This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

Net ecosystem CO$_2$ exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions – a case study

M. Riederer1,*, A. Serafimovich1,**, and T. Foken1,2

1Department of Micrometeorology, University of Bayreuth, 95440 Bayreuth, Germany
2Member of Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
*now at: School of Energy and Resources, Regensburg University of Applied Sciences, 93049 Regensburg, Germany
**now at: German Research Centre for Geosciences, Helmholtz Centre, 14473 Potsdam, Germany

Received: 23 July 2013 – Accepted: 16 August 2013 – Published: 7 October 2013

Correspondence to: M. Riederer (michael.riederer@uni-bayreuth.de), T. Foken (thomas.foken@uni-bayreuth.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Carbon dioxide flux measurements in ecosystem sciences are mostly conducted by eddy covariance technique or the closed chamber method. Also some comparisons have been performed. But there is a lack of detailed assessment of present differences and uncertainties. To determine underlying processes, a ten-day, side-by-side measurement of the net ecosystem exchange with both techniques was evaluated with regard to various atmospheric conditions during the diurnal cycle. It was found that, depending on the particular atmospheric condition, the chamber carbon dioxide flux was either: (i) equal to the carbon dioxide flux measured by the reference method eddy covariance, by day with well developed atmospheric turbulence, (ii) higher, in the afternoon in times of oasis effect, (iii) lower, predominantly at night while large coherent structure fluxes or high wind velocities prevailed, or, (iv) showed less variation in the flux pattern, at night while stable stratification was present. Due to lower chamber carbon dioxide fluxes at night, when respiration forms the net ecosystem exchange, and higher chamber carbon dioxide fluxes in the afternoon, when the ecosystem is still a net carbon sink, there are two complementary aspects resulting in an overestimation of the ecosystem sink capacity by the chamber of 40 % in this study.

1 Introduction

Net ecosystem exchange (NEE) of grasslands is today predominantly determined by eddy covariance (EC) technique (Moncrieff et al., 1997; Baldocchi, 2003; Foken et al., 2012a; Wohlfahrt et al., 2012) and the chamber method (Davidson et al., 2002; Subke and Tenhunen, 2004; Denmead, 2008). The chamber method also becomes relevant when measuring underlying fluxes of NEE (e.g. ecosystem respiration, R_{ECO}) directly and separately. Also gross primary production (GPP) of the biosphere can be easily determined by combining the use of dark (R_{ECO}) and transparent chambers (NEE) and simple subtraction of the resulting fluxes.

Numerous comparison experiments between different chambers (Pumpanen et al., 2004; Rochette and Hutchinson, 2005) and between chamber- and EC-data (Subke and Tenhunen, 2004; Kutzbach et al., 2007; Myklebust et al., 2008; Wang et al., 2013) can be found in the literature. Differences which occurred were attributed to underestimation of the EC flux due to methodological problems at times with low turbulence intensity (van Gorsel et al., 2007), poor regression analysis in the chamber software (Kutzbach et al., 2007) or different target areas (Reth et al., 2005). In contrast to EC – that measures an integrated signal from a large flux footprint area (Rannik et al., 2012) – it is often challenging to achieve adequate representativeness with the chamber method on ecosystem scales (Reth et al., 2005; Laine et al., 2006; Denmead, 2008; Fox et al., 2008). In any case, both EC and chamber methods must be reviewed for inaccuracies (Davidson et al., 2002), and due to the fact that real fluxes are always unknown under field conditions, it is impossible to validate flux measurements by any technique (Rochette and Hutchinson, 2005). Comparisons between chamber and EC-measurements are also available for other trace gases, e.g. Werle and Kormann (2001) found that chambers may overestimate CH$_4$ emissions up to 60–80 %.

Chamber measurement technique has improved during recent years and eliminated many chamber effects (Rochette and Hutchinson, 2005) to the point where pressure inconsistencies between in- and outside the chamber at various wind velocities can be avoided (Xu et al., 2006). But some challenges still remain, e.g. inside chambers, atmospheric turbulence cannot be reproduced (Kimball and Lemon, 1971; Pumpanen et al., 2004; Rochette and Hutchinson, 2005) even – or especially when – ventilators are used for mixing (Kimball and Lemon, 1972).

