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Abstract 
 
We investigated the feasibility of VIS-NIR reflectance spectra to predict clay content for 
different land-use forms in situ. We used partial least square regression on an independent 
validation dataset and root mean squared error and the Akaike information criterion to 
evaluate our model. With this model we predicted clay content in four soil profiles on a 3 x 
3 cm scale. Models performed well for spectra taken in the laboratory (RPD > 2; R² > 
0.76). The accuracy for in situ predictions however varies between the land-use forms and 
predictions are preliminary. 
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Introduction 
 
The conversion of natural or semi-natural ecosystems to anthropogenic land-use forms 
often results in degradation of soil quality and alterated ecosystem functions like water and 
carbon storage or erosion control. To infer the implications of these changes, fast and 
accurate predictions are required. This is especially important for the sub-Saharan 
ecosystems where information on soil properties is still rather scarce. Visible (VIS) and 
near-infrared (NIR) spectroscopy is a fast method to predict various soil properties 
simultaneously at comparatively low costs and has been widely used under laboratory 
conditions (Chang et al., 2001; Viscarra Rossel et al. 2006; Awiti et al., 2008). Using VIS-
NIR spectroscopy directly in the field is not yet as reliable (Morgan et al., 2009; Nocita et 
al., 2011). However, it provides a direct and non-destructive method, if stable models can 
be developed. The goal of this study is to visualize the small scale variability of clay 
content, in situ. We use VIS-NIR reflectance spectra of soil to build a model based on 
partial least square regression (PLSR) to predict clay content for different land-use forms. 
 
Materials and methods 
 
Study site 
The study was conducted on the southern slopes of Mt. Kilimanjaro, Tanzania (3°4'33"S, 
37°21'12"E). The natural ecosystem of the lowlands around Mt. Kilimanjaro (up to 1100m 
a.s.l) is savannah that developed on superficial deposits from the volcano. Mean annual 
rainfall fluctuates between 400–900mm (Soini, 2005), the main soil type is Vertisol and the 
vegetation is dominated by Balanitis aegyptiaca and different Acacia species. The 
savannah ecosystem is threatened by the transformation into fields, as the increasing 
population needs arable land, where maize and sunflowers are grown.  
The submontane zone, an area between 1100–1800m a.s.l. on the southern slopes of Mt. 
Kilimanjaro is mainly covered by homegarden ecosystems, a traditional agroforestry 



system, where banana (Musa spp.) and coffee (Coffea arabica) trees are grown together 
with a variety of smaller crops (Fernandes et al., 1985) and coffee plantations. Mean 
annual rainfall is between 1200 and 2000mm (Soini, 2005), the main soil types of the 
higher elevations are Andosols, more weathered soils develop into Vertisols. We have 
selected four of the typical ecosystems, namely natural savannah, maize field, 
homegarden and coffee plantation. Soil under coffee plantation was described as Haplic 
Vertisol, soil under homegarden and savannah as Sodic Vertisol and soil under maize field 
as Thephric Cambisol (FAO, IUSS Working Group, WRB, 2007).  
 
Soil sampling and laboratory analysis 
In each of the four selected ecosystems a soil pit was dug to a depth of at least 100cm or 
until continuous rock was reached. One profile wall was carefully cleaned of roots and 
debris and a frame of 0.5 x 1m with 3 x 3cm segments was put on it. Each segment was 
then scanned with the contact probe attached to an Agrispec portable spectrometer (ASD, 
Boulder Colorado) in the spectral range of 350–2500nm in 1nm intervals. Small soil core 
samples (diameter 2.5cm) were taken for validation. For the model calibration, soil 
samples were collected from 25 different sites with a soil auger and different soil horizons 
were separated, resulting in 146 samples. All samples were oven-dried at 45° for 24h and 
sieved <2 mm. Clay content was measured using a Master Sizer S particle size analyzer. 
 
