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ABSTRACT

Diffuse reflectance spectroscopy is a powerful technique to
predict soil properties. It can be used in situ to provide data
inexpensively and rapidly compared to the standard labora-
tory measurements. Because most spectral data bases contain
air-dried samples scanned in the laboratory, field spectra ac-
quired in situ are either absent or rare in calibration data sets.
However, when models are calibrated on air-dried spectra, pre-
diction using field spectra are often inaccurate. We propose
a framework to calibrate partial least squares models when
field spectra are rare using synthetic minority oversampling
technique (SMOTE). We calibrated a model to predict soil
organic carbon content using air-dried spectra spiked with syn-
thetic field spectra. The root mean-squared error of prediction
decreased from 6.18 to 2.12 mg g−1 and R2 increased from
−0.53 to 0.82 compared to the model calibrated on air-dried
spectra only.

Index Terms— diffuse reflectance spectroscopy, soil, par-
tial least squares, calibration, SMOTE

1. INTRODUCTION

Diffuse reflectance spectroscopy in the visible and near-
infrared range (VIS-NIR DRS) has proved to be useful to
assess various soil properties [1]. It can be employed to
provide more data rapidly and inexpensively compared to clas-
sical laboratory analysis. Therefore, DRS is increasingly used
for vast soil surveys in agriculture and environmental research
[2, 3]. Recently, several studies have shown the applicability
of VIS-NIR DRS in situ as a proximal soil sensing technique
[4, 5].

To predict soil properties from soil spectra, a model is cali-
brated, often using partial least squares (PLS) regression. How-
ever, when calibration is based on air-dried spectra collected
under laboratory conditions, predictions of soil properties from
field spectra tend to be less accurate [4]. Usually, this decrease
in accuracy is attributed to varying moisture between air-dried
calibration samples and field spectra recorded with a variable

moisture content. Different remediation techniques have been
proposed, ranging from advanced preprocessing of the spectra
[6] to “spiking” the calibration set with field spectra [4].

In our study, we adopt a slightly different view on the
calibration problem. It does not only apply to the varying
moisture conditions between the calibration data set and the
field spectra. Indeed, it is also valid if we want to predict soil
properties in a range where calibration samples are rare. Min-
ing with rarity or learning from imbalanced data is an ongoing
research topic in Machine Learning [7]. In imbalanced data
sets frequent samples outnumber the rare once. Therefore, a
model will be better at predicting the former and might fail for
the latter.

Two different approaches exist to take care of the data
imbalance: we can either adjust the model or “balance” the
data. The latter approach has the advantage that we can use the
usual modelling framework. Synthetic minority oversampling
technique (SMOTE) is one way to balance the data. It was
first proposed for classification [8] and recently for regression
[9]. SMOTE oversamples the rare data by generating synthetic
points and thus helps to equalize the distribution.

In this study, we propose a strategy to increase the predic-
tion accuracy of soil properties from field spectra when they
are rare in calibration. The goal of this study is to build a cali-
bration model to predict soil organic carbon content (SOCC)
from field spectra by air-dried samples spiked with synthetic
field spectra.

2. MATERIAL AND METHODS

2.1. Data acquisition

The studied soil was sampled at the southern slopes of Mt.
Kilimanjaro, Tanzania (3◦ 4′ 33′′ S, 37◦ 21′ 12′′ E) in coffee
plantations. Due to favourable soil and climate in this region,
extensive coffee plantations constitute a frequent form of land
use. We took 31 samples for calibration at 4 different study
sites. For validation, we scanned 12 field spectra at a wall of a
soil pit and sampled soil material for chemical analysis at the



scanned spots. We call these validation field spectra F.
After collection, the calibration samples were dried in

an oven at 45◦C and sieved < 2 mm. Subsequently, they
were scanned with an AgriSpec portable spectrophotometer
equipped with a Contact Probe (Analytical Spectral Devices,
Boulder, Colorado) in the range 350–2500 nm with 1 nm
intervals. The same spectrometer was used in the field. The
instrument was calibrated with a Spectralon white tile before
scanning the soil samples. For the measurement, a thoroughly
mixed aliquot of the sample was placed in a small cup and
the surface was smoothed with a spatula. Each sample was
scanned 30 times and the signal averaged to reduce the noise.
In the following, we call this calibration data set L.

