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Mapping Fractional Land Use and Land Cover in a
Monsoon Region: The Effects of Data Processing

Options
Bumsuk Seo, Christina Bogner, Thomas Koellner, and Björn Reineking

Abstract—Existing global land use/land cover (LULC) raster
maps have limited spatial and thematic resolution relative to the
strong heterogeneity of agricultural landscapes. One promising
approach to derive more informative maps is using fractional
cover instead of hard classification. Here, we evaluate the effect
of three key data processing options on the performance of
Random Forest fractional cover models for MODIS data in
a heterogeneous agricultural landscape in a monsoon region:
(i) selection of spectral predictor sets [Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),
surface reflectance (SR), and all combined (Full)], (ii) time
interval (8-day vs. 16-day), and (iii) smoothing (no smoothing
vs. Savitzky-Golay filter). Model performance was assessed with
spatially stratified RMSE, Spearman’s rank correlation, and R2,
per LULC type and averaged over all types. We found adequate
performance of the best model (avg. ρ = 0.62) that used all
predictors, 8-day interval and no smoothing. Among the different
alternatives, the choice of predictors accounted for 36.3% of the
variation, smoothing for 19.0% and time interval for 17.9%.
The intrinsic dimensionalities of the spectral predictors were
investigated to complement the variable importance analyses.
Although predicting LULC fractions for minor types remained
difficult, our results suggest that existing satellite products can
be a useful source of information about LULC at sub-pixel level
provided the data-processing options are properly chosen.
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I. INTRODUCTION

CONVENTIONAL global land cover (GLC) maps are
discrete raster maps assigning land cover types to each

pixel. Usually, these discrete products are coarse in spatial
resolution due to large cell sizes (e.g., 1 km). Recent tech-
niques such as fractional cover allow continuous mapping of
land use. Fractional land cover consists of proportions of non-
overlapping land cover types in pixels of a given raster grid
[1]–[3]. It is often called sub-pixel land cover as it can be
conceived as an interpretation of land cover types at the sub-
pixel level [4]. It is also called ‘continuous fields’ [3], [5].
Fractional land cover is increasingly used as a key descriptor
of ecosystems and their functions (e.g., [4], [6]–[9]). Yet,
currently available GLC databases such as GlobCover 2009
or Moderate Resolution Imaging Spectroradiometer (MODIS)
land cover generally lack high resolution maps or fractional
land cover data [8], [10]. Therefore, the GLC products are
generally limited in representing heterogeneous LULC (e.g.,
unable to discriminate mixed trees, shrubs, and herbaceous
vegetation) [11]. MODIS Vegetation Continuous Fields prod-
uct (MOD44B) is the only GLC product that provides frac-
tional cover data. However, in the current version (V005) it is
limited to tree-related land cover types, namely “tree”, “non-
tree”, and “bare soil”.

In cultivated landscapes such as mixed agricultural areas, a
large number of LULC types often occur in a relatively small
area. Despite the significance of LULC information for studies
in cultivated landscapes [12], the existing GLC products are
generally limited in cultivated landscapes [11], [13]–[15] due
to the small number of crop-related types [16]–[18]. For
instance, GlobCover 2009 is provided at 300 m resolution
and has four crop-related types, and MODIS Land Cover Type
(MCD12Q2) product provides five raster land cover layers at
500 m [16]–[18], each of which with only one or two cropland
types. Especially for heterogeneous arable zones like irrigated
fields (e.g., [19]), GLC products are underdeveloped [10]. The
above mentioned spatial and thematic limitations of the GLC
databases are particularly pronounced in heterogeneous agri-
cultural landscapes due to the mosaic of crop/non-crop LULC
types [15]. These limitations make it difficult to monitor crop
production, land degradation, and other agriculture associated
land use based on the GLC products.
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To retrieve thematically and spatially rich land cover data,
we can attempt to extract additional information from existing
multi-spectral medium-resolution sensors. Deriving fractional
land cover from existing satellite products can enrich the
information contents with little additional cost. Furthermore,
it can be applied to the past-time data. Accordingly, there
have been continuous efforts to derive fractional land cover
information from existing raster data [3], [5]. Among var-
ious existing sensors, NASA’s MODIS (MODerate Resolu-
tion Imaging Spectroradiometer) sensor possesses temporal
continuity and global coverage. Despite their limited spectral
and spatial resolution, MODIS multi-spectral products provide
good temporal resolution and can be useful to map agricul-
tural areas [8], [20]. Indeed, MODIS time series contain the
complete seasonal dynamics and therefore potentially useful
information to distinguish land cover types (e.g., [21], [22])
and has been used to map agricultural LULC types (e.g., [23]–
[25]). Regarding fractional cover, Lu et al. [26] showed that
MODIS time series are suitable to map fractional woody and
herbaceous covers.

Fractional cover estimation of multi-crop LULC would be
an important step in LULC studies. However, fractional land
cover modeling is still challenging, especially with multiple
types [20]. There have been many successful fractional cover
mapping but often with a small number of LULC types (e.g.
few green vegetation types) [3]–[7], [26]–[29]. Furthermore,
some models were not trained on and validated against ground
observation and/or with cross-validation (e.g., [30], [31]). For
future applications, it is important to develop fraction LULC
mapping framework necessarily with 1) multi-type LULC, 2)
ground observations, and 3) an appropriate validation scheme.

To develop a fractional land cover model, a number of
decisions at the model formulation stage need to be made.
First, one needs appropriate predictor data – a difficult choice
due to an increasing number of satellite products (e.g., [32]).
Second, a suitable algorithm and training parameters should be
chosen to avoid sub-optimal performance. Third, pre- and post-
processing strategies should be determined (e.g., [7]). We will
denote all these decisions ‘data-processing options’ hereafter.

Improperly selected data-processing options can degrade the
model performance by reducing information contained in the
data. Optimal data-processing options are case-specific (i.e.,
dependent on the purpose, cost and processing capacities [33]),
thus cannot be universally evaluated. Therefore, in the course
of model building, the modeler should select proper data-
processing options.

In monsoonal areas, there is a specific problem undermining
model performance. In these areas, acquisition of cloud-
free data during monsoon is generally difficult due to long-
lasting rainfalls [7], [34]. For example, South Korean summer
shows typical East Asian monsoon weather with persistent and
intensive raining period from June to September. This period is
called “Changma” (i.e., long lasting rain) in Korean literature
[35].

In a heterogeneous agricultural landscape in South Korea,
we aim to derive fractional LULC from multi-spectral satellite
data using a data mining algorithm. It is challenging because
the study area is a complex heterogeneous agricultural land-

scape. Spectral datasets are supposedly cloud-contaminated
because the study area is situated in a monsoon region. In
this context, we set up the main objectives as 1) to develop a
fractional LULC modeling framework with globally available
data (i.e., multi-spectral data) and 2) to evaluate relevant data-
processing options, namely selection of spectral predictor sets,
time intervals, and smoothing options.

