

## Challenges

- The determination of surface fluxes of the reactive trace gases NO, NO<sub>2</sub>, and O<sub>3</sub> at the forest floor requires consideration of characteristic turbulent timescales and (photo-) chemical interconversions
- Using a flux-gradient approach for chemically inert tracers, such as the radioactive noble gas radon (Rn) and CO<sub>2</sub>, the turbulent transport regime may be characterized



- The vertical profile measurement of the shortlived isotope <sup>220</sup>Rn ( $t_{1/2}$  = 55.6 s) is used to calculate turbulent transport times and corresponding bulk transfer velocities ( $v_{tr}$ )
- These parameters can be applied to vertical concentration differences of NO, NO<sub>2</sub>, and O<sub>3</sub> in order to separate turbulent transport from chemical and biological processes

Weidenbrunnen, Fichtelgebirge, Germany ( 50°08'31" N, 11°52'01" E ; 775 m a. s. l. )

Radon system Radon concentrations were measured at 0.03 m and 0.30 m a.g.l. to determine vertical gradients. During IOP2 additional measurements were conducted at 0.005 m and 0.10 m a.g.l. The selectivity of isotopes was derived from the difference between the half-life of  $^{222}$ Rn (t<sub>1/2</sub> =3.8 d) and <sup>220</sup>Rn ( $t_{1/2}$  = 55.6 s). One AlphaGuard radon monitor (built by Genitron, Franfurt) detects the sum of both isotopes at each measurement height. After a delay period of the tenfold half-life of <sup>220</sup>Rn more than 98% of the short-lived isotope decayed. An additional AlphaGuard and CO<sub>2</sub> sensor (GMP343, Vaisala, Helsinki) was used to measure the gas fluxes out of the soil in a static chamber.

References

[1] Lehmann, B.; Lehmann, M.; Neftel, A.; Gut, A.; Tarakanov, S.V.: Radon-220 Calibration of Near-Surface Turbulent Gas Transport. In: Geophysical Research Letters 26 No.5 (1999), p. 607–610

# **Trace gas exchange at the forest floor**

K. Hens<sup>1</sup>, F. X. Meixner<sup>1,2</sup>, M. Riederer<sup>3</sup>, A. Moravek<sup>1</sup>, A. Bargsten<sup>1</sup>, Z. Zhu<sup>1,4</sup>, and M.O. Andreae<sup>1</sup> <sup>1</sup> Max Planck Institute for Chemistry, Mainz, Germany; <sup>2</sup> Department of Physics, University of Zimbabwe, Harare, Zimbabwe; <sup>3</sup> University of Bayreuth, Dept. of Micrometeorology, Bayreuth, Germany; <sup>4</sup> Chinese Academy of Sciences, Beijing 100101, China

# hens@mpch-mainz.mpg.de (Tel.: + 49-6131-305-576)



## **Project and Research area**

The EGER-project (ExchanGE processes in mountainous <u>Regions</u>) is a multiscale approach to investigate diurnal and annual cycles of energy, water and trace gases in a spruce forest. Measurements were conducted during two Intensive Observation Periods:

> IOP1: autumn 2007 (August - October) IOP2: summer 2008 (May - July)





# Setup



# **Direct approach** [1]:



 $\mathbf{t_{z1->z2}} = \ln \left[ \frac{220}{Rn(z_1)} / \frac{220}{Rn(z_2)} \right] / \lambda$ 

# **Conclusions and Outlook**

first meter?

- reactive trace gases.
- $\rightarrow$  further evaluation is necessary
- Downward turbulent NO fluxes cannot be explained by instationarities alone  $\rightarrow$  compensation point of NO in the O-horizon was ~4-7ppb. Can c<sub>NO</sub>(z=0) be higher ?

Acknowledgements



### RESULTS

- radon method can be used to characterize near-surface gas exchange, even under conditions of (very) low turbulence
- during advection events CO<sub>2</sub> gradients are more robust than Rn gradients  $\rightarrow$  K<sub>bulk,Rn</sub> can be replaced by K<sub>bulk,CO2</sub>
- calculated turbulent surface fluxes of NO are compared to simultaneously performed surface flux measurements by dynamic soil chambers (DCS).
- both methods show upward turbulent NO fluxes during night-time and downward turbulent fluxes in the daytime, especially during periods with strong instationarities

### Turbulent transport time

• Timescales of the turbulent transport found in the first meter about forest floor are in the order of chemical timescales  $\rightarrow$  gradients of reactive species may be affected  $\rightarrow$  decoupled layers within the





• Under stable and very stable conditions, when turbulence is small ( $u_* < 0.08 \text{ m s}^{-1}$ ) state-of-the-art methods (e.g., eddy covariance) fail. The presented approach is a first attempt to determine K(z)close to the forest floor. It can be used to characterize near-surface exchange of non-reactive and

• Four-point gradient measurement of Rn and highly resolved vertical temperature profile during <u>IntensiveObservationPeriod2</u> give first hints that decoupled layers exist within the first meter

We thank the Max-Planck Society for funding our studies, the German science foundation (DFG) for funding the EGER project (ME 2100/4-1), and the University of Bayreuth for fruitful cooperation.