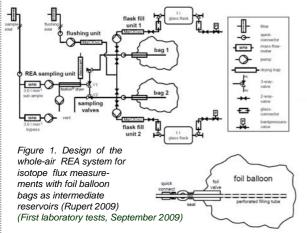
Outline of instruments and objectives of the subproject TP5 integrated in the FORKAST project

## Investigation of carbon turnover in grasslands in Northern Bavarian low mountain ranges under extreme climate conditions

UNIVERSITAT


MICHAEL RIEDERER (1,2), YAKOV KUZYAKOV (2), THOMAS FOKEN (1)

University of Bayreuth, Department of Micrometeorology, Bayreuth, Germany
University of Bayreuth, AgroEcoSystem Research Department (AES), Bayreuth, Germany

#### Introduction

Grassland in low mountain ranges is considered as important carbon storage, but one question is to be asked: Can this good news be affirmed in times of climate change? Already the word "change" suggests no certainty, but investigation of typical fundamental processes in grassland ecosystems. Thereby the carbon cycle is ranked first and involved the adaptability of the divers plant community's species. This is where subproject TP5 is integrated into the FORKAST project, which on the whole serves the evaluation of climatic impacts on ecosystems and adaptation strategies.

Micrometeorological flux measurement techniques (eddy covariance and relaxed eddy accumulation) and tracing of <sup>13</sup>C transport in plant and soil, based on <sup>13</sup>C pulse labelling, help to achieve these objectives. Completely new is the consideration of atmospheric background (<sup>13</sup>)CO<sub>2</sub> fluxes on executing tracing experiments.



### <sup>13</sup>CO<sub>2</sub> flux measurements

When fast high precision chemical sensors are not available for eddy covariance (EC) flux measurements, relaxed eddy accumulation technique (REA) can be used to measure trace gas fluxes in the boundary layer. The collection of updraft and downdraft whole-air samples using REA, allows simultaneously determining trace gas concentrations and isotope ratios by high precision laboratory analysis. Measuring the isotopic composition of CO<sub>2</sub>-fluxes provides additional information on ecosystem gas exchange processes, when those, like e.g. assimilation, discriminate against heavier isotopes. Consequently different mass-balances for bulk  $CO_2$  and its  ${}^{13}CO_2$  or  $CO^{18}O$  isotopes can be used to separate respiration from photosynthetic assimilation. Those elaborate and expensive measurements can not be carried out permanently but in times of drought, what is suited to bear reference to climate change scenarios.

# Bayceer

Bayreuth Center of Ecology and Environmental Research







Figure 2. Turbulence measurements at the Voitsumra investigation site – providing more than two years continuous CO<sub>2</sub>, latent and sensible heat flux measurements and further meteorological parameters (Running measurements since July 2009)

### The stable isotope <sup>13</sup>C as tool

The isotopic carbon composition of soil, biosphere and atmosphere varies in different time scales. Changes in carbon dioxide isotopic composition are strongly connected to ecosystem air  $CO_2$  concentration. The dimension of metabolism changes in the biosphere, depends on biotic factors like ecosystem structure and plant community composition.  $^{13}CO_2$  pulse labelling gives evidence about influences on and reactions of the latter, depending on the recovery rates in the particular species. The principal of our labelling experiments is illustrated in Figure 3. Subsequent sampling and determination of recovery rates in diverse ecosystem compartments is state-of-the-art of science.

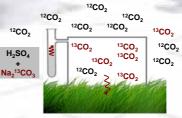



 Figure 3. <sup>13</sup>CO<sub>2</sub> pulse labelling as a tool to separate microbal
from root respiration and to find
out different species reactions to droudt spells

(First field tests in China, August 2009, starting experiment spring 2010)

### A noteworthy edge condition of <sup>13</sup>C pulse labelling experiments

Climate and related parameters like elevation and relief as abiotic factors are important framework requirements for ecosystem metabolism as well as anthropogenic influences like in our case the mowing of grasslands. Isotope signatures of air, biosphere and soil components result from interacting fractionation processes during atmospheric transport, CO<sub>2</sub> transport in plants, respiration and assimilation. Already given complexity indicates that common <sup>13</sup>C pulse labelling and tracing can not be suitable for contemporary science. Thus, recovery rates have to be assessed with an important edge condition: size, direction and variability of atmospheric (<sup>13</sup>)CO<sub>2</sub> fluxes. Those influences on turnover in the biosphere and related tracer dislocation during the sampling period are to be investigated. Our research takes place before, during and after dry spells, what simulates climate change in a natural way. Determination of the <sup>13</sup>C recovery rate in different plant species, combined with the mentioned improvements, provides information about resistance and adaptability to drought stress and finally about the resilience of the whole ecosystem and associated shifts in the plant community.

### Contact:

michael.riederer@uni-bayreuth.de www.bayceer.uni-bayreuth.de/mm

References:

Kuzyakov Y, Larionova AA (2005) Review of methods and results of separation of root and

rhizomicrobial respiration. Journal of Plant Nutrition and Soil Science 168, S. 503-520 Ruppert J et al. (to be submitted 2009) Whole-air relaxed eddy accumulation for the measurement of isotope and trace-gas fluxes

tuppen J et al. (to be submitted 2009) whole-air relaxed eddy accumulation for the measurement of isotope and trace-gas fluxes Vichura B (2009) Untersuchungen zum Kohlendioxidaustausch über einem Fichtenwaldbestand. Bavreuther Forum für Ökologie 114 www.bayceer.de