected, or at least hoped, that a parameter set that achieves good results for
one flux would also achieve good results for the other fluxes, as the aim of SVAT mod-
els is usually to represent all fluxes well. The comparison of the single-objective and
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multi-objective quality measures allows the testing of this hypothesis. For the ACASA
model, this holds somewhat true for the sensible and latent heat fluxes, with some
correlation of good runs for both fluxes, but less so when the NEE is additionally con-
sidered (Fig. 4). This means that when focusing on individual fluxes only, better results
would be achieved for the flux of interest than when aiming at a good representation of5

all three fluxes concurrently, with this being especially evident for the NEE (Fig. 8). The
uncertainty bounds that were conditioned only on the NEE encompassed most mea-
sured values, whereas the uncertainty bounds that were conditioned on all three fluxes
concurrently were considerably narrower and no longer reproduced the maximum day-
time values. It is a little surprising that such a strong response was not observed for the10

latent heat flux as well, as these fluxes would be expected to be more closely linked to
each other due to the coupling of transpiration and carbon assimilation. However, the
same was reported for the SiB v2.5 model (Prihodko et al., 2008).

5 Conclusions

The multi-layer SVAT-model ACASA proved to be reasonably capable of reproducing15

the sensible heat, latent heat and CO2 fluxes for the Waldstein-Weidenbrunnen site
in the Fichtelgebirge Mountains in Germany for two five day periods from different
seasons. The sensitivity analysis following the GLUE methodology revealed a strong
sensitivity to only a few parameters, such as the leaf area index, the basal respiration
rates and the slope of the Ball-Berry formula. To many model parameters, the fluxes20

were not sensitive, indicating the equifinality of these parameters, which is a common
problem of SVAT-models. The results of this sensitivity study can serve as indicators
of which parameters need to be measured or determined most thoroughly in future
ACASA applications. Furthermore, some of the internal photosynthesis parameters
proved to be influential parameters, which suggests the inclusion of these parameters25

in the list of parameters that are open to the user for a species specific adjustment.
The GLUE analysis for two distinct periods confirmed the most relevant parameters,
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but also showed a different response of some parameters, suggesting the need to
seasonally adjust parameter values, e.g. for the photosynthesis parameters.

Within the GLUE analysis it is difficult to determine whether the observed errors are
caused by structural errors of the model or errors in the input data or the observations.
However, the results revealed weaknesses in the process descriptions within the soil5

respiration calculations resulting in strong parameter interactions of the two most in-
fluential parameters for the NEE, the leaf area index and the basal respiration rates.
For future ACASA model versions, we recommend that these results be taken into
consideration through the reduction of the complexity of the soil respiration module.

In general, the calculated uncertainty bounds demonstrated that the model simula-10

tions captured the dynamics and the magnitudes of the fluxes well. However, better
results were achieved for the fluxes when conditioned only on the respective flux and
not on all three fluxes concurrently, especially evident for the NEE. This means that
better agreement for one of the fluxes will always be achieved at the expense of the
performance of the other fluxes.15
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Table 1. Meteorological input parameters of the ACASA model and the corresponding mea-
surements at the Waldstein-Weidenbrunnen site.

Parameter Unit Sampling Sampling Instrument,
location height (m) Manufacturer

Precipitation rate mm Clearing 1 OMC 212,
Adolf Thies GmbH & Co. KG

Specific humidity g kg−1 Main tower 31 Vent. psychrometer (Frankenberger, 1951),
Theodor Friedrichs & Co

Mean wind speed m s−1 Main tower 31 Cup anemometer,
Theodor Friedrichs & Co

Downwelling short-wave radiation W m−2 Main tower 30 CM14,
Kipp & Zonen

Downwelling long-wave radiation W m−2 Main tower 30 CG2,
Kipp & Zonen

Temperature K Main tower 31 Vent. psychrometer (Frankenberger, 1951),
Theodor Friedrichs & Co

Pressure hPa Clearing 2 Barometric pressure sensor,
Ammonit Gesellschaft für Messtechnik mbH

CO2 concentration ppm Main tower 32 LI-7000,
LI COR Biosciences GmbH
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Table 2. List of the external (first 16) and internal (plant physiological, second 8) input param-
eters to the ACASA model which were studied in the sensitivity analysis, the range over which
each parameter was varied and the reference values for the ACASA as well as the PSN6 model
for our site.