Atmospheric turbulence has a typical size spectrum and distribution of the turbulent eddies, depending on height and surface structure. In particular, larger, low-frequency flow patterns, i.e. coherent structures (Collineau and Brunet, 1993; Gao et al., 1989; Thomas and Foken, 2007), may cause differences between chamber and EC measurement results. Another cause of flux differences can be differing atmospheric stratification. Closed chambers completely cover the ecosystem during the measurement...
process and thereby alter the natural long wave radiation balance to zero. This may cause weak development of stable stratification and hence higher fluxes compared to EC.

In this study it is not the differences in NEE between two measurement principles in general, but rather the changing difference with varying atmospheric conditions in the course of the diurnal cycle, which is investigated.

2 Material and methods

2.1 Study area

The comparison experiment was conducted from 25 May to 3 June in 2011 on an extensively managed submontane grassland site at the edge of the low mountain range “Fichtelgebirge” in northeast Bavaria, Germany. The site is located 624 m a.s.l. (50°05′25″ N, 11°51′25″ E) between the “Großer Waldstein” (elevation: 877 m) to the north and the “Schneeberg” (1051 m) to the south. Thus, a channeled wind field in west-east direction with west (263°) as prevailing wind direction is created at the site. Most of the data were collected under ideal weather conditions without rainfall and with sufficient global radiation. Only one larger data gap was caused by heavy rainfall (38.2 mm) in the night of 31 May to 1 June. The canopy height was about 20 cm. Thus, the chamber could be installed without any cutting of the vegetation.

2.2 Eddy covariance

For the determination of the CO$_2$ flux, the concentration was measured by an open-path gas analyzer (LI-7500, LI-COR Biosciences, Lincoln, Nebraska USA) and the wind vector by a 3-D sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan, UT USA) at high frequency (20 Hz). 2.5 m above ground. Data were stored on a data logger (CR3000, Campbell Scientific, Inc., Logan, UT USA) and collected daily by a computer system as a backup. Data were post processed and quality controlled based on latest micrometeorological standards by the software package TK2, developed at the University of Bayreuth (Mauder and Foken, 2004). This still evolving software (TK3 has become available in the meantime: Mauder and Foken, 2011) incorporates all necessary data correction and data quality tools (Foken et al., 2012b). It was successfully proved in comparison with six other commonly used software packages (Mauder et al., 2008). For every averaging interval of 30 minutes the included quality flagging system evaluated stationarity and turbulence and marked the resulting flux with quality flags from 1 (very good quality) to 9 (very low quality) (Foken and Wichura, 1996; Foken et al., 2004). In this study only data with quality 3 or better were used. Also footprint analysis (not shown here) after (Göckede et al., 2004, 2006; Rannik et al., 2000) was performed to assure that the measured data exclusively represented the target land use type grassland, i.e. the ecosystem measured by the chamber (cf. Reth et al., 2005). Due to the channeled wind regime, two club-shaped footprints evolved in the western and eastern directions. Thus, disturbances of the turbulence measurements could be easily avoided by installing all other experimental devices close to the EC mast, but perpendicular to the main wind direction. Accompanying measurements of important micrometeorological parameters such as up- and downwelling short- and long wave radiation, air and soil temperature, humidity and soil moisture and precipitation were accomplished by an automated weather station and stored as 10 min averages.