The study is based on the following hypotheses: 1) the
full information of a spectral data product (e.g., all available
reflectance bands) perform better than a subset of it (e.g., a
single reflectance band) or an index function (e.g., NDVI), 2)
multi-day composited data with a narrow (e.g., 8-day) com-
posite window [36] produce a better regression performance
due to more details in the data, and 3) smoothing of input
data improves the regression performance because it reduces
possible cloud contamination. These hypotheses were chosen
in accordance with the characteristics of the study area.

In addition to the main analysis, we assess the relative
importance of the spectral bands and the data acquisition
dates. Based on the results, we discuss the current capacity
and potential of the multi-type fractional cover model in
heterogeneous agricultural landscapes.

II. MATERIALS AND METHODS

A. Study area

The study area Haean-myeon is located at the bor-
der between North and South Korea (128◦1′33.101′′E,
38◦28′6.231′′N) (Fig. 1). It is a small agricultural catchment
(64.4 km2) with elevations ranging between 500 m and 1200 m
above see level. The catchment is a heterogeneous agricultural
landscape with a variety of natural and artificial LULC types.
Seo et al. [14] reported 67 LULC types from a three-year
field-level LULC census.

The average air temperature of the study area is 8.5° C
at the central plateau. The annual average rainfall equals
1599 mm and the maximum daily rainfall was 223 mm be-
tween 1999 and 2010 (Korean Meteorological Administration,
http://web.kma.go.kr/eng). The study site belongs to the East
Asian summer monsoon (EASM) region [34]. More than 60%
of annual precipitation is concentrated during the monsoon
period from June to August and extreme rainfall events occur
frequently.

B. Data

1) Land use/land cover and fractional cover data: For the
analysis, we used the LULC polygon data censused in 2010
for the site. The reference LULC polygon data consists of
spatial polygons with the observed LULC information and is
archived at the public repository Pangaea [37]. Additionally to
the raw LULC type labels, it provides reclassified type labels
based on four classification schemes. We used a reclassified
LULC labels in a 10-class scheme, which was designed to
describe the edaphic and socio-economic conditions of the
area. The scheme includes “Barren”, “Dry field”, “Forest”,
“Greenhouse”, “Inland water”, “Inland wetland”, “Orchard
field”, “Paddy field”, “Semi natural”, and “Urban”. This
scheme was selected as it distinguishes paddy field from other
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Fig. 1. Map and the location of the study site ‘Haean’ on the Korean
peninsula. The satellite image is a SPOTMaps mosaic product (Astrium
Services, http://www.astrium-geo.com) acquired in 2009.

agricultural types. More details about the LULC reference data
are provided in the meta information of the dataset [37].

Due to the bowl-shaped topography of the catchment, LULC
types are unevenly distributed (Fig. 2). The steep slopes and
the encompassing mountain ridges are covered by “Forest”.
The lower area is dominated by the managed land use types.
“Paddy field” occurs at the central plateau whereas “Dry field”
and “Semi natural” dominate on the surrounding lower slopes.
The aforementioned four LULC types are large or moderately
large in area proportions (> 8%) and cover 95.0% of the total
area (Table I). We will denote these types as ‘major types’.
The rest of the LULC types are smaller in area proportions
(< 2%). We denote the next five types “Urban”, “Orchard
field”, “Inland water”, “Greenhouse” and “Barren” as ‘minor
types’. “Inland wetland” was excluded from the analysis due
to its extreme rarity. The selected 9 types make up 99.9% of
the study area.

TABLE I
THE LAND USE/LAND COVER TYPES IN THE HAEAN CATCHMENT IN 2010.

“INLAND WETLAND” WAS EXCLUDED FROM THE ANALYSIS DUE TO ITS
EXTREME RARITY.

Type Area (km2) Area (%) Category

Forest 37.195 57.805

Major typesDry field 9.543 14.831
Semi natural 9.124 14.180
Paddy field 5.178 8.047

Urban 1.108 1.723

Minor types
Orchard field 0.952 1.480
Inland water 0.556 0.864
Greenhouse 0.544 0.845
Barren 0.144 0.224

Inland wetland 0.0004 0.0007 -

Fractional vegetation cover is defined as the sum of the
vegetated patch area divided by the total area [1], [29]. In a
satellite image, it is calculated per pixel and ranges from 0 (0%
cover) to 1 (100% cover) [38]. Similarly, fractional LULC can

Barren

Dry field

Forest

Greenhouse

Inland water

Inland Wetland

Orchard field

Paddy field

Semi natural

Urban

Missing data

Fig. 2. The reference land use/land cover in the Haean catchment in 2010.
The reference LULC in cover fraction is shown in Appendix Figure A1.

be defined as the sum of the LULC patch area divided by the
total area in each pixel of a given raster grid [4]. The study site
is located in the MODIS tile H28V5 and covered 299 pixels
of the 500 m sinusoidal grid (SR-ORG:6842). We chose the
500 m grid as the base grid and derived a per pixel fractional
cover data from the observed LULC data. To derive per pixel
LULC fractions, we first converted the MODIS raster grid
to polygons by pixel (i.e., one polygon per pixel). Then we
projected the grid polygons into the WGS84/UTM52N space
(EPSG:32652) and overlaid the observed LULC polygons. In
the projected space, we calculated the area fractions of the
LULC types in all grid polygons (Appendix Figure A1).

2) MODIS spectral data: We used multi-spectral data prod-
ucts as predictors of the fractional LULC model. We chose
MODIS collection 5 MOD13A1/MYD13A1 products. These
MODIS products have a horizontal resolution of 500 m with
a good overall geo-location accuracy (RMSE < 50 m) [39].
Other satellite products such as Landsat Thematic Mapper
(https://lta.cr.usgs.gov/TM) are also often used for land moni-
toring [40], [41]. However, due to its 16-day repeating interval,
Landsat products are often severely cloud contaminated in the
monsoon region. In our study area, the Landsat 5 collection at
NASA EOSDIS system (http://reverb.echo.nasa.gov) provides
only a few cloud free images in 2010. In contrast, the MODIS
16-day products are less cloud contaminated due to its daily
acquisition interval and the composition procedure [42].

MOD13A1/MYD13A1 products supply 23 scenes/year at
500 m resolution each. A time series of MOD13A1 starts
from the first day of a year but MYD13A1 from the 9th
day. Hence, there is an 8-day difference in acquisition date
[43]. Each product contains 12 Science Data Sets (SDS) [42].
Among the SDSs, we chose four surface reflectance (SR)
bands (B1–3, B7), Normalized Difference Vegetation Index
(NDVI), Enhanced Vegetation Index (EVI), and vegetation
index quality assurance (QA). The six biophysical SDSs were
used as predictors for regression. The QA SDS was used as
data weight only for smoothing. For simplicity, we will denote
all the biophysical SDSs as spectral bands in the following.

Each spectral band delivers specific information about land
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cover [44]. The red band 1 (B1) is sensitive to vegetation
chlorophyll and its wavelength is 620–670 nm. The near-
infrared (NIR) band 2 (B2) covers 841–876 nm and has been
widely used to evaluate ground vegetation viability together
with B1. Band 3 (B3) is commonly called the blue band as it
is sensitive to water vapor; its wavelength ranges between 459
and 479 nm. The mid-infrared band 7 (B7) with wavelengths
between 2105 nm and 2155 nm contains information about
land and cloud properties.

