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Abstract. The sensitivity and predictive uncertainty of the
Advanced Canopy-Atmosphere-Soil Algorithm (ACASA)
was assessed by employing the Generalized Likelihood Un-
certainty Estimation (GLUE) method. ACASA is a stand-
scale, multi-layer soil-vegetation-atmosphere transfer model
that incorporates a third order closure method to simulate
the turbulent exchange of energy and matter within and
above the canopy. Fluxes simulated by the model were
compared to sensible and latent heat fluxes as well as the
net ecosystem exchange measured by an eddy-covariance
system above the spruce canopy at the FLUXNET-station
Waldstein-Weidenbrunnen in the Fichtelgebirge Mountains
in Germany. From each of the intensive observation periods
carried out within the EGER project (ExchanGE processes
in mountainous Regions) in autumn 2007 and summer 2008,
five days of flux measurements were selected. A large num-
ber (20000) of model runs using randomly generated param-
eter sets were performed and goodness of fit measures for
all fluxes for each of these runs were calculated. The 10%
best model runs for each flux were used for further investiga-
tion of the sensitivity of the fluxes to parameter values and to
calculate uncertainty bounds.

A strong sensitivity of the individual fluxes to a few pa-
rameters was observed, such as the leaf area index. How-
ever, the sensitivity analysis also revealed the equifinality of
many parameters in the ACASA model for the investigated
periods. The analysis of two time periods, each represent-
ing different meteorological conditions, provided an insight
into the seasonal variation of parameter sensitivity. The cal-
culated uncertainty bounds demonstrated that all fluxes were
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well reproduced by the ACASA model. In general, uncer-
tainty bounds encompass measured values better when these
are conditioned on the respective individual flux only and not
on all three fluxes concurrently. Structural weaknesses of the
ACASA model concerning the soil respiration calculations
and the simulation of the latent heat flux during dry condi-
tions were detected, with improvements suggested for each.

1 Introduction

The exchange of energy and matter between the ground and
the atmosphere is an important process within an ecosys-
tem and influences its meteorological, hydrological and eco-
logical properties. To model this exchange process and
the corresponding sensible and latent heat fluxes as well as
the CO2 flux, soil-vegetation-atmosphere transfer (SVAT)
models have been developed. Due to the large variety of
model scopes, SVAT models differ greatly in their complex-
ity (Falge et al., 2005). Simpler model representations, so
called “big leaf” models (e.g. Sellers et al., 1996), are applied
when aiming for larger temporal and spatial scales, such as
in land surface schemes of climate models. Within these
models, the vegetation is depicted as one “big leaf” which
represents the properties of the whole canopy and therefore
is described with “effective” or “bulk” parameters. In mul-
tilayer SVAT models (e.g. Wohlfahrt et al., 2001; Baldocchi
and Meyers, 1998), the emphasis is placed on a more detailed
description of canopy processes and thus the vegetation is
represented with more than one layer. Such SVAT models
incorporate a large number of process descriptions varying
in complexity, such as radiative transfer or photosynthesis
schemes.
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SVAT models can also be classified based on their imple-
mentation of turbulent transfer within and above the canopy.
The most common turbulence closure is the first-order flux-
gradient closure orK-theory. Here, fluxes of a meteorolog-
ical variable are calculated from the gradients of the mean
of this variable and an exchange coefficientK. This sim-
ple closure scheme works well in representing the turbulent
exchange above short canopies, but is limited in the correct
reproduction of the turbulence structure inside tall canopies
such as forests (e.g. Shaw, 1977; Denmead and Bradley,
1985). Higher-order closure schemes have been developed
to adequately simulate the turbulent structure and permit the
simulation of second moments inside tall canopies. Second-
order closure was proposed by Wilson and Shaw (1977) and
Wilson (1988) and a third-order closure was developed by
Meyers and Paw U (1986), which was successfully cou-
pled to leaf energy balance equations and a radiative trans-
fer model (Meyers and Paw U, 1987). Comparisons of these
closure schemes found a similar performance of second- and
third-order closure for wind speed and scalar concentration
profiles as well as fluxes (Katul and Albertson, 1998; Juang
et al., 2008). However, both closure schemes failed in repro-
ducing the third moments close to the canopy-atmosphere in-
terface. Furthermore, Pinard and Wilson (2001) showed that
a first-order closure model arrived at similar results for the
fundamental wind properties within a canopy as a second-
order closure model and question the theoretical superiority
of a second-order model due to uncertainties of the drag co-
efficient in model applications. Also, a first-order model that
accounts for non-local transport was developed by Zeng and
Takahashi (2000) which proved to be able to predict wind
speed and momentum stress profiles within and above sev-
eral canopies.

All SVAT models, even the ones with less complexity, re-
quire a large number of input parameters to be specified by
the user, such as morphological and optical properties of the
vegetation or physical properties of the soil. The more pro-
cesses that are explicitly described in a SVAT model, the
more parameters are needed. These parameters are often not
easily determined, as the scale at which they are measured
in the field varies, such as the leaf scale for photosynthesis
parameters and the stand scale for plant morphological pa-
rameters.

When calibrating SVAT schemes against (eddy) flux mea-
surements at high temporal resolution, the problem of model
equifinality has been reported (Franks et al., 1997; Mo and
Beven, 2004; Prihodko et al., 2008; Schulz et al., 2001). In
all these studies, there was not a single optimum parame-
ter set but rather many different sets of parameters that gave
equally good fits to the observed data and were from phys-
ically feasible ranges. The Generalized Likelihood Uncer-
tainty Estimation (GLUE) methodology (Beven and Binley,
1992) addresses the problem of parameter equifinality and
assesses the predictive uncertainty of a model from the runs
that are classified as “behavioral”. This method has been

frequently applied in hydrological modeling, especially in
run-off modeling (e.g. Beven and Freer, 2001; Freer et al.,
1996; Choi and Beven, 2007), but was also employed in
other model applications such as the estimation of critical
loads (Zak and Beven, 1999) and the simulation of the ni-
trogen budget (Schulz et al., 1999), as well as the analy-
sis of ground heat flux calculation approaches (Liebethal et
al., 2005). The GLUE methodology is also well suited to
the analysis of SVAT-models (Franks et al., 1997; Franks et
al., 1999; Mitchell et al., 2009; Mo and Beven, 2004; Pri-
hodko et al., 2008; Schulz and Beven, 2003; Schulz et al.,
2001; Poyatos et al., 2007). In a study comparing uncertainty
analysis techniques for a hydrological model application, the
GLUE methodology achieved prediction uncertainties simi-
lar to those of other methods (Yang et al., 2008).

Here, the multi-layer terrestrial biosphere-atmosphere
model ACASA (Advanced Canopy-Atmosphere-Soil Algo-
rithm, University of California, Davis; Pyles et al., 2000)
that incorporates a third-order turbulence closure (Meyers
and Paw U, 1986) is used to model the turbulent fluxes of
heat and water vapor as well as the CO2 exchange within and
above a tall spruce canopy. A higher order closure model was
chosen because of the strong influences of coherent struc-
tures on the energy exchange (Thomas and Foken, 2007a,b).
Earlier investigations with a first order non local transilient
schema (Berger et al., 2004) have already demonstrated the
benefit of non-local or non-K-approaches. The advantage of
a multilayer model like ACASA that includes a higher-order
turbulence closure is the detailed simulation of mean quanti-
ties, fluxes and higher moments for several layers within the
canopy. Here, we focus on the evaluation of the sensitivity of
the modeled above-canopy fluxes (which are the aggregation
of the fluxes in within-canopy layers) to the input parame-
ters and the uncertainty of these fluxes simulated with the
ACASA model by employing the GLUE method. In addition
to evaluating model performance for all fluxes combined, of
special interest is a separate model evaluation for each flux.
We preferred the GLUE methodology to parameter optimiza-
tion techniques, as we did not intend to achieve optimized
parameter values but rather to analyze the structure and be-
havior of the ACASA model. We aim at (1) the identification
of the most influential model parameters, (2) the evaluation
of the seasonal variation of parameter sensitivity and (3) the
detection of weaknesses in process representations within the
ACASA model. This evaluation of above-canopy fluxes is in-
tended as a basis for further studies using the ACASA model
at our site that also analyze mean quantities and fluxes within
the canopy, for example for a case study of vertical evapo-
transpiration profiles within the canopy (Staudt et al., 2010).
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2 Material and methods

2.1 The Waldstein-Weidenbrunnen site

The FLUXNET-station Waldstein-Weidenbrunnen (DE-Bay)
is located in North-Eastern Bavaria (50◦08′ N, 11◦52′ E,
775 m a.s.l.) in the Fichtelgebirge Mountains, which is a
low-elevation mountain range typical for Central Germany.
The spruce forest (Picea abies) has a mean canopy heighthc
of 25 m. The plant area index (PAI) profile shows that the
main leaf mass is concentrated within 0.5–0.8hc and a sec-
ond smaller maximum in the PAI profile is at approximately
0.3hc (Fig. 1). From the profile measurements in Fig. 1, the
total PAI is 5 m2 m−2, whereas a value of 5.6 m2 m−2 was de-
rived from PAI measurements at over 500 locations randomly
distributed at the Waldstein Weidenbrunnen site. The mea-
sured PAI was converted to leaf area index (LAI) and stem
area index (SAI) using allometric relations from unpublished
forest inventory data gathered during IOP-1 and IOP-2 and
the relations between SAI and LAI used in ACASA, with the
resulting LAI being approximately 4.8 m2 m−2. The sparse
understory vegetation consists of small shrubs and grasses.
More information about the experiment site can be found in
Gerstberger et al. (2004) and Staudt and Foken (2007).