2.3 Chamber system

The applied system (LI-8100-104C, transparent for NEE measurements at low vegetation, LI-COR Biosciences, Lincoln, Nebraska USA) was an automated non-flow-through non-steady-state soil chamber, where sample air was constantly circulated between the chamber and an infrared gas analyzer (IRGA) by a rotary pump with 1.5 L min$^{-1}$ through a chamber volume of 4822 cm3. The CO$_2$ flux was estimated from the rate of CO$_2$ concentration change inside the chamber during a close time of 90 s. The chamber was designed to minimize perturbations to the surrounding environmental conditions. E.g. the base plate was perforated to avoid heating of the surface and
a concentration gradient-induced impedance of soil respiration (LI-COR, 2004). The soil collars which included an area of 318 cm² were pre-installed 10 cm deep in the soil two weeks before the experiment to create a perfect seal and to avoid disturbances of the CO₂ efflux by cut and wounded plant roots at the beginning of the measurement period. Due to the channeled wind field on the site (see Sect. 2.1), the chamber could be installed very close to the eddy covariance mast without disturbing the flux footprint. The chamber had a lift-and-rotate drive mechanism that rotated the bowl-shaped chamber 180° away from the collar. This shape allowed good mixing by means of the circulation of the sample air through the IRGA alone, without a ventilator (LI-COR, 2004). Barometric- and – above all – turbulence-induced pressure fluctuations above the ground surface influence the efflux from the soil. Thus, modern chambers are equipped with a venting tube that transmits atmospheric pressure changes to the chamber headspace (Rochette and Hutchinson, 2005). LI-COR installed a patent-pending pressure vent with tapered cross section at the top of the chamber, that minimizes pressure pulses at chamber closing and allows the tracking of ambient pressure under calm and windy conditions by eliminating the Venturi effect (Conen and Smith, 1998) occurring at former simple open vent tubes (Xu et al., 2006). The exchange through the venting tube is negligible compared to the CO₂ diluting effect by water vapor during the measurement which in turn is corrected by the measurement software (LI-COR, 2004). For R_{ECO} measurements a dark chamber is used that avoids CO₂ uptake by assimilation. NEE is measured by a chamber with a transparent dome that enables CO₂ uptake by assimilation as well as respiration processes inside. The transparent chamber for the NEE comparison was closed for 90 s four times during a half-hour period. In the meantime the system was flushed for 135 s, the dark chamber was measuring for 90 s (data were required for another study and not used in this one) and the system was flushed with ambient air again. The closing and opening process of the transparent chamber as part of the flushing time lasted 13 s each.

2.4 Typical exchange conditions

The application of the eddy covariance technique requires turbulent conditions (Foken et al., 2012a). Ecologists often evaluate this using a friction velocity threshold (Goulden et al., 1996) but more precise is a test on steady-state conditions and the fulfillment of typical similarity conditions (Foken and Wichura, 1996). At daytime in most cases both criteria are fulfilled whereas nighttime exchange conditions are more challenging. Only in the late afternoon stable stratification of the near surface air layer begins with cooling due to evaporation and the long wave upwelling radiation outbalancing the long wave downwelling radiation. Exchange is poor under stable conditions and, for example, the respiration causes the carbon dioxide concentration to increase in the first centimeters of the atmosphere up to a partial pressure equivalent to that in the soil, which consequently reduces the gas exchange. However, an ecosystem covered with a chamber dome is subjected to balanced outgoing and incoming long wave radiation and therefore less cooling at that time of the day. Naturally under those conditions the so called oasis effect occurs, which is named after the moisture-dependent cooling effect occurring in oases and which is defined as a sensible heat flux \((Q_{H})\) changing to negative values in combination with a still large positive latent heat flux \((Q_{E})\) and solar radiation (Stull, 1988; Foken, 2008). A lack of sensible heat causes reduction of buoyancy and consequently turbulence. This is directly detected by the EC technique, i.e. exactly the measurement of turbulent fluxes (Aubinet et al., 2012). In addition to the radiation effect, the reaction of the chamber system is also less pronounced due to the physical barrier to the surrounding, increasingly stable stratified, air masses. With the sunset the remaining assimilation potential is gone, the difference between both systems declines, and other processes come to the fore.