NDVI and EVI are vegetation indices designed to capture
above ground vegetation properties and biophysical processes
[36], [44]. NDVI is a function of the red and the NIR bands.
EVI additionally uses the blue band to remove soil and
atmospheric contamination [36].

We acquired the MODIS products from NASA Land Pro-
cesses Distributed Active Archive Center (LP DAAC) at
the USGS/Earth Resources Observation and Science (EROS)
Center (https://lpdaac.usgs.gov).

C. Scenarios
We considered three key data-processing options: predictor

set, time interval, and smoothing. Each option comprises
several choices. From all combinations of the three options, we
formulated 16 scenarios (Table II) and evaluated them using a
16-fold cross-validation (CV) (Section II-D2). The efficacy of
a data-processing option was estimated by the average perfor-
mance of the associated scenarios. The modeling procedure is
illustrated in Fig. 3.

Predictor set We prepared four predictor sets to compare
model performance based on different spectral data. The
predictor sets ‘NDVI’ and ‘EVI’ contained a corresponding
vegetation index data. The Surface Reflectance (SR) predictor
set ‘SR’ contained the four surface reflectance bands (B1–
B3, and B7). The ‘Full’ predictor set incorporates all the six
available data bands.

Time interval Spectral input data was prepared in 8-day and
16-day intervals. For 16-day input, we simply used MOD13A1
data. For 8-day input, we merged MOD13A1 and MYD13A1
products to produce a quasi 8-day MODIS 13A1 data using the
8-day difference in acquisition date described in Section II-B2.
This results in 46 (8-day) or 23 (16-day) data points per band
for each MODIS pixel. Note that we used the quasi 8-day
data instead of the 8-day MODIS products (MOD/MYD09A1).
This is because we want to use the 8-day data most similar to
the 16-day data. Additionally, the 09A1 products lack NDVI
and EVI data sets.

Smoothing We prepared spectral input data with and with-
out smoothing. By comparing the two input data sets, we
evaluated the efficacy of data smoothing in a monsoonal
catchment. We chose the ‘Savitzky-Golay’ (SG) filter [45],
which is widely used for smoothing time series data in remote
sensing (e.g., [46]). The filter is designed to retrieve the
upper envelope of a time series by using a local polynomial
regression iteratively to fit the time series [47]. It can filter out
negatively biased noise (e.g., NDVI decreases due to cloud
contamination), which can be useful in monsoonal regions.

We used the adaptive SG filter provided by the software
TIMESAT 3.1 [48], [49]. The seasonal course of the spectral

data was smoothed separately for each pixel. The MODIS
QA data layer was used to weight the values; data points
acquired under non-optimal conditions (e.g., cloudy weather)
had only 10% of influence during the smoothing process,
compared with the data acquired under optimal conditions. The
TIMESAT smoothing parameters were determined according
to the software manual [49]. The size of the fitting window was
3 for 16-day data and 5 for 8-day data. The adaptation strength
was 1.5 and the number of envelope iterations was 3. Note that
the 3-year data (2009–2011) was processed concurrently as the
software encourages using a longer time series than the target
period.

Random Forests 
regression

Fractional LULC cover 

(Raster images / 10 types) 

Fractional LULC 
(Training data) 

Input features  

•Predictor set: NDVI, EVI, SR and Full 
• Time interval: 8-day and 16-day 
• Smoothing: Non-smoothed and SG 

smoothed
Spatial partitioning (16-fold)

Flow diagram 1:  Manuscript 3 - Fractional cover regression

“Continuous Land Use and Land Cover Mapping in a Monsoon Region: 
search for the best modelling options. ”

Scenario evaluation 
(RMSE) 

MODIS 16-day Vegetation 
Indices (MOD/MYD13A1) 

(7 Bands, 500m 16-Day)

Fractional LULC 
(Test data)

Relative importance 
analysis 

(NIMSEb, IMSEd)

Preprocessing

Land use and land cover 
survey (2010) 

(Polygons)

Fractional cover calculation

Prediction Variable importance

16 scenarios

Scenario option 
evaluation 

(RMSE, PMVD) 

Parameter tuning

Optimal training 
parameters per 

scenario

Fig. 3. Overview of the fractional cover regression model building and
evaluation procedure.

TABLE II
SPECIFICATION OF THE SCENARIOS IN COMBINATIONS OF THE PREDICTOR

SET, TIME INTERVAL, AND SMOOTHING OPTIONS.

Smoothing No smoothing SG smoothing

Time interval 8-day 16-day 8-day 16-day

Predictor set

NDVI S1 S5 S9 S13

EVI S2 S6 S10 S14

SR S3 S7 S11 S15

Full S4 S8 S12 S16

D. Model construction

1) Random Forest regression: We hypothesized that per
pixel LULC fractions can be retrieved from spectral data in
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line with the previous studies (e.g., [6], [7], [10], [26], [38]).
Modeling multi-type LULC fractions can be conceived as a
multi-output regression task. This task can be accomplished
either by simultaneously modeling a multi-output response, or
by separately modeling single-output responses and aggregat-
ing the outcomes [50], [51]. In this study, we used the latter
approach.

Fractional cover regression can be implemented via various
techniques. The techniques include the fuzzy classifier [52],
the time series model [26], linear models [5], [28], data mining
algorithms [4], [6], [53], and spectral unmixing analysis [7],
[29]. Here, we used the regression mode of Random Forest
(RF). RF is a decision-tree based ensemble algorithm that
uses bootstrap aggregation (i.e., bagging) and the random sub-
space method [54], [55]. It is suitable for modeling non-linear
relationships and can handle a large number of covariates as
it tends not to overfit the data [50], [54], [55]. Its performance
is comparable to the other state-of-the-art learning algorithms
such as support vector machine or neural networks [6], [55]–
[58]. It is convenient to set up in comparison with other
data mining algorithms as it has a small number of hyper
parameters [59].

In remote sensing, RF has been used to classify land cover
[21], [22], [32], [56], [60], [61], vegetation type [21], [62],
[63], and also crop type [64], [65]. In fractional land cover re-
gression, Schwieder et al. [6] used RF to estimate shrub cover
fractions in which RF showed comparable performance with
support vector machine and partial least squares regression.

2) Spatial cross-validation: We used a spatial leave-one out
cross-validation scheme in the study. Due to the bagging of RF
[54], the bootstrap samples for training (i.e., in-bag data) can
be correlated with the test samples (i.e., out-of-bag data), espe-
cially for spatial models [66]. To reduce dependencies between
training and test data, we externally partitioned training and
test data using the spatial cross-validation scheme introduced
in [67].

This ‘Checkerboard’ spatial cross-validation was imple-
mented in our study as follows. First, we binary split the whole
area six-times recursively, resulting in 64 sub-clusters. Second,
we form 16 clusters by randomly sampling four sub-clusters
for each; one cluster is composed of four spatially disjointed
sub-clusters as distinguished by different colors in Appendix
Figure A2.