Within the EGER project (ExchanGE processes in moun-
tainous Regions), aiming at the detailed quantification of rel-
evant processes within the soil-vegetation-atmosphere sys-
tem by observing diurnal and annual cycles of energy, wa-
ter and trace gases, two intensive measuring campaigns were
carried out at the Waldstein-Weidenbrunnen site. The first in-
tensive observation period (IOP-1) took place in September
and October 2007, and the second (IOP-2) was conducted in
June and July 2008.

2.2 Experimental setup and data

During the intensive observation periods, high frequency
turbulence measurements were performed on a 36-m-tall,
slim tower (“turbulence tower”) at six heights within and
above the canopy. As this sensitivity study concentrates
on the above canopy fluxes, only flux data for the upper-
most height of the turbulence tower (36 m) was considered
for comparisons of measured and modeled data. This eddy-
covariance system consisted of a sonic anemometer (USA-1
Metek GmbH) to detect horizontal and vertical wind compo-
nents as well as the sonic temperature, and a fast-response
gas analyzer (LI-7500, LI-COR Biosciences) to measure the
density of carbon dioxide and water vapor (for a more de-
tailed description of the experimental setup see Serafimovich
et al., 2008). Raw flux data (20 Hz) was processed with
the TK2 software package, developed at the University of
Bayreuth (Mauder and Foken, 2004), including several cor-
rections and quality tests, such as a correction of the high fre-
quency loss of energy using a method by Moore (1986). Flux
data were filtered using quality flags after Foken et al. (2004)
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Fig. 1. Vertical profiles of the cumulative(a) and absolute(b) plant
area index (PAI) at the Waldstein-Weidenbrunnen site (May 2008).
Profiles are mean values of five measured PAI profiles with the cor-
responding standard deviations indicated. The dashed line in (b)
represents the fitted PAI profile for the ACASA model (weighted
sum of two beta distributions fitted to the measured data following
Simon et al., 2005, 101 data points).

and allowing flux data with a quality flag of 6 and better for
further analysis. The uncertainties of eddy-covariance mea-
surements are a recent field of research (e.g. Hollinger and
Richardson, 2005; Mauder et al., 2006; Foken, 2008). Fol-
lowing Mauder et al. (2006), the accuracy of eddy-covariance
data measured with a type B sonic anemometer – and after
the application of the quality scheme after Foken et al. (2004)
– depends on the quality class: for quality classes 1–3 the er-
ror is 10% or 20 W m−2 for the sensible heat flux and 15% or
30 W m−2 for the latent heat flux, for quality classes 4–6 the
error is 15% or 30 W m−2 for the sensible heat flux and 20%
or 40 W m−2 for the latent heat flux. We decided not to close
the energy balance in eddy-covariance measurements in this
study to avoid adding more uncertainties resulting from not
only the closure method but also the soil and storage heat flux
estimates.

The ACASA model requires half-hourly meteorological
input values as well as the initial soil profiles (temperature,
moisture), which were provided by the routine measurements
at a second, more massive tower (“main tower”) at an approx-
imate distance of 60 m, and at a clearing nearby. Meteorolog-
ical input parameters for the model and the instrumentation
for the Waldstein-Weidenbrunnen site are listed in Table 1.
Only small gaps in the data occurred due to power shortages
and were filled with linear interpolation methods.

Within this sensitivity study, five days from each intensive
observation period (IOP) that were chosen due to the good
weather conditions and the good performance of the measur-
ing devices were considered (IOP-1: 20–24 September 2007,
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Table 1. Meteorological input parameters of the ACASA model and the corresponding measurements at the Waldstein-Weidenbrunnen site.

Parameter Unit Sampling Instrument, Manufacturer
location height[m]

Precipitation rate mm Clearing 1 OMC 212,
Adolf Thies GmbH & Co. KG

Specific humidity g kg−1 Main tower 31 Vent. psychrometer (Frankenberger, 1951),
Theodor Friedrichs & Co

Mean wind speed m s−1 Main tower 31 Cup anemometer,
Theodor Friedrichs & Co

Downwelling short-wave W m−2 Main tower 30 CM14,
radiation Kipp & Zonen

Downwelling long-wave W m−2 Main tower 30 CG2,
radiation Kipp & Zonen

Temperature K Main tower 31 Vent. psychrometer (Frankenberger, 1951),
Theodor Friedrichs & Co

Pressure hPa Clearing 2 Barometric pressure sensor,
Ammonit Gesellschaft f̈ur Messtechnik mbH

CO2 concentration ppm Main tower 32 LI-7000,
LI COR Biosciences GmbH

day of year 263–267; IOP-2: 28 June–2 July 2008, day of
year 180–184). IOP-1 was carried out during a relatively
wet and cool autumn, whereas during IOP-2 hot and dry
summer weather prevailed, which allows us to investigate
different meteorological periods. The meteorological con-
ditions during the two five-day periods are shown in Fig. 2.
During IOP-1, global radiation, temperature and vapor pres-
sure deficit were lower than during IOP-2. The wind speed
reached comparable magnitudes during both IOPs. Soil con-
ditions differed greatly during both IOPs, with a colder and
wetter soil during IOP-1.

2.3 The ACASA model

The Advanced Canopy-Atmosphere-Soil Algorithm
(ACASA; Pyles, 2000; Pyles et al., 2000), which was
developed at the University of California, Davis, was used
to model the turbulent fluxes of heat, water vapor and CO2
within and above the canopy. This multi-layer canopy-
surface-layer model incorporates a diabatic, third-order
closure method to calculate turbulent transfer within and
above the canopy on the theoretical basis of the work of
Meyers and Paw U (1986, 1987). The multi-layer structure
of ACASA is reflected in 20 atmospheric layers evenly
distributed between the canopy and the air above extending
to twice the canopy height, and in 15 soil layers. Leaf,
stem and soil surface temperatures are calculated using
the fourth-order polynomial of Paw U and Gao (1988),
allowing the calculation of temperatures of these compo-
nents where these may deviate significantly from ambient

air temperatures. Energy flux estimates consider multiple
leaf-angle classes and direct as well as diffuse radiation
absorption, reflection, transmission and emission. Plant
physiological response to micro-environmental conditions
is calculated by a combination of the Ball-Berry stomatal
conductance (Leuning, 1990; Collatz et al., 1991) and
the Farquhar and von Caemmerer (1982) photosynthesis
equation following Su et al. (1996). The soil module used
to calculate soil surface evaporation, soil moisture, and soil
temperature is adapted from MAPS (Mesoscale Analysis
and Prediction System; Smirnova et al., 1997, 2000).
Additionally, canopy heat storage and canopy interception
of precipitation are included in ACASA.

The model was adapted from a version from October 2009.
The model source code was modified in two parts. The
first change concerns the soil respiration calculations. A soil
moisture attenuation factor that is meant to reduce micro-
bial soil respiration when soil moisture falls below the wilt-
ing point soil moisture was disabled in this study, as it not
only reduced soil microbial respiration during dry periods
but also enhanced respiration rates to unreasonably high val-
ues during wet periods, a finding that is consistent with Isaac
et al. (2007). As in the original ACASA version, respiration
RT at temperatureTs is calculated with an Arrhenius type
equation with basal respiration rateR0 at 0◦C and theQ10
as input parameters (e.g. Hamilton et al., 2001):

RT = R0 · exp (0.1 · Ts · ln (Q10)) (1)

Here,R0 is given in [µmol m−2 s−1], based on the surface
area of the roots or microbes. Soil respiration is simulated for
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Fig. 2. Meteorological conditions during the two five day periods (left: IOP-1, right: IOP-2).(a) and(b): Global radiation (solid line) and
air temperature (dotted line) above the canopy (30 m and 31 m).(c) and(d): Vapor pressure deficit above the canopy (31 m).(e) and(f):
Wind speed above the canopy (31 m).(g) and(h): Soil temperature (solid line) and soil moisture (dotted line) at 10 cm depth.

microbes and roots separately, using Eq. (1), and summed up
to form the total soil respiration. Each of the two components
is the sum of the respective respiration contributions from the
15 soil layers, weighted by the root fractions of these layers.
To obtain the total soil respiration per ground surface area, it
is assumed that the sum of the total root and microbe surface
area resemble the leaf area index.

The second change in the source code was made within
the plant physiology sub models in the calculation of pho-
tosynthesis. The temperature dependence of the maximum
catalytic activity of Rubisco at saturated ribulose biphos-
phate (RuBP) and saturated CO2, Vcmax (µmol m−2 s−1) fol-
lows a third-order polynomial given by Kirschbaum and Far-
quhar (1984), which was derived from measurements made
in a temperature range of 15 to 32◦C. For temperatures be-
low 10◦C this third-order polynomial results in an unrealistic
increase ofVcmax, as was already noticed by Leuning (1997).
As temperatures of less than 10◦C are very common at our
site, the third-order polynomial was replaced by the temper-
ature dependence ofVcmaxas used in theC3 leaf sub-module
PSN6 of the model SVAT-CN (Falge et al., 1996, 2005):

Vcmax = Vcmax25× (2)
exp[1Ha·(TK −Tref)/(R·TK ·Tref)] ·(1+exp[(1S·Tref−1Hd)/(R·Tref)])

1+exp[(1S·TK −1Hd)/(R·TK)]

whereTK is the leaf temperature (in K),R is the gas constant
(8.31 J mol−1 K−1), Vcmax25 is the maximum carboxylation

rate at a reference temperatureTref of 298.15 K,1S is an en-
tropy term (655 J mol−1 K−1), and1Ha and1Hd are the ac-
tivation energy and energy of deactivation (both in J mol−1,
1Hd set to 200 000 J mol−1), respectively.