Under stable stratification and low turbulence the flux-contribution of coherent structures to the entire flux increases (Collineau and Brunet, 1993; Gao et al., 1989; Thomas and Foken, 2007; Holmes et al., 2012). These well-organized structures, with typical periods of 10–100 s, are caused by strong roughness or landscape heterogeneities
such as tree lines, bushes and ditches. Coherent structures in a steady state can be measured by eddy covariance technique (Desjardins, 1977). Analyzing methods for coherent structures are based on, for example, wavelet technology and were presented by Collineau and Brunet (1993), Thomas and Foken (2005) and Serafimovich et al. (2011). In the present study, we applied the method described by Thomas and Foken (2005) to determine the flux by coherent structures (F_{CS}) and its contribution to the entire flux (F_{ent}).

3 Results and discussion

Scatter charts are often utilized in literature when measurement technique comparisons are discussed. However, they provide only a first impression of the overall behavior of both systems, and in this study Fig. 1 is intended as an introduction to further detailed breakdown of the behavior into underlying processes. So as not to adulterate the comparison results, data with bad quality were excluded by the quality flagging system (16 %) and no gap filling procedures were conducted. Data gaps were predominantly occurring at night, when CO$_2$ source fluxes (positive sign) prevailed. Thus, the resulting mean CO$_2$ values of -4.0 (EC) and -5.6 µmol m$^{-2}$ s$^{-1}$ (chamber) for the overall 10-day balance might be overestimated. Hence, at that time, both EC and chamber define the ecosystem to be a CO$_2$ sink, but the absolute value of the chamber sink flux was 40 % larger than that of EC. This included smaller chamber CO$_2$ source fluxes of 26 % during the night and larger chamber CO$_2$ sink fluxes of 14 % during the day (negative sign). A first indication as to the cause of the large difference at night may be provided by the kind and dimension of scattering of the measured fluxes, presented in Fig. 1 as interquartile ranges. While daytime CO$_2$ fluxes of both techniques scatter quite similarly, with interquartile ranges of 0.0086 mmol CO$_2$ m$^{-2}$ s$^{-1}$ and 0.0094 mmol CO$_2$ m$^{-2}$ s$^{-1}$ respectively, for positive nighttime CO$_2$ fluxes, much larger scattering in EC data (interquartile range: 0.0039 mmol CO$_2$ m$^{-2}$ s$^{-1}$) than in chamber data (0.0018 mmol CO$_2$ m$^{-2}$ s$^{-1}$) could be recognized (see Fig. 1 and cf. Janssens et al., 2001).

This kind of aggregation of the positive chamber fluxes (cf. Laine et al., 2006) had various associated reasons that are explained in the following. There must be also an explanation for the domination of the chamber in small negative CO$_2$ fluxes, not only when both systems showed fluxes with opposite directions (Fig. 1, light grey filled circles) but also when both were negative. However, for the whole measurement period the chamber NEE exceeded the NEE of EC by 40 %. This is similar to other studies (Wang et al., 2009; Fox et al., 2008). To investigate underlying short-term effects on the comparability, EC-chamber flux differences – normalized with the EC-flux – were calculated and illustrated as mean diurnal cycles of the whole measurement period (Fig. 2a).