In each of the 16 CV folds, we reserve one cluster for test
and trained a RF regression model on the remaining clusters.
The trained RF model is used to predict the hold-out cluster.
We obtained cross-validated predictions for the whole area by
aggregating the hold-out clusters.

3) Fractional cover estimation: Let T be the number of
LULC types such that each type i has a set Fi = {fi,1, ..., fi,n}
of n observed LULC fractions, where fi,j is the fractional area
of the pixel j covered by the LULC type i, and n is the total
number of pixels belonging to the study area.

A LULC fraction fi,j ∈ [0, 1] and all fractions of one pixel
sum up to one

T∑
i=1

fi,j = 1 (1)

for all j = {1, ..., n}.
First we built a RF regression model per type. Given a

type i, we used the observed fraction Fi = {fi,1, ..., fi,n}
as response and a set of feature vectors P = {p1, ..., pn}
as predictor. Each feature vector contained nfeature features
varied by the spectral data used (Appendix Table B1).

The regression model was trained/tested with a 16-fold cross
validation. By accumulating test pixels of all CV folds, we
obtained the predicted fractions F̂i = {f̂i,1, ..., f̂i,n} of the
type i over the entire study area. RF produces predictions from
all regression trees [54], therefore for each pixel ntree fractions
were predicted, where ntree is the total number of regression
trees. We took the mean value of the ntree predictions and
regarded as the predicted LULC fraction for the pixel.

Then we normalized the type-wise predictions by 1. The
normalized prediction F̂ ∗i was calculated as

F̂ ∗i =
F̂i∑T

j=1 f̂i,j
, (2)

where F̂i,j is the type-wise prediction of the type i for the
pixel j. Finally, we obtain the predicted LULC fractions F̂ ∗ =
{f̂∗1 , ..., f̂∗T }.

4) Training parameters: RF has three training parameters:
the number of trees in the forest (ntree ), the number of
randomly selected variables on each split (mtry ), and the
number of minimal samples in terminal nodes (nodesize).
These parameters need to be tuned to avoid sub-optimal model
performance [60], [68].

To find the optimal ntree and nodesize we performed a
grid search on the training folds. We used a grid from all
combinations of ntree= {100, 200, ..., 1000} and nodesize=
{1, 2, 3, 4, 5}. Grid searching was implemented using an in-
ternal validation. We re-partitioned the training data folds
into a new training data and a new test data. The new test
data contained two spatial clusters, randomly selected without
replacement. We trained the model on the new training data
with different parameter values and predicted the hold-out
data. This was repeated for all 9 types and we averaged the
root mean square error (RMSE ) over the all types. Overall,
the model performance improved with large ntree and small
nodesize (Appendix Figure A3).

We optimized ntree and nodesize separately based on its
marginal RMSE on the tuning grid. We chose parameters by
minimizing the marginal error metric unlike [60] or [69] who
used the joint error metric on the grid. Compared with the
joint error based selection, the marginal error based selection
was less sensitive to the between-partition variations and led
to more stable parameter selection between scenarios.

The parameter mtry was determined by the square root of
nfeature without grid searching as in [70]. Since the scenarios
have unequal numbers of input features, mtry varied between
scenarios. The chosen parameter values are summarized in
Appendix Table B1.

E. Model evaluation

1) Overall regression performance: We used the cross-
validation error metrics instead of the default out-of-bag
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(OOB ) error of RF. As discussed in Section II-D2, the OOB
error can be biased due to a possible correlation between in-
bag training samples and out-of-bag test samples, especially
for spatial models. Instead, we used cross-validation RMSE
to evaluate regression performance. The RMSE of the LULC
type i is calculated as

RMSEi =

√∑n
j=1(fi,j − f̂∗i,j)2

n
, (3)

where fi,j is the observed and f̂∗i,j is the predicted LULC
fraction for the type i in pixel j, and n is the total number of
pixels.

Furthermore, we used the coefficient of determination (R2)
and Spearman’s rank correlation coefficient (ρ) [71]. The R2

was used to compare our results with the previous studies on
fractional cover estimation (e.g., [4]). Spearman’s ρ was used
to estimate the association between observed and predicted
fractions [71].

2) Relative contribution of data-processing options: In ad-
dition to cross-validation error, we examined the relationship
between the data-processing options and the performance of
the fractional cover regression models. For this analysis, we
built a linear model explaining the RMSE of the regression
model for each LULC type by the different data-processing
options:

RMSE i = β0 + β1Op + β2Ot + β3Os + ε, (4)

where RMSE i is the RMSE of the type i; Op is a categorical
variable denoting the chosen predictor set option, Ot time
interval option, and Os smoothing option; ε is the error term.
We did not include interaction terms based on a preliminary
model selection using F-statistics (not shown here). Each linear
model (per type) was estimated based on the 16 samples from
all 16 scenarios and the statistical significance of the type-wise
models were tested using F-statistics to validate the model
structure.

We assumed that the ‘relative contribution’ (cf. ‘relative
importance’ in [72]) of a modeling option is that of the
corresponding regressor to the linear model. Then we quanti-
fied relative contributions of the regressors by decomposing
the amount of explained variance of the linear model due
to regressors. We used proportional marginal variance de-
composition (PMVD) method [72], [73] which decomposes
the explained variance of the linear model into non-negative
contributions, which sum to the total variance explained.
PMVD is able to deal with correlated regressors by averaging
over different orderings. Moreover, it has desirable properties
such as ‘admissibility’.

3) Marginal performance of data-processing options: The
efficacy of a data-processing option was estimated by average
regression performance of the scenarios using the option.
We will call it ‘marginal performance’ in the following. The
marginal performance (M ) of a data-processing option k for
a performance metric q is calculated as

Mk,q =

∑
x∈sk q(x)

|sk|
, (5)

where sk is a set of scenarios using the option k and |sk| is
the number of elements of sk.

4) Relative importance of spectral bands and acquisition
dates: We quantified the relative importance of the spectral
bands and the acquisition dates on the regression performance.
We derived the importance of the features using a RF variable
importance metric and grouped them by band and acquisition
date. RF provides two importance metrics for quantifying the
influence of input features [54], [74]. Among the metrics, we
used the ‘increased mean square error (IMSE )’, which is a
permutation-based measure. Another metric namely ‘increased
node purity (INP )’ is measured by node purity, in case of
regression the residual sum of squares. We avoided using INP
because of the possible bias due to the random sub-spacing
(i.e., random selection of features). For classification problems,
the INP is known to be biased as the impurity measure (i.e.,
Gini index) favors predictor variables with many categories
[75], [76]. IMSE of a feature f is calculated as

IMSE f =

∑ntree

k=1(MSEk −MSE f,k)

ntree
× 1√

s2/ntree
, (6)

where ntree is the size of the forest, MSEk is the mean
squared OOB error of tree k, MSEf,k is the error after
permuting the feature f and s2 is the standard deviation of the
differences between the two errors; if s2 is zero, the division is
omitted. We computed IMSE f in each cross-validation fold
and averaged them. The variable importance metric itself is
calculated based on the OOB samples [54].