The output of the ACASA model comprises profiles of
mean quantities, flux profiles including the components of
the CO2 exchange, profiles of the third order moments and
profiles of the soil properties. For the purpose of the sensi-
tivity analysis, only the turbulent and radiative fluxes above
the canopy were considered. The performance of other quan-
tities at our site, such as the flux profiles, was assessed in a
different study (Staudt et al., 2010).

2.4 The GLUE methodology

To evaluate the sensitivity and uncertainty of the ACASA
model, the Generalized Likelihood Uncertainty Estima-
tion (GLUE) method, which has been proposed by Beven
and Binley (1992) and is described in detail in Beven et
al. (2000), was employed here. The basic idea of the GLUE
methodology is the principle of equifinality, which here
means that one does not expect a single optimum parameter
set for a model but rather many sets of parameters that give
equally good model results. In a Monte Carlo simulation
framework, a large number of random sets of parameters are
derived from uniform distributions across specified parame-
ter ranges. The model results are then evaluated through the
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Table 2. List of the external (first 16) and internal (plant physiological, second 8) input parameters to the ACASA model which were studied
in the sensitivity analysis, the range over which each parameter was varied and the reference values for the ACASA as well as the PSN6
model for our site.

Parameter Definition Min. Max. Ref. References

lai Leaf area index (single-sided)[m2 m−2
] 0.5 9 4.8 Measurements

hc Canopy height[m] 18 28 25 Measurements
r0l Leaf basal respiration rate at 0◦C [µmol m−2 s−1

]
∗ 0.05 1.4 0.15 Acosta et al., 2008; Falge et al., 1996; Hamilton et al., 2001

r0s Stem basal respiration rate at 0◦C [µmol m−2 s−1
]
∗ 0.05 1.4 0.85 Acosta et al., 2008

r0r Root basal respiration rate at 0◦C [µmol m−2 s−1
]
∗ 0.05 1.4 0.94/lai Buchmann, 2000; Matteucci et al., 2000; Subke et al., 2003;

Janssens et al., 2003; Borken et al., 2002

r0m Microbe basal resp. rate at 0◦C [µmol m−2 s−1
]
∗ 0.05 1.4 0.94/lai Buchmann, 2000; Matteucci et al., 2000; Subke et al., 2003;

Janssens et al., 2003; Borken et al., 2002

q10l Q10 for leaves[−] 1.8 3 2.42 Stockfors and Linder, 1998b; Acosta et al., 2008;
Falge et al., 1996; Hamilton et al., 2001

q10s Q10 for stems[−] 1.8 3 2.25 Stockfors and Linder, 1998a; Acosta et al., 2008
q10r Q10 for roots[−] 1.8 3 2.57 Buchmann, 2000; Matteucci et al., 2000; Subke et al., 2003;

Janssens et al., 2003; Borken et al., 2002

q10m Q10 for microbes[−] 1.8 3 2.57 Buchmann, 2000; Matteucci et al., 2000; Subke et al., 2003;
Janssens et al., 2003; Borken et al., 2002

pr0 Near-IR leaf reflectivity[−] 0.1 0.4 0.28 Huang et al., 2007
tr0 Near-IR leaf transmissivity[−] 0.05 0.4 0.11 Huang et al., 2007
pv0 Visible leaf reflectivity[−] 0.01 0.4 0.07 Huang et al., 2007
tv0 Visible leaf transmissivity[−] 0.01 0.15 0.03 Huang et al., 2007
drx Leaf drag coefficient[−] 0.05 0.25 0.15 Meyers and Paw U, 1986; Massman and Weil, 1999
xldiam Mean leaf diameter[m] 0.01 0.02 0.015 Measurements

Parameter Definition Min. Max. ACASA PSN6

vcmax25 Maximum rate of carboxylation at 25◦C [µmol m−2 s−1
] 35 105 89 50.6 Kattge and Knorr, 2007 and references therein

eavc Activation energy1Ha [J mol−1
] 40 000 80 000 40 649 75 750 Kattge and Knorr, 2007 and references therein

jmax25 Potential rate of electron transport at 25◦C [µmol m−2 s−1
] 80 230 224 152 Kattge and Knorr, 2007 and references therein

ejmax Activation energy1Ha [J mol−1
] 30 000 80 000 38 872 47 170 Kattge and Knorr, 2007 and references therein

theta0 Curvature factor[−] 0 1 0.5 0.850 Wang et al., 2001
iqe Quantum efficiency[−] 0.03 0.6 0.405 0.17 Leuning, 1990
cb Intercept of Ball-Berry formula[mol m−2 s−1

] 0 16 0.008 0.001 Leuning, 1990; Lai et al., 2000
cm Slope of Ball-Berry formula[−] 2 19 9.29 9.8 Leuning, 1990; Lai et al., 2000

∗ per m−2 of tissue

calculation of likelihood measures (see Sect. 2.4.2). Based
on the values of these likelihood measures and a predefined
threshold value to distinguish between acceptable and not ac-
ceptable runs, “behavioral” parameter sets can be identified
and “non-behavioral” parameter sets rejected from further
analysis. In a next step, uncertainty bounds for each time
step are deduced from the cumulative distribution of the out-
put variables ranked by the likelihood measure.

A number of subjective decisions have to be made within
the GLUE methodology. These are the definition of the pa-
rameter ranges and the prior parameter distributions as well
as the choice of the likelihood measure applied and the cor-
responding value of the threshold of acceptability. However,
these decisions have to be made explicitly and are therefore
open to debate.

The data preparation and the analysis following the GLUE
methodology was done with the statistical and graphics soft-
ware package R (R Development Core Team, 2008).

2.4.1 Parameters and parameter ranges

The original version of the ACASA model requires a num-
ber of “external”, user defined geographical, morphological

and physiological parameters (see upper part of Table 2). In
this study constant values were used over the whole profile
to keep the number of investigated parameters limited. The
overall number of the external parameters used within this
study is 16, and a few external parameters were held con-
stant, such as the soil type and the measured normalized LAI
profile (Fig. 1b, fitted following Simon et al., 2005). Even
though the normalized LAI profile was kept the same for all
model runs, the absolute LAI value was allowed to vary be-
tween 0.5 and 9 m2 m−2 (see Table 2).

Additionally, 8 parameters from the photosynthesis and
stomatal conductance sub-models were included in this sen-
sitivity analysis (see lower part of Table 2, in the following
called “internal” parameters). In the original version of the
ACASA model, onlyVcmax25and a so-called “water use ef-
ficiency factor” can be defined by the user.Jmax25 is then
defined as 2.41·Vcmax25. The “water use efficiency factor”
wue alters the leaf stomatal conductance to water vaporgs,w
(Su et al., 1996) calculated with the Ball-Berry formula.

gs,w =

(
cm ·

An

cs
· rhs + cb

)
·

1

wue
(3)
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with An the net CO2 uptake rate at the leaf surface,cs the
CO2 concentration,rhs the relative humidity at the leaf sur-
face and cb the intercept and cm the slope of the Ball-Berry
formula. For the remaining plant physiological parameters,
values from the literature were adapted (Su et al., 1996).
However, we chose to independently vary all listed photo-
synthesis and stomatal conductance parameters in this sensi-
tivity study, thus wue was set to 1 and the ratio ofVcmax25
andJmax25was not fixed.

The parameter ranges for this sensitivity analysis include
the original parameter values used in ACASA and PSN6,
which are listed as reference values in Table 2. Furthermore,
values from the literature for spruce or coniferous forests in
general were collected to cover a realistic range of values.
Where possible, parameter ranges were determined from di-
rect measurements. As there was no evidence for other statis-
tical distributions, all parameter ranges were assigned a uni-
form distribution. Random sets of parameters were produced
for a large number of model runs (20 000). Parameters were
independently randomized, with the exception of the param-
eters for microbial and root respiration which were set to
the same values, meaning that root and microbial respiration
each contribute 50% to total soil respiration (mean of val-
ues for temperate coniferous forests, as listed in Subke et al.,
2006). Even though RuBP carboxylation and regeneration
are linked to each other, the parametersJmax25 andVcmax25
were varied independently. The chosen parameter ranges al-
lowed a ratio ofJmax25andVcmax25between 0.8 and 6.5, but
values between one and three as found to be typical by Kattge
and Knorr (2007) were most frequent.

The model was run for the two chosen time periods for all
randomly generated parameter sets and the resulting radiative
and turbulent fluxes and the net ecosystem exchange (NEE)
above the canopy stored for further evaluation.