The characteristics of the normalized EC-chamber flux difference suggested a classification into four different periods. The early morning transition time was affected by sunrise, developing turbulence and temporary wet instruments due to dewfall. Later, during the day, when the atmospheric turbulence was well developed, the mean difference was almost zero, i.e. both systems showed similar results. In contrast, in the late afternoon, CO$_2$ sink fluxes within the chamber were sustained longer and were larger, resulting in a flux up to twice as large as the EC flux (Fig. 2a). The reason was defined as the oasis effect, i.e. cooling and stabilization effects outside the chamber (see Sect. 2.4). In Fig. 2b just the normalized flux differences during periods of prevailing oasis effect are considered, which precisely reproduces the late- and to a small extent early afternoon-chamber dominance. Nearly all measurements influenced by the oasis effect show larger chamber fluxes (Fig. 3a). Also two thirds of the situations with contrary EC-chamber flux directions (filled circles, Figs. 1 and 3a) and the higher sink fluxes of the chamber at small values could be directly explained by the oasis effect (black circles, Fig. 3a). With the sunset this effect disappears, as does the assimilation potential of the ecosystem, and the difference between both systems declines.
After a short evening transition time typical nighttime conditions arise, with predominantly stable stratification (Fig. 2d) and increasing exchange by coherent structures (Fig. 2c). For mid-latitudes this is the typical daily cycle for stratification (Foken, 2008). Coherent structures can cause 50–100% of the gas exchange during nighttime and 10–20% during the day above a forest (Thomas and Foken, 2007). The influence of coherent structures might be less above meadows due to the negligible mixing layer (roughness sublayer). In contrast to daytime CO₂ fluxes that scatter quite similarly (see interquartile ranges in Fig. 1), nighttime chamber fluxes scatter less than half as much as the EC fluxes: the chamber measures a virtually constant flux during the night. As Fig. 3b, c and d illustrate, this predominantly occurs at times with high atmospheric stability (z/L, z: height, L: Obukhov length), presenting along with low wind velocity (u) and a cool ground surface, i.e. little outgoing long wave radiation (L_out). While the EC system responds to the smallest changes of the atmospheric conditions as well as the nighttime ecosystem respiration flux does, the chamber is directly connected to the ground surface – where the ecosystem respiration is more or less constant – with only minor influences from the surrounding atmosphere (Norman et al., 1997; Reth et al., 2005; Lai et al., 2012), transferred into the chamber system exclusively by the pressure vent (Xu et al., 2006). The parameters illustrated in Fig. 3b, c and d turned out to be particularly responsible for the uniformity of the chamber flux, whereas at the same time EC measures a wide range of CO₂ fluxes. To clarify under which conditions the EC flux is notably larger or smaller than the chamber flux, nighttime data with higher EC fluxes were compared to those that show higher chamber fluxes. A Student’s t test for dependent samples indicated no differences for the flux by coherent structures (F_CS), z/L and L_out, but did so for the wind velocity u and the friction velocity u, (Fig. 4; u, is not presented since the result is equivalent to u).

However, EC and chamber nighttime respiration fluxes measured at high wind velocities (largest 25%, u > 2.9 ms⁻¹) are within the same range close to the bisecting line in Fig. 5a but with a significant tendency to larger EC fluxes. This coincides with a study of Denmead and Reicosky (2003), who found an increase of the EC- to chamber-flux ratio with the wind velocity. Although the chamber reproduces the flux variations very well at high wind velocities, i.e. it is able to describe small as well as larger fluxes, it generally underestimates the flux. Hence, at night, in addition to the stratification effect, situations with high wind velocities result in larger EC than chamber CO₂ fluxes. But those cannot really explain the highest EC fluxes in times of uniform chamber performance. It was found that some of those situations occurred together with large coherent structure fluxes (F_CS, Fig. 5b). In the experiment region, coherent motions were already detected as a consequence of low-level jets reaching the ground and breaking gravity waves (Foken et al., 2012c). Coherent structures appear sporadically (average in this study: 38 h⁻¹). Thus, the total size of the coherent structure flux is less than the typical turbulent flux, yet coherent motions produce turbulence that obviously is recognized by EC, but not by the chamber technique (Fig. 5b).

4 Conclusions

Ecosystem processes are coupled to atmospheric conditions. A measurement system must be able represent the resulting fluxes in a reasonable way. Otherwise, already small differences at small temporal scales may sum up to large errors in the estimation of the resulting flux. Because the difference between chamber and EC flux strongly depends on the diurnal variation of the atmospheric conditions, especially sporadic short-term chamber measurements as well as repeated chamber measurements at specific times of day are likely to be biased.

Chamber fluxes are larger than EC fluxes in the late afternoon due to surface cooling and development of stable stratification, which in turn reduces the turbulent exchange. During times of this oasis effect, the flux regime of the day is upheld longer in the evening within the chamber and the real atmospheric conditions are not represented.