We defined the importance of a band as the sum of the
importance metrics of the features belonging to the band. Let
a predictor set X = {x1, ..., xl} have l features some of which
belong to a spectral band b. We calculated importance of the
band b as

IMSE b =

∑
x∈b IMSEx

lb
, (7)

where lb is the number of the features belonging to the band.
To facilitate comparisons between different bands, we nor-

malized IMSE b as

NIMSE b =
IMSE b∑nband

b=1 IMSE b
(8)

where nband is the number of the bands in a predictor set.
To derive NIMSE b we used the two groups of the scenarios:
scenarios using ‘SR’ predictor set (S3, S7, S11, and S15) and
scenarios using ‘Full’ predictor set (S4, S8, S12, and S16). As
they are different in the number of spectral bands, we calcu-
lated two sets of NIMSE b. For each group individually, we
calculated the mean importance measures from the included
scenarios.

Likewise the importance of an acquisition date is defined
as the sum of the importance metrics of the features acquired
at a particular date d as

IMSEd =

∑
x∈d IMSEx

ld
, (9)
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where ld is the number of the features acquired at the date
d. To derive IMSEd we used the ‘Full’ predictor set based
scenarios (S4, S8, S12 and S16). As 8-day and 16-day data
differ in the number of data points, we extracted two seasonal
IMSEd curves individually by interval.

F. Dimensionality of the raw reflectance data

We used time series of the reflectance bands. In our dataset,
correlations among the dates as well as the reflectance bands
are likely to be very high. The intrinsic dimension of the
dataset may be different from the number of the data columns
due to the redundant information. In order to assess how much
of information each band has, we evaluated the dimensionality
of the raw reflectance bands data [77]–[79]. We used the
Intrinsic Dimensionality (ID) approach [78], in which the di-
mensionality is defined as the minimum number of parameters
required to account for the observed properties of the data. We
evaluated ID of the four raw reflectance bands (B1, B2, B3,
and B7) with both 8-day and 16-day intervals. In addition to
the ID of the individual reflectance band, the ID of the dataset
with the all four bands (‘All’ bands) was evaluated.

We evaluated ID of the multispectral input data using the
algorithm HySime [78], [80]. Since the algorithm requires a
hyperspectral input image with m bands (i.e., 1×m matrix),
we transformed the time series of our input data (i.e., 1×l ×
nband matrix) into a single pseudo-hyperspectral image with
the number of hyperspectral bands equaled to the length of
the time series multiplied by the number of the reflectance
bands [i.e., 1 pixel ×(l · nband) matrix]. The dimensionality
identification algorithm was applied to the transformed images.

G. Software

We used GNU R version 3.1.2 [81] and the R packages
randomForest version 4.6–7 [82], raster version 2.3–
40 [83], and relaimpo version 2.2–2 [72] for the fractional
cover regression. The geometry engine GEOS 3.4.2 [84] was
used via the R package rgeos 0.3–8 [85] for the LULC data
pre-processing. The software TIMESAT version 3.1 [49] and
HyperMix version 2.13 [80] were used for the smoothing and
the dimensionality identification of the input spectral data.

III. RESULTS

A. Overall regression performance

The average performance of all scenarios in RMSE , ρ, and
R2 were 0.057, 0.624, and 0.414, respectively (Table III). The
best scenario S4 used ‘Full’ predictor set in ‘8-day’ interval
with ‘No smoothing’. The worst scenario S14 used ‘EVI’
predictor set in ‘16-day’ interval with ‘SG smoothing’. Maps
of the modeled LULC fractions are provided in Appendix
Figure A4 and A5 for averaged and for the best scenario,
respectively.

B. Type-wise regression performance

Spearman’s rank correlation between the observed and the
predicted LULC fractions was high on average (avg. ρ =
0.624; Table III and Appendix Figure A6), not only for the

TABLE III
FRACTIONAL LULC REGRESSION PERFORMANCE BY SCENARIO. ALL THE

PERFORMANCE METRICS WERE AVERAGED OVER LULC TYPES.

Name Data-processing options Model performance

Predictor
set

Time
inter-
val

Smoothing RMSE ρ R2

S1 NDVI

8-day

No smoothing

0.056 0.658 0.428
S2 EVI 0.057 0.639 0.438
S3 SR 0.054 0.657 0.441
S4 Full 0.053 0.663 0.455

S5 NDVI

16-day

0.056 0.630 0.410
S6 EVI 0.060 0.601 0.395
S7 SR 0.056 0.638 0.430
S8 Full 0.055 0.634 0.434

S9 NDVI

8-day

SG smoothing

0.058 0.618 0.399
S10 EVI 0.059 0.601 0.389
S11 SR 0.054 0.633 0.411
S12 Full 0.053 0.634 0.434

S13 NDVI

16-day

0.061 0.588 0.364
S14 EVI 0.064 0.572 0.347
S15 SR 0.057 0.611 0.418
S16 Full 0.056 0.609 0.424

Avg. 0.057 0.624 0.414

major types but also for some of the minor types (Appendix
Table B2). For example, ρ was 0.48 for “Orchard field” and
0.54 for “Inland water”, for which predicting absolute fractions
were unsuccessful (R2 < 0.10). Similarly, for “Greenhouse”
the rank correlation (ρ = 0.59) indicates a better model
performance than the R2(= 0.25).

To further investigate the performance degradation of the
minor type models, we analyzed the relationship between R2

and the total area proportions of the LULC types (Fig. 4).
R2 increased with increasing area proportion. Since the minor
LULC types occurred only sporadically over the area, a large
number of pixels have zero fraction for the minor types.
Therefore, the distribution of the observed fractions of minor
types was right-skewed [Appendix Figure A7 (a)].

C. Relative contribution of data-processing options

Relative contributions of the data-processing options are
shown in Fig. 5 and Appendix Table B5. The linear models
explaining type-wise RMSE by data-processing options were
all significant (p < 0.05) except for “Barren”.

For the 9 types averaged, 73.2% of the variance of the
RMSE was explained by predictor set (Op; 36.3%), time
interval (Ot; 19.0%) and smoothing (Os; 17.9%), respectively.

Among the three options, Op was of the highest contribu-
tion for “Forest”, “Dry field”, “Paddy field”, “Urban”, and
“Greenhouse”. “Semi natural” and “Inland water” were most
attributed by Ot and “Orchard field” by Os.

D. Marginal performance of data-processing options

Among the four predictor set options, ‘Full’ predictor set
based scenarios achieved the best average RMSE (0.054) fol-
lowed by ‘SR’ predictor set based scenarios (0.055). Between
the vegetation indices, the marginal RMSE of the predictor
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Fig. 4. Observed total area proportions of the LULC types are plotted against
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over the scenarios.
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denoting the chosen predictor set option, Ot time interval option, and Os

smoothing option. The relative contributions were calculated by proportional
marginal variance decomposition (PMVD) [73]. The 9 points per option
represent the 9 LULC types.

set ‘NDVI’ was smaller (0.058) compared with the ‘EVI’ set
(0.060).