2.4.2 Likelihood measures

The choice of a likelihood measure to evaluate the perfor-
mance of the model runs is crucial to the analysis, but it
is also subjective. A wide range of likelihood measures is
suitable and has been used in previous studies (Beven et al.,
2000). For each of the radiative and turbulent fluxes and the
NEE above the canopy, likelihood measures were calculated
for 20 000 runs from the observed and the simulated data:

L
(
θj |Y

)
=

E

C
(4)

Here,L
(
θj |Y

)
is the likelihood measure for thej -th model

run with parameter setθj conditioned on the observationsY .
The normalizing constantC was set to 1 in our study.E is
the coefficient of efficiency (Nash and Sutcliffe, 1970)

E = 1 −

∑(
Oj − Pj

)2∑ (
Oj − O

)2
(5)

whereO is observed andP model simulated data. The co-
efficient of efficiencyE varies from minus infinity to 1, and
values close to 1 indicate a good agreement of modeled and
measured data. This goodness of fit measure has the advan-
tage that the value of zero serves as a convenient reference
point, indicating that model runs that result in coefficients
of efficiency of zero are as good as the observed mean and
those that correspond to negative values perform worse than
the observed mean (Legates and McCabe, 1999). The co-
efficient of efficiency is a widely used likelihood measure
within GLUE studies (e.g. Freer et al., 1996; Schulz et al.,
1999, 2001; Liebethal et al., 2005; Franks et al., 1997; Choi
and Beven, 2007; Poyatos et al., 2007). However, the use of
informal likelihood measures such as the Nash and Sutcliffe
coefficient of efficiency within the GLUE methodology has
been discussed in a long and intensive debate in recent years.
Mantovan and Todini (2006) and Mantovan et al. (2007) crit-
icized that the GLUE methodology using a less formal like-
lihood violates some concepts underlying the statistical in-
ference process by being inconsistent and incoherent. Beven
et al. (2007, 2008) responded that formal likelihoods which
include strong assumptions about the modeling errors can be
applied within the GLUE methodology as well, showing the
coherence of the GLUE methodology for this case. But they
questioned that the structure of the errors, such as input er-
rors and model structural errors, are known in real cases and
showed that misspecification of the structure of these errors
gave well-defined but incorrect results. Even though the ap-
plication of an informal likelihood leads to flatter parameter
distributions, it does not require the definition of an explicit
statistical error model.

The second subjective element mentioned above is the def-
inition of the behavioral threshold. Likelihood measures that
are lower than the behavioral threshold are given a value of 0,
which means that these parameter sets are excluded from fur-
ther analysis. A different approach was followed by Prihodko
et al. (2008) and Lamb et al. (1998) who used the top 10%
runs for further analysis instead of defining a threshold value.
We also chose the top 10% runs, which has the advantage that
the number of behavioral runs for all variables considered is
the same, despite considerably deviating ranges of the likeli-
hood measures achieved by the different fluxes.

To combine two or more likelihood measures, various
combination equations are possible (Beven and Freer, 2001).
Here, combined likelihoods are achieved by applying Bayes
equation in the following form:

L
(
θj |Y

)
=

L1
(
θj |Y

)
· L2

(
θj |Y

)
· L3

(
θj |Y

)
C

(6)

which means that the normalized likelihood measuresL1, L2
andL3 are treated as a priori distributions and are rescaled.
The normalizing constantC was again set to 1. We applied
this equation to the best 10% model runs of the sensible and
latent heat fluxes and the NEE for the two IOPs separately.
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While other GLUE studies on SVAT-models (e.g. Pri-
hodko et al., 2008; Mo and Beven, 2004) concentrate on a
combined likelihood measure to achieve the best overall per-
formance for all fluxes which is a precondition for land sur-
face schemes, this study also focuses on the performance of
individual fluxes as we are highly interested in short term
fluctuations of these fluxes.

2.4.3 Parameter sensitivity

The GLUE methodology focuses on the model response to
parameter sets rather than to single parameter values. Never-
theless, the sensitivity of single parameters can be evaluated
with the help of sensitivity graphs, which are scatter plots of
likelihood measures versus parameter values for the behav-
ioral parameter sets. Thus, the multidimensional parameter
response surface is projected onto a single parameter axis –
Fig. 3a to f for the sensible heat flux (H), the latent heat flux
(LE) and the NEE against leaf area index, lai, during IOP-1
and IOP-2.

In a next step, cumulative frequencies of the parameters
for the final behavioral model runs were compared to the
original uniform distribution (Franks et al., 1999; Schulz et
al., 1999; Fig. 3g and h for leaf area index lai during IOP-1
and IOP-2). Here, the three single-objective as well as the
combined likelihood measures were analyzed. The original
uniform distribution forms a diagonal line from the left-low
corner to right-up corner of the cumulative distribution plots.
If there is no difference in the original distribution and the
distribution of the behavioral simulations, the parameter is
considered as insensitive, whereas a deviation from the di-
agonal line indicates parameter sensitivity. The shape of the
cumulative frequency curves gives an idea of optimal param-
eter values, as the area of steepest slope points out where the
majority parameter values are found (Prihodko et al., 2008).
With a Kolmogorov-Smirnov (K-S) test, the equality of the
cumulative frequency of the behavioral model runs and the
original uniform distributions can be tested and the signif-
icance of any differences determined. The parameters to
which the model is sensitive were identified if the K-S test
statistic was significant at thep = 0.01 level. The K-S value
was used to rank the parameters according to their signifi-
cance, with higher K-S values indicating a higher sensitivity.
This approach was followed by Prihodko et al. (2008) in an-
alyzing a SVAT-model and was also successfully used in pre-
vious sensitivity tests for other model classes (e.g. Meixner
et al., 1999; Spear and Hornberger, 1980).

2.4.4 Uncertainty estimation

Uncertainty bounds were calculated for each flux at each
time stept for the single-objective and the combined mea-
sures with (Beven and Freer, 2001):

P
(
Ẑt < z

)
=

B∑
i=1

L
[
M (θi)|Ẑt,i < z

]
(7)
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Figure 3. Sensitivity graphs showing the range of the single-objective coefficients of 3 
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a and b) and latent (LE, c and d) heat flux and the NEE (e and f) across the range of the leaf 5 

area index, lai [m2 m-2]. The vertical dashed line denotes the reference parameter value. 6 

Cumulative frequencies are plotted in (g) and (h) for the three fluxes as well as for the 7 
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Fig. 3. Sensitivity graphs showing the range of the single-objective
coefficients of efficiency for the best 10% parameter sets (left:
IOP-1, right: IOP-2) for the sensible heat flux, H,(a) and(b), the
latent heat flux, LE,(c) and(d), and the NEE,(e)and(f), across the
range of the leaf area index, lai [m2 m−2]. The vertical dashed line
denotes the reference parameter value. Cumulative frequencies are
plotted in(g) and(h) for the three fluxes as well as for the combined
likelihood measure with the diagonal solid line showing a uniform
parameter distribution for comparison.

where Ẑt,i is the value of variableZ at time t simulated
by modelM(θi) with parameter setθi . Output variables
from the behavioral runs for each time step were ranked and
its likelihood measures, scaled to a sum of unity (Eqs. 4
and 6), maintained. From these likelihood weighted cumu-

lative distributions, the prediction quantilesP
(
Ẑt < z

)
can

be selected. The 5% and 95% quantiles were chosen to
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Table 3. Maximum and minimum values of the coefficient of efficiencyE for sensible heat flux (H), latent heat flux (LE), ground heat
flux (G), net ecosystem exchange (NEE), short-wave radiation budget (Rn(sw)), long-wave radiation budget (Rn(lw)) and for net radia-
tion (Rn) for IOP-1 and IOP-2 (20 000 runs each).

H LE G NEE Rn(sw) Rn(lw) Rn

IOP-1 MaximumE 0.92 0.87 0.34 0.84 1.00 0.98 1.00
Minimum E −2.49 −13.91 −0.01 −233.32 0.89 0.23 0.88

IOP-2 MaximumE 0.93 0.80 −0.24 0.86 1.00 0.99 1.00
Minimum E −9.85 −103.30 −1.02 −626.82 0.86 0.63 0.86

represent the model uncertainty. For a more detailed descrip-
tion of the computation of uncertainty bounds see Prihodko
et al. (2008). Beven and Freer (2001) note that these quan-
tiles are conditional on the model input data, the parameter
sets, the observations and the choice of likelihood measure.

3 Results

3.1 Ranges of likelihood measure

The maximum values as well as the ranges of the coeffi-
cient of efficiencyE (Table 3) were very different for the
seven fluxes considered here. Only for net radiation (Rn)
and the short-wave radiation budget (Rn(sw)) were values
of 1 reached for both IOPs, which shows, in combination
with a small variability of the likelihood measures, a very
good agreement of observed and modeled data. The maxi-
mum values for the sensible heat flux (H) were close to the
values for net radiation, whereas the range was larger. For
the latent heat flux (LE) and NEE, the variability was much
wider. The ranges of the coefficient of efficiency for the sen-
sible heat flux, the latent heat flux and the NEE were con-
siderably larger for IOP-2 than for IOP-1. Maximum val-
ues for the sensible heat flux and the NEE were similar for
both IOPs, whereas there were differences between the IOPs
for the latent heat flux with larger values during IOP-1. For
the radiation budgets, only the long-wave radiation budget
had a larger range and a slightly lower maximum value dur-
ing IOP-1 than during IOP-2. Maximum coefficients of ef-
ficiency for the ground heat flux (G) reached only very low
values.

For further analysis, we retained the top 10% runs and con-
centrated on the sensible and latent heat fluxes and the NEE.
For all fluxes except the NEE during IOP-2, the coefficients
of efficiency of the best 10% runs were positive (Fig. 3).
Negative coefficients of efficiency indicate that the simula-
tion is worse than the observed mean, thus such model runs
are unwanted. These model runs were also excluded from
further analysis, resulting in only 1901 model runs (9.5%)
for the NEE during IOP-2.