Parameter Definition Min. Max. Ref. References

lai Leaf area index (single-sided) [m2 m−2] 0.5 9 5 Measurements
hc Canopy height [m] 18 28 25 Measurements
r0l Leaf basal respiration rate at 0 ◦C [µmol m−2 s−1]∗ 0.05 1.4 0.15 Acosta et al., 2008; Falge et al., 1996;

Hamilton et al., 2001

r0s Stem basal respiration rate at 0 ◦C [µmol m−2 s−1]∗ 0.05 1.4 0.85 Acosta et al., 2008

r0r Root basal respiration rate at 0 ◦C [µmol m−2 s−1]∗ 0.05 1.4 0.94/lai Buchmann, 2000; Matteucci et al., 2000;
Subke et al., 2003; Janssens et al., 2003;
Borken et al., 2002

r0m Microbe basal resp. rate at 0 ◦C [µmol m−2 s−1]∗ 0.05 1.4 0.94/lai Buchmann, 2000; Matteucci et al., 2000;
Subke et al., 2003; Janssens et al., 2003;
Borken et al., 2002

q10l Q10 for leaves [–] 1.8 3 2.42 Stockfors and Linder, 1998b, Acosta et al., 2008,
Falge et al., 1996; Hamilton et al., 2001

q10s Q10 for stems [–] 1.8 3 2.25 Stockfors and Linder, 1998a, Acosta et al., 2008

q10r Q10 for roots [–] 1.8 3 2.57 Buchmann, 2000; Matteucci et al., 2000;
Subke et al., 2003; Janssens et al., 2003;
Borken et al., 2002

q10m Q10 for microbes [–] 1.8 3 2.57 Buchmann, 2000; Matteucci et al., 2000;
Subke et al., 2003; Janssens et al., 2003;
Borken et al., 2002

pr0 Near-IR leaf reflectivity [–] 0.1 0.4 0.28 Huang et al., 2007

tr0 Near-IR leaf transmissivity [–] 0.05 0.4 0.11 Huang et al., 2007

pv0 Visible leaf reflectivity [–] 0.01 0.4 0.07 Huang et al., 2007

tv0 Visible leaf transmissivity [–] 0.01 0.15 0.03 Huang et al., 2007

drx Leaf drag coefficient [–] 0.05 0.25 0.15 Meyers and Paw U, 1986; Massman and Weil, 1999

xldiam Mean leaf diameter [m] 0.01 0.02 0.015 Measurements

Parameter Definition Min. Max. ACASA PSN6

vcmax25 Maximum rate of carboxylation at 25 ◦C [µmol m−2 s−1] 35 105 89 50.6 Kattge and Knorr, 2007 and references therein

eavc Activation energy ∆Ha [J mol−1] 40 000 80 000 40 649 75 750 Kattge and Knorr, 2007 and references therein

jmax25 Potential rate of electron transport at 25 ◦C [µmol m−2 s−1] 80 230 224 152 Kattge and Knorr, 2007 and references therein

ejmax Activation energy ∆Ha [J mol−1] 30 000 80 000 38 872 47 170 Kattge and Knorr, 2007 and references therein

theta0 Curvature factor [–] 0 1 0.5 0.850 Wang et al., 2001

iqe Quantum efficiency [–] 0.03 0.6 0.405 0.17 Leuning, 1990

cb Intercept of Ball-Berry formula [mol m−2 s−1] 0 16 0.008 0.001 Leuning, 1990, Lai et al., 2000

cm Slope of Ball-Berry formula [–] 2 19 9.29 9.8 Leuning, 1990, Lai et al., 2000

∗ per m−2 of tissue
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Table 3. Maximum and minimum values of the coefficient of efficiency E for sensible heat flux
(H), latent heat flux (LE), ground heat flux (G), net ecosystem exchange (NEE), short-wave
radiation budget (Rn(sw)), long-wave radiation budget (Rn(lw)) and for net radiation (Rn) for
IOP-1 and IOP-2 (20 000 runs each).

H LE G NEE Rn(sw) Rn(lw) Rn

IOP-1 Maximum E 0.92 0.87 0.34 0.84 1.00 0.98 1.00
Minimum E −2.49 −13.91 −0.01 −233.32 0.89 0.23 0.88

IOP-2 Maximum E 0.93 0.80 −0.24 0.86 1.00 0.99 1.00
Minimum E −9.85 −103.30 −1.02 −626.82 0.86 0.63 0.86
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Table 4. Sensitive parameters for the sensible (H) and latent heat flux (LE) and the net ecosys-
tem exchange (NEE), ranked by the Kolmogorov-Smirnov coefficient, for the single-objective
and combined coefficient of efficiency for the 10% best runs. “Internal” parameters for the plant
physiological subroutine are printed in bold. For the meanings of parameter abbreviations see
Table 2.

IOP-1 IOP-2
H LE NEE Comb. H LE NEE Comb.

lai cm r0l r0l cm cm r0l r0l
cm lai lai lai lai lai lai cm
r0l r0l r0r cm r0l r0l r0r lai
drx iqe r0m r0r q10l q10l r0m r0r
iqe q10l iqe r0m cb cb cm r0m
pr0 jmax25 cm drx iqe q10l q10r
pv0 q10l iqe q10r q10m

jmax25 q10m q10l
q10r iqe
q10m jmax25
ejmax

vcmax25

4261

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 5. Percentage of observations above, within and below the 5th and 95th quantile predic-
tive uncertainty bounds for the single-objective coefficient of efficiency (left) and the combined
coefficient of efficiency (right) for the sensible (H) and latent heat flux (LE) and the net ecosys-
tem exchange (NEE) for IOP-1 and IOP-2.