The ranks of the predictor sets varied between the LULC
types (Fig. 6a). The ‘Full’ predictor set was the best set for
6 out of 9 types. Although, “Greenhouse” and “Barren” were
best predicted by ‘SR’ predictor set, the differences between
the predictor sets were small. The single vegetation index
predictor set ‘EVI’ was the best predictor set for “Inland
Water”.

Regarding the time interval, the 8-day scenarios (avg.
RMSE=0.056) marginally outperformed the 16-day scenarios
(avg. RMSE=0.058) (Fig. 6c and Table III). This does not
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Fig. 6. Performance of the data-processing options measured by marginal
RMSE : (a) predictor set, (b) time interval, and (c) smoothing. The cross-
validated regression metrics were averaged over the other data-processing
options to derive marginal performance metrics (5). The error bars indicate
the standard errors of the means over the scenarios.

hold for the LULC types “Dry field”, “Orchard field” and
“Greenhouse”. These types are minor types except “Dry field”.

The scenarios with ‘No smoothing’ performed better (avg.
RMSE = 0.056) than the SG smoothed scenarios (avg.
RMSE = 0.058) (Fig. 6c). For the individual types, the
non-smoothed predictors performed better except for “Barren”
(Table III).

E. Relative importance of spectral bands

The average relative importance of the spectral bands
were calculated with the ‘Full’ predictor set based scenarios
(Fig. 7a) and ‘SR’ predictor set based scenarios (Fig. 7b).

Using the variable importance metric from ‘SR’ predictor
set based scenarios, we assessed the relative importance of the
four reflectance bands when used with no vegetation index
(Fig. 7b). On average, the NIMSE b of B1 (48.6%) and B2
(46.9%) were substantially higher than that of B3 (2.2%) and
B7 (2.3%) and made up 95.5% of the total IMSE (Appendix
Table B3). The two bands were almost equally important
among all LULC types.
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For the most dominant type “Forest”, NIMSE b of B3
(11.0%) and B7 (12.3%) were larger than that of the rarer
types. However, especially for the five rarest types, B3 and
B7 were negligible with less than 0.5% of NIMSE b.

In ‘Full’ predictor set based scenarios, NDVI, EVI and
B1 bands were similar in NIMSE b (31–33%) and made up
96.5% of the total IMSE (Fig. 7a and Appendix Table B4).
After including NDVI and EVI, B2 became negligible (1.3%),
whereas B1 remained important (31.8%). The contribution of
B3 and B7 stayed small with a NIMSE b equaled to 1.0% and
1.1%, respectively.

Only the major types such as “Forest” or “Dry field”
benefited from the bands B2, B3 and B7. The NIMSE b of
these three bands were smaller than 0.2% for the minor types.
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Fig. 7. Normalized increased mean square error (NIMSEb) of spectral bands
from (a) ‘Full’ predictor set based scenarios (S4, S8, S12, and S16) and (b)
‘SR’ predictor set based scenarios (S3, S7, S11, and S15).

F. Seasonal variation of relative importance

Fig. 8 shows seasonal variation of IMSEd by type. Both
in 8-day and 16-day intervals, we observed large variable
importance in the off-monsoon periods like the start and the
end of the growing season. The IMSEd during the summer
monsoon season around day of year (DOY) 200 were rather
low for most of the LULC types, suggesting that the features
representing this period were less influential on the regression
performance.

In a large portion of the types, peaks are found in March
(around DOY 90), which is the sowing season in the study
area. Other peaks commonly occurred in September, which
is the harvest season for most of the local crops (e.g., paddy
rice and annual dry field crops) as well as the senescence of
natural vegetation types.

The shapes of the seasonal IMSEd curves differed between
the LULC types. For instance, the seasonal IMSEd of “Paddy
field” showed the highest peak in September (around DOY
260) (Fig. 8d), which shows that the model is most sensitive
to the harvest season. In contrast, “Forest” exhibits the highest
peak in late February (around DOY 80) (Fig. 8a).

The number of major peaks of relative importance was
different between types. The IMSEd of “Dry field” and “Semi
natural” can be characterized as bimodal because of the two
peaks around the sowing season (around DOY 60) and the
harvest season (around DOY 260). However, for rarer types

such as “Inland water” or “Greenhouse”, relative importance
curves display multiple peaks both in 8-day and 16-day
IMSEd curves.
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(d) Paddy field
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(f) Orchard field
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(g) Inland water
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(h) Greenhouse
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Fig. 8. Seasonal variations of increased mean square error (IMSEd) are
displayed to visualize relative importance of the acquisition dates; dotted line
indicates the IMSEd from the 8-day data based scenarios and solid line
from the 16-day data based scenarios. Note that we used only ‘Full’ predictor
set based scenarios (S4, S8, S12 and S16).

G. Intrinsic dimensionality

The estimated intrinsic dimensionality (k∗) of the input
spectral reflectance dataset is shown in Table IV. The ID of
the all four bands together were 27 for the 8-day data and 18
for the 16-day data. The average ID of the four bands was
higher for the 8-day reflectance data (avg. k∗ = 9.25) than
for the 16-day data (avg. k∗ = 6.75). The sums of the ID of
the single bands were larger than that of the ‘All’ 4-band sets
both in the 8- and 16-day data.

TABLE IV
INTRINSIC DIMENSIONALITY (ID) OF THE RAW SURFACE REFLECTANCE

BANDS CALCULATED BY HYSIME ALGORITHM [78], [80]. THE BAND
‘ALL’ INCLUDES THE ALL FOUR BANDS: B1, B2, B3, AND B7. THE AVG.

VALUES WERE CALCULATED WITHOUT THE ‘ALL’ BANDS.

Band ID

8-day 16-day

B1 10 7
B2 9 5
B3 10 10
B7 8 5
All 27 18

Avg. 9.25 6.75
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IV. DISCUSSION

A. Regression performance

The regression performance of the major type models was
comparable to previously published studies. [6], for example,
reported the avg. R2 = 0.60 for a fractional shrub cover
model using three machine learning algorithms including RF.
Verbeiren et al. [20] confirmed that, at sub-pixel level, land
cover estimation with multiple types is challenging; the avg.
R2 of the fractional cover estimation with 8 types were
0.41 using a neural network model and 0.29 using a linear
mixture model. These are comparable to the R2 of the major
type models in our study (> 0.6) (Appendix Figure A6 and
Appendix Table B2). [30] reported higher R2(> 0.75) for
fractional green vegetation cover estimations, however their
model was not validated against ground observation and/or
with cross-validation.

A regression task with multiple responses is inherently more
difficult than a single-response regression. Our results are
comparable to the work by [10], for example, who used a
14-class land cover system in South Africa (total accuracy
= 55.0%) and Germany (total accuracy = 51.6%). Type-wise
regression performance was missing in their study. Fernandes
et al. [4] reported that the regression of fractional covers of
minor types was more difficult; the average predictive R2 was
0.57 for the two dominant types (i.e., “Conifer forest” and
“Shrub”) whereas 0.33 for the three minor types (i.e., “Decid-
uous forest”, “Barren” and“Water”). [86] reported comparable
overall accuracy (55.9%) from a fractional cover model with
6 LULC types. Note that their models were evaluated without
cross-validation.