For all tested runs, the modeled radiative flux budgets,
with exception of the long wave radiation budget during
IOP-1, were in very good agreement with the measured val-
ues. Therefore, the effort to better parameterize the model
will be directed to the sensible and latent heat fluxes and
the NEE. The ground heat flux proved to achieve only small
likelihood measure values, especially during IOP-2. This is
mainly attributable to the ground heat flux measurements,
which are single-point measurements and were, in our case,
influenced by sunspots in the late afternoon resulting in very
high ground heat fluxes lasting for only a short period. As the
model represents an area rather than a point, any direct com-
parison of these data has to be done carefully. A different
experimental setup with a high resolution of radiation mea-
surements in the trunk space and soil measurements would
be needed in the investigated forest. Furthermore, the ground
heat flux is only about 5% of net radiation and much smaller
than all other turbulent fluxes. Thus, the ground heat flux was
excluded from further analysis. For sensible and latent heat
fluxes as well as the NEE, the footprint of the measurements
(Siebicke, 2008) is well within the range of the horizontal
spatial scale of the ACASA model, which represents a flux
footprint of about 104 to 106 m2.

The performance of the parameter sets for the three fluxes
are compared in Fig. 4 (Fig. 4a to c for IOP-1, Fig. 4d to f
for IOP-2). There was a correlation of the coefficients of effi-
ciency for the sensible and the latent heat flux with a similar
relative model performance for all parameter sets, which is
not surprising due to the coupling of the sensible and latent
heat flux by the energy balance closure. But there is no cor-
relation for the sensible and latent heat fluxes with the NEE.
The number of parameter sets that are within the 10% best
parameter sets for all three fluxes is very much reduced from
the 2000 (1901 for NEE in IOP-2) parameter sets to 94 for
IOP-1 and 87 for IOP-2. The last three panels of Fig. 4 com-
pare each of the coefficients of efficiency for the three fluxes
for IOP-1 with those for IOP-2. For the NEE, there is a good
correlation between the two IOPs, whereas for the other two
fluxes the scatter plots are somewhat bow-shaped. Combin-
ing the coefficients of efficiency for all three fluxes for the
two IOPs yielded only 7 behavioral parameter sets.
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Fig. 4. Scatter plots of the coefficients of efficiency for the three fluxes. Each dot represents one parameter set.(a)–(c): Individual
coefficients of efficiency for IOP-1 compared to each other.(d)–(f): Same as (a)–(c) but for IOP-2.(g)–(i): For each flux, coefficients of
efficiency compared for the two IOPs. Note the differences in the axis ranges.

3.2 Sensitivity graphs

The sensitivity graphs for the 10% best model runs for IOP-1
and IOP-2 for the leaf area index, lai, (Fig. 3a to f) again re-
flect the differences in the ranges of the likelihood measures
for the different fluxes as well as for the same fluxes for the
two IOPs. Especially for the latent heat flux, there was a
large difference of ranges of coefficients of efficiency for the
10% best model runs for the two IOPs with values for IOP-1
that were all larger than the maximum values for IOP-2. All
fluxes show a high degree of sensitivity to the lai for both
IOPs, with a higher frequency of lai values within the lower
half of the lai range for all fluxes but the latent heat flux for
IOP-1.

To directly compare the sensitivity of the parameters for
the different fluxes, the cumulative frequency of each of the
parameters for the 10% best runs were plotted and com-
pared to a uniform parameter distribution, indicated by the
diagonal line (Fig. 3g and h). Slopes of the cumulative fre-
quency curves that deviate from the slope of the diagonal line

indicate parameter sensitivity and more or less frequent pa-
rameter ranges for larger or smaller slopes, respectively. For
all fluxes the steepest slopes in the curves (i.e. the largest
derivative) and therefore the optimal parameter values for lai
are in a range of 0.5 to 5 m2 m−2, which is mostly lower than
the reference value for the Waldstein-Weidenbrunnen site of
4.8 m2 m−2. For the sensible and latent heat fluxes, lai val-
ues are confined to a smaller range than the original parame-
ter range, with no values that are lower/higher than a certain
threshold value appearing in the behavioural parameter sets.
The cumulative frequency curves for the combined coeffi-
cients of efficiency for both IOPs have a more pronounced
shape and a narrower range than the other curves, indicat-
ing optimal lai values of approximately 2 m2 m−2. Figures 5
and 6 display the sensitivity of the model to an additional set
of six parameters. TheQ10 for stem respiration, q10s, is one
of the parameters the model is not sensitive to for all fluxes
for both IOPs, as none of the cumulative frequency curves in
Fig. 5a and b deviates much from the diagonal line represent-
ing the uniform distribution. As stem respiration contributes
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Figure 5. Cumulative likelihood distributions for the model parameters q10s (Q10 for stem 3 
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Fig. 5. Cumulative likelihood distributions for the model param-
eters q10s,Q10 for stem respiration [−], (a) and (b), iqe, quan-
tum efficiency [−], (c) and(d), and r0m, microbe basal resp. rate
at 0◦C [µmol m−2 s−1], (e) and (f), for the 10% best parameter
sets for the single-objective and combined coefficients of efficiency
(left column: IOP-1, right column: IOP-2). The thin black diago-
nal represents a uniform parameter distribution. In (a), (b), (e) and
(f) the dashed vertical line depicts the reference parameter for the
Waldstein-Weidenbrunnen site. In (c) and (d) the dashed vertical
line shows the original ACASA parameter whereas the dotted verti-
cal line depicts the reference value of the PSN6 model for our site.

little to total respiration, it is not surprising that parameters
for stem respiration are not among the influential model pa-
rameters. In contrast, the quantum efficiency, iqe, a parame-
ter utilized in the plant physiology sub-modules, appears as
an influential parameter for all three fluxes (Fig. 5c and d).
For the sensible and latent heat fluxes, the cumulative fre-
quency curve has a similar shape with a larger slope for lower
values and a smaller slope for high iqe values, whereas the
shape for the NEE curve is the opposite, with smaller gra-
dients for low iqe values. The NEE is strongly sensitive to
the value of the basal respiration rate for soil microbes, r0m,
with optimal parameter values within the lower third of the
parameter range (Fig. 5e and f). For r0m and iqe for IOP-1,
the curve for the combined likelihood measure follows the
NEE curve closely, whereas the combined likelihood mea-
sure is not sensitive to iqe for IOP-2, which is probably due
to the opposing cumulative frequency curves for the NEE and
the other two fluxes.
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Figure 6. Cumulative likelihood distributions for the model parameters pr0 (near-IR leaf 3 
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Fig. 6. Cumulative likelihood distributions for the model param-
eters pr0, near-IR leaf reflectivity [−], (a) and (b), cb, intercept
of Ball-Berry formula [mol m−2 s−1], (c) and (d), and cm, slope
of Ball-Berry formula [−], (e) and (f), for the 10% best param-
eter sets for the single-objective and combined coefficients of ef-
ficiency (left column: IOP-1, right column: IOP-2). The thin
black diagonal represents a uniform parameter distribution. In (a)
and (b) the dashed vertical line depicts the reference parameter for
the Waldstein-Weidenbrunnen site. In (c) to (f) the dashed verti-
cal line shows the original ACASA parameter whereas the dotted
vertical line depicts the reference value of the PSN6 model for our
site.

Whereas all parameters in Fig. 5 showed a similar behav-
ior in both IOPs, the three parameters displayed in Fig. 6
experience a different response for the two IOPs. Only the
sensible heat flux for IOP-1, but not for IOP-2, is sensitive
to the near-IR leaf reflectivity pr0, with the curve indicat-
ing a higher frequency of higher pr0 values (Fig. 6a and b).
Lower values of the intercept of the Ball-Berry formula, cb,
are more frequent within behavioral parameter sets for the
sensible and latent heat fluxes for IOP-2 (Fig. 6c and d). For
all other fluxes, the curves for cb follow the diagonal line
very closely. The curves of the cumulative frequency for the
slope of the Ball-Berry formula, cm, (Fig. 6e and f) indicate
a strong sensitivity of all fluxes, especially for the sensible
and latent heat fluxes. For the NEE for both IOPs the be-
havioral parameter sets contain more values from the upper
half of the parameter range. In contrast, the cumulative fre-
quency curves for the other two fluxes suggest optimal pa-
rameter values from the lower half of the parameter ranges,
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with a much stronger response for IOP-2, where values are
completely confined to the lower half of the parameter range.

To quantify whether the distribution of parameter values
for the 10% best model runs follows the uniform distribution
or not, and thus to identify which parameters the modeled
fluxes are sensitive to and to list these parameters in order
of importance, the Kolmogorov-Smirnov test was performed
(Table 4).

There was a difference in the number of sensitive parame-
ters between the two IOPs with a larger number of sensitive
parameters for NEE for IOP-1 than for IOP-2 and a larger
number of sensitive parameters for the combined fluxes for
IOP-2 than for IOP-1.

As the lai appears as the first or one of the first parame-
ters in the parameter rankings for all fluxes, the importance
of this parameter as one of the most influential parameters is
illustrated once more. The other two plant morphological pa-
rameters, the canopy height, hc, and the mean leaf diameter,
xldiam, are not listed among the influential parameters. The
leaf drag coefficient, drx, used in the third order closure tur-
bulence subroutines only appears in the parameter rankings
for the sensible heat flux.