During the night a quite uniform chamber flux and an EC flux with a much higher variability were observed. Detailed investigation of the relevant parameters revealed that the nighttime stable stratification, together with low wind velocities and low outgo-
ing long wave radiation, support the uniformity of the chamber but not the EC flux. A greater variation of the chamber flux data was only found at times with high wind velocities and high friction velocities, respectively, which also resulted in a certain agreement with EC, but with overall higher EC fluxes. Hence, the chamber is less sensitive to atmospheric conditions that control the flux, because it is always less coupled to the surrounding atmosphere than EC (Lai et al., 2012; Dore et al., 2003; Reth et al., 2005) and even if there is considerable forcing by higher wind velocities, larger fluxes are provided by EC.

Coherent structures were also expected to cause higher EC fluxes in general, but it was found that this was only the case with the very largest coherent structure fluxes. Those could explain a number of situations with larger EC fluxes.

While EC provides satisfying results for the whole diurnal cycle, assuming that data quality regarding turbulence and stationarity is properly controlled, chamber flux measurements require accompanying assessment of at least wind velocity, radiation and temperature, to evaluate atmospheric conditions to some extent. Above all, during the night the strongest forcing parameters, global radiation and the CO$_2$ sink flux by assimilation, are missing. Since the long wave radiation balance is zero within the chamber anyway and the night time respiration flux from the soil is more constant than the CO$_2$ flux during the day, there should be nothing left to trigger variations in the chamber CO$_2$ flux, which do, however, occur.

Chamber measurement technique has made progress in the last years but its insensitivity to various atmospheric conditions suggests such micrometeorological tools as EC are preferable for the investigation of those processes and the determination of ecosystem fluxes.

Acknowledgements. The project “Investigation of carbon turnover of grasslands in a northern Bavarian low mountain range under extreme climate conditions” was funded within the joint research project “FORKAST” by the Bavarian State Ministry of Sciences, Research and Arts. The authors wish to acknowledge the support of Wolfgang Babel, who conducted the site specific footprint analysis, the technical support of Johannes Olesch and the air sample analysis performed by the staff of the Isotope- and Gas-Laboratories of the Max-Planck Institute for Biogeochemistry in Jena. This publication was funded by the German Research Foundation (DFG) and the University of Bayreuth through the funding program Open Access Publishing.

References

Fig. 1. Scatter plot of EC- and chamber-determined NEE, light grey filled circles represent CO₂ fluxes with opposite directions, black bars show interquartile ranges of EC-/chamber CO₂ source and sink fluxes, respectively (opposite CO₂ fluxes excluded).

Fig. 2. Mean diurnal cycles of (a) normalized EC-chamber CO₂ flux differences, (b) normalized EC-chamber CO₂ flux differences during times with oasis effect (OE), (c) absolute proportion of fluxes by coherent structures and (d) the stratification; the bars below indicate different regimes of atmospheric mixing during the day; time in CET = UTC + 1; error bars indicate variation within the 10-day period.
Fig. 3. Scatter plot sections of EC- and chamber-determined NEE under particular micrometeorological conditions: (a) oasis effect; (b) $z/L > 0.7$; (c) $u < 0.9 \text{ m s}^{-1}$; (d) $I_{\text{out}} < 319 \text{ W m}^{-2}$ — labeled with large black circles in each case, light grey circles represent fluxes with different directions.

Fig. 4. Comparison of (a) nighttime atmospheric stability (z/L), (b) wind velocity (u), (c) CO$_2$ flux by coherent structures (F_{CS}) and (d) long wave outgoing radiation (I_{out}) while either EC or chamber CO$_2$ fluxes are larger, highly significant difference (Student’s t test for dependent samples, * = $p < 0.01$) found only in case of u (as well as u_*).
Fig. 5. Scatter plot sections of EC- and chamber-determined NEE under particular micrometeorological conditions: (a) largest 25% of the wind velocities ($u > 2.9 \text{ ms}^{-1}$); (b) largest 10% of the fluxes due to coherent structures ($F_{CS} > 0.0015 \text{ mmol m}^{-2} \text{ s}^{-1}$) — labeled with large black circles in each case, light grey circles represent fluxes with different directions.