Coefficient of efficiency E Combined E
% Above % Within % Below % Above % Within % Below

IOP-1 H 35 43 22 46 30 24
LE 26 56 17 45 37 18
NEE 2 86 12 3 69 28

IOP-2 H 41 42 17 50 31 19
LE 9 72 19 8 62 30
NEE 0 89 11 3 72 25
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Fig. 1. Vertical profiles of the cumulative (a) and absolute (b) plant area index (PAI) at the
Waldstein-Weidenbrunnen site (May 2008, Foken et al., 2010). Profiles are mean values of
five measured PAI profiles with the corresponding standard deviations indicated. The dashed
line in (b) represents the fitted PAI profile for the ACASA model (weighted sum of two beta
distributions fitted to the measured data following Simon et al., 2005, 101 data points).

4263

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 2. Meteorological conditions during the two five day periods (left: IOP-1, right: IOP-2).
(a and b): Global radiation (solid line) and air temperature (dotted line) above the canopy (30 m
and 31 m). (c and d): Vapor pressure deficit above the canopy (31 m). (e and f): Wind speed
above the canopy (31 m). (g and h): Soil temperature (solid line) and soil moisture (dotted line)
at 10 cm depth.
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Fig. 3. Sensitivity graphs showing the range of the single-objective coefficients of efficiency for
the best 10 percent parameter sets (left: IOP-1, right: IOP-2) for the sensible (H, a and b) and
latent (LE, c and d) heat flux and the NEE (e and f) across the range of the leaf area index,
lai [m2 m−2]. The vertical dashed line denotes the reference parameter value. Cumulative
frequencies are plotted in (g and h) for the three fluxes as well as for the combined likelihood
measure with the diagonal solid line showing a uniform parameter distribution for comparison.
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Fig. 4. Scatter plots of the coefficients of efficiency for the three fluxes. Each dot represents
one parameter set. (a–c): Individual coefficients of efficiency for IOP-1 compared to each other.
(d–f): Same as (a–c) but for IOP-2. (g–i): For each flux, coefficients of efficiency compared for
the two IOPs. Note the differences in the axis ranges.
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Fig. 5. Cumulative likelihood distributions for the model parameters q10s (Q10 for stem respira-
tion [–], a and b), iqe (quantum efficiency [–], c and d) and r0m (microbe basal resp. rate at 0 ◦C
[µmol m−2 s−1], e and f) for the 10% best parameter sets for the single-objective and combined
coefficients of efficiency (left column: IOP-1, right column: IOP-2). The thin black diagonal
represents a uniform parameter distribution. In (a), (b), (e) and (f) the dashed vertical line de-
picts the reference parameter for the Waldstein-Weidenbrunnen site. In (c) and (d) the dashed
vertical line shows the original ACASA parameter whereas the dotted vertical line depicts the
reference value of the PSN6 model for our site.
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Fig. 6. Cumulative likelihood distributions for the model parameters pr0 (near-IR leaf reflectivity
[–], a and b), cb (intercept of Ball-Berry formula [mol m−2 s−1], c and d) and cm (slope of
Ball-Berry formula [–], e and f) for the 10% best parameter sets for the single-objective and
combined coefficients of efficiency (left column: IOP-1, right column: IOP-2). The thin black
diagonal represents a uniform parameter distribution. In (a) and (b) the dashed vertical line
depicts the reference parameter for the Waldstein-Weidenbrunnen site. In (c–f) the dashed
vertical line shows the original ACASA parameter whereas the dotted vertical line depicts the
reference value of the PSN6 model for our site.
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Fig. 7. Predictive uncertainty bounds (5th and 95th quantile) and observed values (black dots)
for the sensible heat flux (H, a), the latent heat flux (LE, b) and the net ecosystem exchange
(NEE, c) for the coefficient of efficiency (IOP-1, dotted lines: individual best 10%, solid lines:
combined).
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Fig. 8. Predictive uncertainty bounds (5th and 95th quantile) and observed values (black dots)
for the sensible heat flux (H, a), the latent heat flux (LE, b) and the net ecosystem exchange
(NEE, c) for the coefficient of efficiency (IOP-2, dotted lines: individual best 10%, solid lines:
combined).
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Fig. 9. Scatter plot of root basal respiration rate at 0 ◦C, r0r [µmol m−2 s−1], vs. leaf area index,
lai [m2 m−2], for model runs that achieved a coefficient of efficiency of better than 0.6 for the
NEE. Contours indicate the effective root basal respiration rate at 0 ◦C [µmol m−2 s−1] (r0r ·lai).
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