Also among the most influential parameters for all fluxes
are the parameters determining leaf respiration, with the leaf
basal respiration rate, r0l, and theQ10 of leaf respiration,
q10l. The parameters for stem respiration (r0s, q10s) do not
appear in the parameter rankings, whereas the parameters
for root and microbial respiration (r0r, q10r, r0m, q10m) are
listed amongst the most influential parameters for the NEE
and also appear for the combined fluxes. Radiation parame-
ters (pr0, pv0, tr0, tv0) only appear for IOP-1, with the sen-
sible heat flux being sensitive to pr0 and pv0.

The parameters of the photosynthesis and stomatal con-
ductance subroutines contribute to the ranked parameters in
roughly the same proportion as they do to the overall number
of investigated parameters for the sensible heat flux and the
NEE, but in a larger proportion for the latent heat flux and in
a smaller proportion for the combined fluxes. Of the parame-
ters that determine the temperature dependence of the maxi-
mum catalytic activity of RubiscoVcmax, only the maximum
rate of carboxylation, vcmax25, appears to be influential for
the NEE for IOP-1. The corresponding activation energy,
eavc, does not appear in the parameter rankings. The pic-
ture for the maximum rate of whole-chain electron transport
at saturated lightJmax is different, with the potential rate of
electron transport at 25◦C, jmax25, appearing as an influen-
tial parameter for the NEE for both IOPs and the latent heat
flux for IOP-1, and the activation energy, ejmax, appearing
also for NEE for IOP-1.

The radiation dependence of the potential rate of whole-
chain electron transport is affected by the curvature factor,
theta0, and the quantum efficiency, iqe, with the latter being
influential for all fluxes except the combined fluxes, and the
former not being influential for any flux. The slope of the
Ball-Berry formula, cm, to calculate stomatal conductance

Table 4. Sensitive parameters for the sensible (H) and latent heat
flux (LE) and the net ecosystem exchange (NEE), ranked by the
Kolmogorov-Smirnov coefficient, for the single-objective and com-
bined coefficient of efficiency for the 10% best runs. “Internal” pa-
rameters for the plant physiological subroutine are printed in bold.
For the meanings of parameter abbreviations see Table 2.

IOP-1 IOP-2

H LE NEE Comb. H LE NEE Comb.

lai cm r0l r0l cm cm r0l r0l
cm lai lai lai lai lai lai cm
r0l r0l r0r cm r0l r0l r0r lai
drx iqe r0m r0r q10l q10l r0m r0r
iqe q10l iqe r0m cb cb cm r0m
pr0 jmax25 cm drx iqe q10l q10r
pv0 q10l iqe q10r q10m

jmax25 q10m q10l
q10r iqe
q10m jmax25
ejmax
vcmax25

appears for all fluxes and the combined fluxes as the first or
one of the first parameters, thus as one of the most influential
parameters. In contrast, the second parameter in the Ball-
Berry formula, its intercept cb, only appears for the sensible
and latent heat fluxes in IOP-2 in combination with cm.

3.3 Model uncertainty

Predictive uncertainty bounds were calculated for each flux
for the individual best 10% model runs and the model runs
resulting from the combination of all three likelihood mea-
sures for both IOPs (Figs. 7 and 8). These figures also show
a 10% to 15% error for the sensible heat flux measurements
and a 15% to 20% error for the latent heat flux and NEE
measurements depending on the quality flag (after Mauder
et al., 2006, see Sect. 2.2). Table 5 lists the percentage of
observations that are enclosed by the uncertainty bounds and
those that lie without. In general, the calculated uncertainty
bounds capture the measured values for all three fluxes most
of the time. The narrowest uncertainty bounds were observed
for the sensible heat flux. Maximum daytime values as well
as night-time values were simulated by the model quite well.
But the model seems to respond to environmental conditions
faster than the observations, with an earlier onset of growing
sensible heat fluxes in the morning and of decreasing fluxes
in the afternoon, resulting in a slight time shift. Therefore,
the percentage of observations within the uncertainty bounds
for the sensible heat flux is below 50% (Table 5). The model
was not able to capture maximum daytime latent heat flux
values for some days during both IOPs. During night time,
latent heat fluxes for IOP-1 were also frequently underesti-
mated by the model. For latent heat fluxes the percentage
of observations within the uncertainty bounds is larger for
IOP-2 than for IOP-1, whereas for the other two fluxes it is
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Figure 7. Predictive uncertainty bounds (5th and 95th quantile) and observed values (black 3 

dots) for the sensible heat flux (H, a), the latent heat flux (LE, b) and the net ecosystem 4 

exchange (NEE, c) for the coefficient of efficiency (IOP-1, dotted lines: individual best 10%, 5 

solid lines: combined). Vertical lines display the error after Mauder et al. (2006) depending on 6 

the quality flag. For sensible heat fluxes, the error is 10% for quality classes 1-3 and 15% for 7 

quality classes 4-6. For latent heat fluxes and the NEE, the error is 15% for quality classes 1-3 8 
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Fig. 7. Predictive uncertainty bounds (5th and 95th quantile) and observed values (black dots) for the sensible heat flux, H,(a), the latent
heat flux, LE,(b), and the net ecosystem exchange, NEE,(c), for the coefficient of efficiency (IOP-1, dotted lines: individual best 10%, solid
lines: combined). Vertical lines display the error after Mauder et al. (2006) depending on the quality flag. For sensible heat fluxes, the error
is 10% for quality classes 1-3 and 15% for quality classes 4-6. For latent heat fluxes and the NEE, the error is 15% for quality classes 1-3
and 20% for quality classes 4-6 according to Foken et al. (2004).
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dots) for the sensible heat flux (H, a), the latent heat flux (LE, b) and the net ecosystem 4 

exchange (NEE, c) for the coefficient of efficiency (IOP-2, dotted lines: individual best 10%, 5 

solid lines: combined). Vertical lines display the error after Mauder et al. (2006) depending on 6 

the quality flag. For sensible heat fluxes, the error is 10% for quality classes 1-3 and 15% for 7 

quality classes 4-6. For latent heat fluxes and the NEE, the error is 15% for quality classes 1-3 8 

and 20% for quality classes 4-6 according to Foken et al. (2004). 9 

10 

Fig. 8. Predictive uncertainty bounds (5th and 95th quantile) and observed values (black dots) for the sensible heat flux, H,(a), the latent
heat flux, LE,(b), and the net ecosystem exchange, NEE,(c), for the coefficient of efficiency (IOP-2, dotted lines: individual best 10%, solid
lines: combined). Vertical lines display the error after Mauder et al. (2006) depending on the quality flag. For sensible heat fluxes, the error
is 10% for quality classes 1-3 and 15% for quality classes 4-6. For latent heat fluxes and the NEE, the error is 15% for quality classes 1-3
and 20% for quality classes 4-6 according to Foken et al. (2004).

very similar for both IOPs (Table 5). Uncertainty bounds for
the NEE are the largest of all fluxes, are also much larger
than the uncertainties of the NEE measured by the eddy-
covariance technique, but also enclose the highest percentage
of observations during both IOPs. For the sensible and latent
heat fluxes during IOP-1, the range of uncertainties of the
eddy-covariance measurements are of a similar width as the
uncertainty bounds of the ACASA model. For many times
of the studied period, the uncertainty bounds of the measure-
ments and the models largely overlap. For the latent heat flux

for IOP-2, measured uncertainties were within the derived
model uncertainty bounds. However, the width of model un-
certainty bounds was considerably larger than the range of
uncertainties of the eddy-covariance measurements.

For all fluxes, there was a smaller percentage comprised
of uncertainty bounds constrained on all three fluxes than
those constrained on individual fluxes. This is especially evi-
dent for the NEE for IOP-2, where maximum daytime values
are no longer covered by the combined uncertainty bounds
(Fig. 8).
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Table 5. Percentage of observations above, within and below the 5th and 95th quantile predictive uncertainty bounds for the single-objective
coefficient of efficiency (left) and the combined coefficient of efficiency (right) for the sensible (H) and latent heat flux (LE) and the net
ecosystem exchange (NEE) for IOP-1 and IOP-2.

Coefficient of efficiencyE CombinedE

% Above % Within % Below % Above % Within % Below

IOP-1 H 35 43 22 46 30 24
LE 26 56 17 45 37 18
NEE 2 86 12 3 69 28

IOP-2 H 41 42 17 50 31 19
LE 9 72 19 8 62 30
NEE 0 89 11 3 72 25

4 Discussion

First of all, it should be noted that the outcome of this sen-
sitivity study only applies for the Waldstein-Weidenbrunnen
site and furthermore is only valid for these two time periods,
as results of an analysis following the GLUE methodology
are always conditional not only on the parameter sets and the
choice of likelihood measure but also on the model input data
and the observations (Beven and Freer, 2001). Additionally,
it has to be kept in mind that the eddy-covariance measure-
ments, which served as comparison values to the modeled
fluxes, might be afflicted with errors. Mitchell et al. (2009)
considered the uncertainty in annual NEE estimates in the
selection of behavioral parameters in a GLUE study. Here,
measurement uncertainties were not included in our GLUE
analysis, but shown for comparison with the derived uncer-
tainty bounds from the model (Figs. 7 and 8). Furthermore,
the energy balance closure problem adds non-random un-
certainties to the measurements. For our site, the missing
energy was always found to be about 20% of the available
energy without larger variations over time, e.g. 23% (1997–
1999; Aubinet et al., 2000; Foken, 2008), 19% (IOP-1) and
21% (IOP-2). The problem of the unclosed energy balance is
still an open question. It is probable, that large-scale pro-
cesses in heterogeneous landscapes and the corresponding
large scale eddies that are missed by the eddy-covariance
technique cause the residuum (Foken, 2008). One suggested
method to close the energy balance according to the Bowen
ratio (Twine et al., 2000) is only a first approximation (Fo-
ken, 2008), as this method assumes a similar Bowen ratio for
small- and large-scale eddies, which could not be confirmed
by measurements (Ruppert et al., 2006). Therefore, we de-
cided not to close the energy balance in eddy-covariance
measurements in this study. By doing so we hope to avoid
adding more uncertainties to the measured fluxes due not
only to the selected closure method but also from uncertain-
ties of the soil heat flux measurements and estimates of stor-
age heat fluxes. Additional problems might arise from weak-
nesses of the “Bowen-ratio closure” for negative Bowen ra-
tios.