We attribute the low performance to the right-skewed dis-
tributions of LULC fractions in the training data (Appendix
Figure A7a). Since the minor LULC types occurred only
sporadically over the area, many pixels have zero fraction for
the minor types.

When training data are skewed, a RF regression model has
a limitation in prediction due to the way how regression trees
are constructed. If the training data is right-skewed or even
zero-inflated, the model is insufficiently trained on the high
response values (e.g., high LULC fractions). As discussed in
Section II-D3, the prediction is the average response of all
trees. Thus, RF does not search for the best tree but averages
all trees. When trained with the skewed data, it can cause
an underestimation bias in prediction. O’Leary et al. [87]
noted the same issue in RF classification when training data
is imbalanced.

Our result confirm that minor types are difficult to estimate
in fractional cover studies and thus need more attention. It
is even more important to resolve the issues related to minor
types in agricultural areas. Due to fragmented land use patterns
and heterogeneities embedded in land cover classification sys-
tems (e.g., lumped cropland types), minor types are inevitably
occurring in this type of landscape. To our knowledge, there
were only few studies dealing with multiple LULC types in
continuous land cover studies and the case studies generally
suffer from poor performance regarding agricultural types

(e.g., [20], [86]) and often lack appropriate model validation
(e.g., [10], [27], [30]).

The regression model reproduced spatial distributions of
the LULC fractions. However, predicting absolute fractions
remained difficult especially for the minor types. The high ρ
values of the some minor LULC types imply that the presented
framework may be useful to detect minor LULC types (e.g.,
binary classification). As suggested by the high ρ values for the
some minor LULC types, with elaborations such as the use of
the Hurdle formulation or the use of data-balancing techniques,
the regression performance of the minor types may be further
improved. In the Hurdle model approach, first the occurrence
of a desired response (e.g., LULC type) is modeled and the
degree of the response is estimated for the instances passed
the first ‘hurdle’. This approach may alleviate the issue of the
right-skewed training data. However, the issue of the missing
high response values in training data needs to be resolved
independently. The Hurdle model can be used in combination
with machine learning (e.g., [88], [89]) and fractional LULC
regression with the Hurdle formulation would be an interesting
future work.

B. Spectral unmixing analysis

Spectral unmixing analysis [29], [38] has been frequently
used to derive continuous land cover as well as in many other
similar disciplines [90], [91]. In this approach, mixed spectral
signals are decomposed into spectral endmembers and thereby
sub-pixel fractions of land cover types are estimated [7], [38],
[92], [93]. In our study, we did not use the linear spectral
unmixing approaches mainly for two reasons. First, unmixing
approaches generally necessitate hyperspectral data instead of
multi-spectral data (i.e., MODIS reflectance data) which is still
deficient at the global scale especially with a short acquisition
interval [7], [29], [90]. Hyperspectral data was unavailable for
our study area, for example. Instead, we used the time series
of the multi-spectral data to secure a large number of data
points per pixel. Second, the linear unmixing approach is under
the assumption that there are linear relationships between the
area fractions of spectral sources (e.g., land cover types) and
spectral signals (e.g., surface reflectance) [29], [30], [92], [94].
This assumption is violated when non-linear functions such as
NDVI or EVI are used as predictors [92]. While there may be
some difficulties regarding the spatio-temporal heterogeneities
and non-linearities in the vegetation signal time series, it will
be an interesting work to apply linear or non-linear unmixing
methods to such multi-spectral time series data.

C. Relative importance

In our case, the information contained in the red channel
(B1) was not perfectly encapsulated in the vegetation indices.
This implies that we will lose some information if we use only
the vegetation indices. The blue (B3) and MIR (B7) channels
influenced only subtly the regression performance especially
for the minor types. This contradicts our initial assumption
that these bands could be useful to distinguish LULC types.

MODIS EVI utilizes an extra band B3 compared with
NDVI. However, ‘EVI’ predictor set based scenarios were
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outperformed by ‘NDVI’ predictor set based scenarios as if
B3 did not supply any incremental information about the
vegetation activity or land cover status. It may be due to the
way MODIS EVI is parametrized. In principle, the parameters
in the EVI formula should be determined on-site. However,
fixed parameter values are used for the MODIS EVI product
for convenience. EVI may be a better predictor with site-
specific calibration.

In agricultural fields, land use can be altered in a short time
period leading to abruptly changed spectral signals. Therefore,
it appears natural that the 8-day scenarios outperformed the 16-
day scenarios. Vegetative LULC types are continuously chang-
ing within a single year. Therefore, it is difficult to capture its
characteristics using satellite images from a small number of
overpasses [21], [22]. Moreover, crops have a relatively short
life-cycles as well as frequent human interventions, thus may
not be fully characterized by a few images [25], [95]. We
therefore recommend using a full time series of satellite data
to model multi-type LULC data.

Additional features may further improve regression per-
formance. For example, phenology metrics such as green-on
or green-off dates are used to identify vegetation and land
cover types (e.g., [8], [96]). However, costs of adding features
(i.e., computing time) should be carefully considered. The
intrinsic dimensionality approaches can be useful tools for
such considerations [77]–[79].

D. Best strategy

For complex cultivated landscapes such as an agricul-
tural mosaic catchment, appropriate data processing options
should be adopted to boost LULC modeling performance.
In this study we demonstrated how to evaluate and choose
data-processing options based on a rigorous cross-validation
scheme.

As discussed in Section III-A, the best regression perfor-
mance was obtained by using the entire available predictors
without the data smoothing (S4). The relative importance
revealed that the most influential periods varied by LULC type.
This result supports that it is important to use the whole time
series of the predictors for multi-type fractional LULC mod-
eling. Therefore, the use of a full time series and all available
predictors is recommended in future applications. RF dealt
well with the highly correlated input data with no evidence
of overfitting given the number of predictors in our study.
The relative importance and the intrinsic dimensionality of
the spectral data could provide useful information guiding the
selection of predictors in settings with many more predictors.

Smoothing by the Savitzky-Golay filter was disadvanta-
geous. It suggests that the original MODIS maximum value
composite algorithm already sufficiently suppressed noise in
the 16-day MODIS products. We would recommend to be
careful to denoise these MODIS products.

V. CONCLUSION

Existing global land use/land cover (LULC) raster maps
have limited spatial and thematic resolution particularly unfa-
vorable to complex agricultural landscapes. As a contribution

to resolving this issue, we developed a fractional cover regres-
sion model and a strategy to set up the model with globally
available satellite products. When properly chosen and pro-
cessed, coarse satellite products can yield useful information
at the sub-pixel level such as fractional land cover. Among the
data processing options, choice of predictor sets was the most
important.