Spectral measurements and model calibration 
For spectral measurements a well-mixed aliquot of the dried sample was scanned with the 
same device as used in the field. The instrument was calibrated with a Spectralon® white 
tile prior to measurements. For each sample as well as for the calibration with the white 
reference 30 reflectance spectra were averaged to reduce the noise.  
Each spectrum was corrected for the ASD offset between the detectors with the additive 
method (Becvar et al., (2006 - 2008)). Then, a wavelet transformation was performed and 
the spectra were transformed into absorbance values. Afterwards, noisy portions of the 
spectra were removed and only the range from 500 nm to 2400 nm was kept. The dataset 
was split into a calibration and a validation dataset by randomly choosing 3/4 for 
calibration. The number of components for the optimal PLSR model was chosen based on 
the leave-one-out cross validation. The root mean squared error of prediction  
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and the ratio of percent deviation  
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were calculated, where N is the number of samples, m is the number of model parameters, 
�
 is the predicted value, �
 is the observed value and �'
  is the mean of the observed 
values. The model with the lowest AIC was chosen, as AIC helps to select a model that 
represents the variability in the data without causing it to overfit (Viscarra Rossel, 2008). 
All analyses were performed in R (R Development Core Team, 2011). 
 



Results and Discussion 
 
Model calibration 
We have chosen a model with 10 components. The means and the range of clay content 
in calibration and validation datasets were similar, with the validation dataset covering the 
whole range of measurements (Table 1). Other studies predicting the clay content showed 
slightly better R2 and RMSE values. Stenberg (2010), for example, analysed the effect of 
different pre-treatments of the samples on clay content and found R2 > 0.86. Considering 
the classification of RPD values by Viscarra Rossel et al., 2006, our models performed 
well and quantitative predictions are very good (RPD > 2.0).  
 
Table 1. Parameter of the PLSR model 

Clay Mean Range R2 RMSE RPD 

Calibration 51.2 20.0 - 85.0 0.84 8.0 2.04 
Validation 50.8 21.0 - 76.0 0.80 7.1 2.26 

 
Model validation   
Correlations between a) the air-dried spectra taken in the laboratory and b) the spectra 
taken in the field and the measured values were calculated (Figure 1). When looking at all 
plots, the PLSR model for the prediction of clay content with the air dried spectra 
performed quite well (R2 = 0.75; RPD = 2.02), whereas predicting clay with field spectra 
resulted only in R2 of 0.27 and a RPD value of 1.18 (Table 2).  
 

 

 
Figure 1. Predicted versus measured clay content for a) spectra taken under laboratory 
conditions and b) field spectra 
 
Table 2. Validation parameters for laboratory and field predictions of clay content 

Air-dried spectra Field spectra 

Plot RMSE RPD R2  RMSE RPD R2 

Homegarden 3.0 1.48 0.51  4.4 0.96 0.15 
Coffee plantation 3.0 1.33 0.38  11.6 0.33 -8.8 
Savannah 5.1 0.65 -1.64  16.7 0.2 -27.6 
Maize field 19.3 0.24 -17.8  29.7 0.15 -43.6 

All Plots 11.0 2.02 0.75  18.5 1.18 0.27 



There are, however, large differences between the individual plots. The clay content of the 
homegarden, coffee and savannah profiles could be predicted quite accurately from air 
dried spectra. In contrast, the clay content in the maize field was poorly predicted. This 
could be due to a high amount of volcanic material in the soil. In our study we had only few 
samples of this material, so that it is probably under-represented in our calibration dataset.  
Due to the fact that scanning was conducted during the rainy season, field spectra were 
probably affected by the moisture content of the soil. As soil moisture has a strong 
influence on the reflectance spectra (Lobell et al., 2002), spectra taken under field 
conditions are often not reliable. Other factors influencing the spectra are the size and 
shape of the particles and the distribution of voids (Chang et al., 2001), thus smearing of 
clay during surface preparation or differences in bulk density could have an effect. 
 
Small scale variability in the field 
For each 3 x 3cm segment of the profiles clay content was predicted from field spectra 
with the respective model (Figure 2). Differences between the ecosystems are clearly 
visible. Soil in the homegarden ecosystem showed high clay content throughout the 
profile. In the maize profile the starting of the Cv-horizon at about −30cm was clearly 
visible. The accuracy of these predictions however is not yet satisfying and interpretations 
are preliminary. 
 

 

 
Figure 2. Small scale variability of clay content (%) in the different ecosystems 
 
Conclusions 
 
VIS-NIR spectroscopy is a fast and promising tool, but not yet applicable for detecting 
small scale differences in the field. Moisture content in the field and the different structure 
of the soil in situ compared to sieved samples needs to be taken into account. Possible 
solutions are preprocessing the calibration dataset with external parameter 
orthogonalisation, as suggested by Minasny et al., 2011 or to consider the difference 
between field and laboratory spectra. Whenever predictions are more accurate however, 
VIS-NIR spectroscopy can be used to assess the spatial organisation of soils rapidly and 
helps to understand the functioning of the soil within the ecosystem.  
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