4.1 Parameter sensitivity

About one third to one half of the input parameters were
identified as influential parameters, including internal as well
as external parameters. However, the so-called problem of
parameter equifinality was detected in ACASA. For many
parameters, very good as well as very poor results for the
sensible and latent heat flux and the NEE were obtained for
every parameter value in the examined parameter range. This
was also reported in several studies examining the sensitivity
of parameters in complex process-based models (e.g. Franks
et al., 1997; Schulz et al., 2001; Prihodko et al., 2008). Thus,
identification of an optimal parameter value for a single pa-
rameter will always depend on the values of all other parame-
ters (Schulz and Beven, 2003). Furthermore, parameter equi-
finality could indicate that the model is over-parameterized,
as no robust parameter estimation is possible with the em-
ployed data set (Franks et al., 1999). Consequently, one
needs to either include longer data sets for calibration that
also comprise different meteorological conditions or seasons
or fix as many parameters as possible to values determined
from independent measurements (Schulz et al., 2001; Schulz
and Beven, 2003). It has been argued by Franks et al. (1999)
that the complexity of SVAT models should be reduced to a
level that copes with the available calibration data and thus
reduces the problem of parameter equifinality.

The two periods of different meteorological conditions, a
cold and wet autumn in 2007 and a hot and dry summer in
2008, allowed the study of seasonal variations in parameter
sensitivity. The sensitivity of the fluxes to a range of param-
eters, such as the basal soil respiration rates (see parameters
in Fig. 5), was similar for both periods, whereas a few pa-
rameters experienced a different response to the parameter
values for the two time periods (e.g. pr0 Fig. 6). This was
especially evident for the slope of the Ball-Berry formula,
cm, with a stronger sensitivity of the latent and sensible heat
fluxes to this parameter for IOP-2 (Fig. 6). For this drier and
warmer period, the best model results were achieved with a
lower cm value than for the colder and wetter IOP-1. This
is in line with the suggestions of Tenhunen et al. (1990) and
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Baldocchi (1997) to reduce the slope of the Ball-Berry for-
mula with decreasing water availability for the simulation of
H2O and CO2 exchange of a Mediterranean and a temper-
ate broad-leaved forest, respectively. However, Reichstein et
al. (2003) found that reducingVcmax but keeping the Ball-
Berry slope constant better reproduces NEE and the latent
heat flux from eddy-covariance. The number and ranking
of influential parameters (Table 4) consequently varies for
the two time periods, indicating the need to seasonally adjust
several parameter values. But as only two short periods are
considered here, such recommendations are of limited jus-
tifiability. In order to draw general conclusions about the
seasonality of parameters and to cover all relevant processes,
it is necessary to include much longer time periods with a
larger meteorological variability, as was done by Prihodko et
al. (2008).

Our findings of parameters that appeared to be influential
in our sensitivity analysis revealed similarities with results
from other sensitivity studies or studies that used inversion
methods for parameter estimation. Even though other models
– including different process descriptions and thus different
parameters investigated – were analysed, stomatal parame-
ters were also among the most sensitive or best constrained
parameters (Mitchell et al., 2009; Prihodko et al., 2008;
Knorr and Kattge, 2005). Wang et al. (2001) included the
slope of the Ball-Berry formula in their parameter estimation,
whereas all fluxes proved to be insensitive to the intercept of
the Ball-Berry formula. Our observations revealed a similar
result, with the slope of the Ball-Berry formula being among
the most influential parameters and its intercept being less
influential. Furthermore, the parameter inversion performed
by Knorr and Kattge (2005) found that amongst the photo-
synthesis parameters most information was gained for quan-
tum efficiency and maximum carboxylation rate. We found
quantum efficiency to be an influential parameter; however,
maximum carboxylation rate was less influential. As in our
study, strong sensitivity to the leaf area index was found by
Mitchell et al. (2009).

The sensitivity to parameter values for the three studied
fluxes was not the same for all parameters. There was a
very similar response for all three fluxes to some parameters
(e.g. lai for IOP-2, Fig. 3), whereas other parameters were
only influential for one flux (e.g. r0m for the NEE, Fig. 5).
But the sensitivity of the latent heat flux and the NEE to some
plant physiology parameters (cm, iqe, jmax25) was even op-
posite, with cumulative frequency plots indicating optimal
parameter values from the lower part of the parameter range
for one flux and from the upper part of the parameter range
for the other flux (e.g. iqe in Fig. 5). Thus, difficulties arise
when trying to deduce optimal parameter values from the re-
sults of this study, and the model user has to decide in favor of
either the latent heat flux or the NEE. The sensible heat flux
either showed a response similar to that of the latent heat flux
or was not sensitive to the respective parameter.

A complex process-based model like ACASA requires a
large number of input parameters. In this study, 24 pa-
rameters were of interest and concurrently varied to create
20 000 random parameter sets, which is very few with regard
to the number of parameters. A much larger number of pa-
rameter sets would be required to sample the whole range of
variation in combinations of parameters, which would hardly
be realizable due to the large computational power required.
However, as with Prihodko et al. (2008), who had an even
larger number of parameters, we expect that an important
range of the parameter space is already covered by 20 000
model runs. Furthermore, we performed our analysis with
different numbers of parameter sets for IOP-1 (5000, 7500,
10 000, 12 500, 15 000, 17 500) and compared the resulting
uncertainty bounds and lists of sensitive parameters to the
analysis of 20 000 parameter sets. Again, differences for the
three fluxes were observed. For the sensible heat flux uncer-
tainty bounds were not significantly different from the anal-
ysis of 20 000 parameter sets for all smaller sample sizes,
whereas for the latent heat flux and the NEE no difference
was found for sample sizes larger than 7500 and 15 000,
respectively. Furthermore, the lists of sensitive parameters
comprised the same parameters that appeared in the same
order for sample sizes of 15 000 and larger, with the excep-
tion of the last (jmax25) and the last two (ejmax, vcmax25)
parameters for the latent heat flux and the NEE (Table 4), re-
spectively, which only appeared for some of the smaller sam-
ple sizes and the final 20 000 parameter sets. Thus, we feel
confident that a sample size of 20 000 parameter sets ensures
stable results for all three fluxes.

However, the significance of this study is limited in that
it is conditional not only on the meteorological conditions
covered by the input data but also on the sets of parameters.
On the one hand we wanted to assess the general ability of
the ACASA model to reproduce measured fluxes for our site.
Thereby, indications for weaknesses in the model structure
were revealed (see Sect. 4.3). On the other hand, to not only
cover a larger range of variation in combinations of parame-
ters but also to reduce the problem of parameter equifinality,
the results of the present GLUE analysis could be used to fix
relatively insensitive parameter values, to constrain param-
eter ranges and to improve the model structure for a subse-
quent GLUE analysis (Prihodko et al., 2008). Alternatively,
Schulz et al. (2001) not only suggest prescribing as many
parameter values as possible using measurements to reduce
the degrees of freedom, but also mention the gap between
scales of measured parameters and parameters needed to run
models. For the photosynthesis parameters, this is especially
evident, where parameters of the gas exchange response of a
few sample leaves is used as average leaf parameterization of
the entire stand.
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4.2 Predictive uncertainty of the modeled fluxes

The ACASA model was capable of reproducing all fluxes
most of the time as reflected by the uncertainty bounds in
Figs. 7 and 8 and by the comparison to uncertainties of eddy-
covariance measurements. For the latent heat flux, maximum
daily values were not captured by the model for IOP-1. For
the first days, this underestimation can probably be attributed
to evaporation from interception due to a rainy period before
day 263, which was not included in the simulation period
and therefore cannot be adequately represented by the model.
The comparison of uncertainty bounds of the model to un-
certainties of the measured latent heat flux revealed similar
widths for IOP-1, but larger model uncertainties than mea-
surement uncertainties for IOP-2. These large uncertainty
bounds were due to the lower coefficients of efficiency for
IOP-2. Even though they enclosed most of the measurement
points, they reflect problems of the ACASA model in simu-
lating the latent heat flux for the warm and dry summer pe-
riod (see Sect. 4.3 for further discussions).