In estimating absolute fraction, the model performance
differed among LULC types depending on the distributions
of the observed fraction data. For the minor types, predicting
absolute fractions remained difficult. The monsoon period was
not the most important period on the regression performance
but the critical periods varied by land cover type.

Estimating fractional land cover is a useful strategy for ob-
taining continuous representation of LULC. It may also allevi-
ate computational burden related to the use of high-resolution
raster images. However, fractional cover estimation especially
with multiple land cover types is still underdeveloped. With
possible elaborations such as the Hurdle formulation, it may be
possible to extract useful land cover information from coarse
multi-spectral satellite products.

Our study demonstrated how to build a reliable fractional
cover regression model by choosing optimal data-processing
options. Our evaluation framework and findings can be a useful
guide to make informed decisions in similar studies.

APPENDIX A
APPENDIX FIGURES
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Fig. A1. The reference land use/land cover (LULC) fractions of the study
site in 2010. LULC fractions were calculated from the original polygon data
[37] to fit the MODIS 500 m sinusoidal grid (SR-ORG:6842) and range from
0 (0% cover) to 1 (100% cover).
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Fig. A2. Location of the 16 clusters and the 64 sub-clusters used for spatial
cross-validation. Adjacent pixels in the same color indicate a sub-cluster and
four of the sub-clusters comprise a cluster. In each cross-validation fold, one
cluster was hold-out as test data and the rest 15 clusters trained a Random
Forest regression model. The average area size of the clusters was 4.00 km2

and the sub-clusters was 1.00 km2.
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Fig. A3. Variations of RMSE with changing Random Forest parameters
(a) Ntree and (b) nodesize during the parameter tuning based on the
repartitioning of the training data. For illustrating the general response of the
model, the avg. RMSE of all scenarios and the LULC types are displayed.
Note that the optimal ntree and RMSE were determined individually per
scenario.
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Fig. A4. Mean predicted LULC fractions of the study area. Maps from the
averaged fractions over the all 16 scenarios.
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Fig. A5. Predicted LULC fractions from the best performed scenario (S4).
This scenario used the non-smoothed full features in 8-day interval as
predictor.
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Fig. A6. R2 and Spearman’s rank correlation coefficients between observed
and predicted fractions. The error bars indicate the standard errors of the
means over the scenarios.
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Fig. A7. Distributions of cover fractions of (a) the ground LULC observations
and (b) the averaged predictions from scenarios S1 through S16.
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APPENDIX B
APPENDIX TABLES

TABLE B1
SPECIFICATION OF THE SCENARIOS AND THE RANDOM FOREST TRAINING
PARAMETERS. THE PARAMETERS ntree AND nodesize WERE TUNED AND
mtry WAS DETERMINED BY THE SQUARE ROOT OF nfeature [70], [97].

Name Data-processing options Parameters

Predictor
set

Time
interval

Smoothing nband nfeaturentree mtry nodesize

S1 NDVI

8-day

None

1 46 600 6 1
S2 EVI 1 46 700 6 2
S3 SR 4 184 400 13 3
S4 Full 6 276 700 16 1

S5 NDVI

16-day

1 23 200 4 1
S6 EVI 1 23 500 4 1
S7 SR 4 92 300 9 1
S8 Full 6 138 800 11 2

S9 NDVI

8-day

SG

1 46 600 6 4
S10 EVI 1 46 500 6 1
S11 SR 4 184 500 13 1
S12 Full 6 276 400 16 1

S13 NDVI

16-day

1 23 800 4 1
S14 EVI 1 23 300 4 1
S15 SR 4 92 900 9 1
S16 Full 6 138 600 11 1

TABLE B2
TYPE-WISE PERFORMANCE MEASURES BETWEEN OBSERVED AND

PREDICTED FRACTIONS AVERAGED OVER ALL SCENARIOS.

Classes RMSE ρ R2

Forest 0.11 0.89 0.93
Dry field 0.10 0.87 0.69
Semi natural 0.09 0.82 0.63
Paddy field 0.08 0.83 0.77
Urban 0.04 0.34 0.19
Orchard field 0.04 0.48 0.09
Inland water 0.02 0.54 0.10
Greenhouse 0.02 0.59 0.25
Barren 0.02 0.25 0.08

Avg. 0.06 0.62 0.41

TABLE B3
NORMALISED INCREASED MEAN SQUARE ERROR (NIMSEb) OF THE
FOUR SPECTRAL BANDS EXTRACTED FROM THE ‘SR’ PREDICTOR SET

BASED SCENARIOS (S3, S7, S11, AND S15).

Classes NIMSEb (%)

B1 B2 B3 B7

Forest 38.5 38.3 10.9 12.3
Dry field 45.8 47.9 2.6 3.7
Semi natural 49.0 46.6 2.1 2.2
Paddy field 49.7 44.7 3.5 2.0
Urban 50.8 48.4 0.4 0.4
Orchard field 48.1 51.4 0.2 0.2
Inland water 50.1 49.8 0.1 0.1
Greenhouse 53.0 46.8 0.1 0.1
Barren 52.0 47.9 0.1 0.0

Avg. 48.6 46.9 2.2 2.3

TABLE B4
NIMSEb OF THE SIX BANDS EXTRACTED FROM THE ‘FULL’ PREDICTOR

SET BASED SCENARIOS (S4, S8, S12, AND S16).

Classes NIMSEb (%)

NDVI EVI B1 B2 B3 B7

Forest 30.0 25.1 26.7 7.2 5.2 5.8
Dry field 30.8 30.9 33.6 1.5 1.3 1.9
Semi natural 31.4 33.1 32.1 1.2 1.0 1.1
Paddy field 34.1 32.0 29.7 1.8 1.5 0.8
Urban 34.4 33.5 31.6 0.2 0.2 0.2
Orchard field 31.0 32.5 36.2 0.1 0.1 0.1
Inland water 32.2 34.3 33.4 0.1 0.0 0.0
Greenhouse 35.3 34.2 30.5 0.0 0.0 0.0
Barren 32.7 34.7 32.5 0.0 0.0 0.0

Avg. 32.4 32.3 31.8 1.3 1.0 1.1

TABLE B5
SUMMARY OF THE LINEAR MODELS EXPLAINING THE MODEL’S RMSE

BY THE THREE DATA-PROCESSING OPTIONS; Op IS A CATEGORICAL
VARIABLE DENOTING THE CHOSEN PREDICTOR SET OPTION, Ot TIME

INTERVAL OPTION, AND Os SMOOTHING OPTION.

Type Pr(>F) Explained variance (%)
Op Ot Os

Forest 0.00 52.92 19.61 7.75
Dry field 0.00 71.78 0.80 11.65
Semi natural 0.00 29.45 50.90 3.47
Paddy field 0.00 58.65 31.62 1.86
Urban 0.02 41.32 4.14 24.30
Orchard field 0.00 10.10 2.11 65.74
Inland water 0.00 19.69 35.90 29.31
Greenhouse 0.02 32.75 19.61 16.06
Barren 0.83 9.70 5.90 1.36

Avg. - 36.26 18.96 17.94
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