During each of the IOPs there was one night where mea-
sured fluxes behaved differently than during all other nights,
with all fluxes being close to zero (night 265/266 for IOP-1
and night 181/182 for IOP-2). This divergent behavior was
not simulated by ACASA. Instead, the modeled fluxes dur-
ing these nights were comparable in magnitude to the fluxes
of the other nights. During these two nights measured wind
speeds were much lower (Fig. 2), stabilities higher and fric-
tion velocities smaller than during the other nights, indicating
decoupling of the canopy and the air above. Close to the soil
surface, decoupling was also observed during these periods
(Riederer, 2009). Being a model driven by representations of
turbulent processes, the ACASA model is probably not capa-
ble of representing this non-turbulent process and therefore
overestimates the fluxes above the canopy during periods of
strong decoupling.

It is suspected, or at least hoped, that a parameter set that
achieves good results for one flux would also achieve good
results for the other fluxes, as the aim of SVAT models is
usually to represent all fluxes well. The comparison of the
single-objective and multi-objective quality measures allows
the testing of this hypothesis. For the ACASA model, this
holds somewhat true for the sensible and latent heat fluxes,
with some correlation of good runs for both fluxes, but less
so when the NEE is additionally considered (Fig. 4). This
means that when focusing on individual fluxes only, better
results would be achieved for the flux of interest than when
aiming at a good representation of all three fluxes concur-
rently, with this being especially evident for the NEE (Fig. 8).
The uncertainty bounds that were conditioned only on the
NEE encompassed most measured values, whereas the un-
certainty bounds that were conditioned on all three fluxes
concurrently were considerably narrower and no longer re-
produced the maximum daytime values. It is a little surpris-
ing that such a strong response was not observed for the latent

heat flux as well, as these fluxes would be expected to be
more closely linked to each other due to the coupling of tran-
spiration and carbon assimilation. However, the same was
reported for the SiB v2.5 model (Prihodko et al., 2008).

4.3 Identification of structural weaknesses of the model

As noted before, results of an analysis following the GLUE
methodology are always conditional on the model input data,
the parameter sets, the observations and the choice of likeli-
hood measure (Beven and Freer, 2001). Therefore, it is dif-
ficult to determine whether the observed errors are the result
of structural weaknesses of the model or errors in the input
data or the observations. Nevertheless, Mitchell et al. (2009)
demonstrated how to use a GLUE study to detect problems
in model structure. They extended their study based on the
results of the GLUE analysis on annual NEE to further ex-
plore the reasons for model failure, for example by analyzing
the feedbacks of problems within the simulation of soil hy-
drology and total ecosystem respiration on annual NEE. Our
analysis also revealed indications of structural weaknesses,
such as the difficulties of ACASA in simultaneously repro-
ducing the NEE and the energy fluxes well as has been dis-
cussed before. Furthermore, weaknesses in the soil respira-
tion calculations of the model and in the representation of the
latent heat flux for warm and dry periods were observed.

For the NEE, the basal respiration rates for the soil and the
leaves as well as the lai are the most influential parameters for
both IOPs. On the one hand, this could suggest respiration as
the most important process for the CO2 exchange within the
ACASA model, but on the other hand could also be caused
by an inappropriate choice of parameter ranges, as the results
are conditional on all the subjective choices concerning like-
lihood measures, rejection criteria and parameter ranges. The
equations governing the soil respiration calculations were in-
troduced in Sect. 2.3, with the basal soil respiration rates r0r
and r0m being defined per root area and per microbial sur-
face area, respectively. The sum of the root and microbial
surface areas are, in turn, assumed to be equal to the lai value.
Thus, the effective basal respiration rate for the soil strongly
depends on the lai, and an interaction of these two param-
eters is expected. The scatter plot of the parameters basal
respiration rate of the roots, r0r, versus the leaf area index,
lai, for coefficients of efficiency for the NEE larger than 0.6
confirms this assumption (Fig. 9). The effective basal respi-
ration rate for the roots (r0r× lai) for most model runs was
between 0.2 and 2 µmol m−2 s−1, which encompasses values
measured for spruce sites (0.65 to 1.16 µmol m−2 s−1, refer-
ences see Table 2). Figure 9 also illustrates that the parameter
ranges as chosen result in a very large possible range for the
effective basal respiration rate, which leads to very large and
inappropriate root respiration for combinations of large r0r
and large lai, dominating the NEE and leading to low model
performances. This problem was also reflected in the very
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Figure 9. Scatter plot of root basal respiration rate at 0°C, r0r [µmol m-2 s-1], vs. leaf area 3 

index, lai [m2 m-2], for model runs that achieved a coefficient of efficiency of better than 0.6 4 

for the NEE. Contours indicate the effective root basal respiration rate at 0°C [µmol m-2 s-1] 5 

(r0r· lai). 6 

 7 

Fig. 9. Scatter plot of root basal respiration rate at 0◦C, r0r
[µmol m−2 s−1], vs. leaf area index, lai [m2 m−2], for model runs
that achieved a coefficient of efficiency of better than 0.6 for the
NEE. Contours indicate the effective root basal respiration rate at
0◦C [µmol m−2 s−1] (r0r × lai).

large uncertainty bounds of modeled NEE compared to mea-
sured values.

Measurements of the ratio of root area to leaf area are
scarce, and do not necessarily find values close to 0.5. Even
though a value close to unity was found for some sites,
such as old-growth beech stands in Germany reported by
Leuschner et al. (2004), there were variations of this ratio
observed, for example variations with age for young euca-
lyptus trees (O’Grady et al., 2006) and with elevation within
a tropical mountain forest in Ecuador (Röderstein, 2006). We
therefore suggest using the basal root respiration rate based
on the soil surface as it is measured at many sites, rather than
assuming a root respiration rate based on root surface and as-
suming the root surface as being equal to half of the lai. Such
a reduction of complexity, even though it only concerns one
sub model, could help to reduce the problem of parameter
equifinality, as suggested by Schulz et al. (2001) and Franks
et al. (1997).

This study revealed that the latent heat flux was better re-
produced during the wet and cold fall period than during the
warm and dry summer period, as shown by generally lower
coefficients of efficiency and very large uncertainty bounds
for the summer period. This finding was confirmed by a
study applying the ACASA model for the full annual cycle
for the year 2003 by Schäfer (2010), who found an overesti-
mation of the latent heat flux by ACASA for the very warm
and dry month of August 2003. The largest differences in

parameter sensitivity for the latent heat flux for the two pe-
riods was observed for the slope of the Ball-Berry formula
cm, with a lower value suggested for cm for the warmer and
drier period. This indicates the need to reduce stomatal con-
ductance for drier conditions. Thus, a mechanism to handle
latent heat fluxes during dry and warm conditions is needed,
either by seasonally adjusting cm values with lower values
for dry conditions or by including a feedback mechanism
in the model that reduces stomatal conductance (or the cm
value) with decreasing water availability.

5 Conclusions

The multi-layer SVAT-model ACASA proved to be reason-
ably capable of reproducing the sensible heat, latent heat
and CO2 fluxes for the Waldstein-Weidenbrunnen site in the
Fichtelgebirge mountains in Germany for two five day peri-
ods from different seasons. The sensitivity analysis follow-
ing the GLUE methodology revealed a strong sensitivity to
only a few parameters, such as the leaf area index, the basal
respiration rates and the slope of the Ball-Berry formula. To
many model parameters, the fluxes were not sensitive, indi-
cating the equifinality of these parameters, which is a com-
mon problem of SVAT-models. The results of this sensitivity
study can serve as indicators of which parameters need to be
measured or determined most thoroughly in future ACASA
applications. Furthermore, some of the internal photosyn-
thesis parameters proved to be influential parameters, which
suggests the inclusion of these parameters in the list of pa-
rameters that are open to the user for a species specific ad-
justment. The GLUE analysis for two distinct periods con-
firmed the most relevant parameters, but also showed a dif-
ferent response of some parameters, suggesting the need to
seasonally adjust parameter values, e.g. for the photosynthe-
sis parameters.

In general, the calculated uncertainty bounds demon-
strated that the model simulations captured the dynamics and
the magnitudes of the fluxes well. It is well known that eddy-
covariance measurements are also associated with uncertain-
ties. We have included these uncertainties in our presentation
of model uncertainty bounds to allow a qualitative compari-
son. Better results were achieved for the fluxes when condi-
tioned only on the respective flux and not on all three fluxes
concurrently, especially evident for the NEE. This means that
better agreement for one of the fluxes will always be achieved
at the expense of the performance of the other fluxes. Due
to the very different sensitivity of the modeled NEE and the
modeled sensible and latent heat fluxes to some plant physi-
ological parameters, possible reasons for these difficulties in
achieving good results for NEE and energy fluxes simulta-
neously may be located in the plant physiology sub models.
This especially applies to the calculation of stomatal conduc-
tance by the Ball-Berry equation, which is the main process
coupling the exchange of CO2 and H2O. Furthermore, the
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strong but different sensitivity of the modeled fluxes to the
leaf area index suggests the need to review leaf area index
approaches within different parts of the model (i.e. radiation
regimes, soil respiration).

Within the GLUE analysis it is difficult to determine
whether the observed errors are caused by structural errors
of the model or errors in the input data or the observations.
However, the results revealed weaknesses in the process de-
scriptions within the soil respiration calculations resulting
in strong parameter interactions of the two most influential
parameters for the NEE, the leaf area index and the basal
respiration rates. For future ACASA model versions, we
recommend that these results be taken into consideration
through the reduction of the complexity of the soil respira-
tion module. Furthermore, for the latent heat flux the model
performed better for the colder and wetter period than the
warmer and drier period, possibly indicating the need to in-
clude a mechanism to sufficiently reduce stomatal conduc-
tance with decreasing water availability.
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