SOCC was measured in a CNS-Analyser by high tempera-
ture combustion with conductivity detectors.

2.2. Generating data by synthetic minority oversampling

To generate new data to spike the calibration data set L, we
used SMOTE [8] and its extension for regression [9]. This
algorithm consists of generating new synthetic data using ex-
isting data and is summarized below. In our case, we generated
new spectra and the related SOCC using the field spectra F.
The new spectra are created by calculating the difference be-
tween a field spectrum and one of its nearest neighbours and
adding this difference (weighted by a random number between
0 and 1) to the field spectrum. The SOCC of the synthetic
spectrum is then a weighted average between the SOCC of the
field spectrum and the used nearest neighbour.

SMOTE has two parameters, namely N , the number of
points to generate for each existing point (given in percent of
the whole data set) and k, the number of nearest neighbours.
To study the influence of these parameters we generated six
different synthetic data sets S1 through S6, varying N =
100, 200, 300 and k = 3, 5.

2.3. Data pretreatment and explorative analysis

We corrected each spectrum (calibration, validation and syn-
thetic) for the offset at 1000 and 1830 nm and kept only parts
with a high signal-to-noise ratio (450–2400 nm). Then, we
transformed the spectra to absorbance (log10(1/reflectance))
and smoothed them using the Singular Spectrum Analysis
(SSA). SSA is a non-parametric technique to decompose a
signal into additive components that can be identified as the
signal itself or as noise [10]. Finally, we divided each spectrum
by its maximum and calculated the first derivative.

In order to assess similarities between the calibration, val-
idation and synthetic data sets, we calculated the Principal
Component Analysis (PCA) of the (uncorrected original) spec-
tra L and F and projected the synthetic data into the space
spanned by the principal components.

Algorithm: SMOTE

Input: T original samples to be SMOTEd
Amount of SMOTE N%
Number of nearest neighbours k

Output: (N/100)× T synthetic samples with their
target values (i.e. concentrations)

if N < 100 then
Randomize the T original samples:

T = (N/100)× T
N = 100

end
orig .s[i]: original sample i, i = 1, . . . , T
orig .t [i]: target value of original sample i
new .s[j]: synthetic sample j, j = 1, . . . , (N/100)× T
new .t [j]: target values of synthetic sample j
ng ← N/100: number of synthetic samples to compute
for each original sample

Generate synthetic samples:
for i in 1 to T do

nns ← compute k nearest neighbours for orig .s[i]
for ` in 1 to ng do

randomly choose x ∈ nns
diff = x− orig .s[i]
new .s[(i− 1)× ng + `] =
orig .s[i] + RANDOM(0, 1)× diff
d1 = DIST(new .s, orig .s[i])
d2 = DIST(new .s, x)

target = d2×orig.t(orig.s)+d1×orig.t(x)
d1+d2

end
end
return new .t ∪ new .s

2.4. Partial least squares regression

We calibrated seven different PLS models. For model I we used
the data set L, the spectra scanned under laboratory conditions.
Model II through VII were calibrated on L spiked with syn-
thetic spectra S1 through S6. To find the best model I through
VII, we varied the number of PLS components between 1
and 15. Based on the predictions in the leave-one-out cross-
validation (LOOCV) we calculated the corrected Akaike Infor-
mation Criterion [11] AICc = n ln(RMSE2) + 2p + 2p(p+1)

n−p−1 ,
where n is the number of calibration samples, p the number
of PLS components and RMSE the root mean-squared error.
The latter is defined as RMSE =

√∑n
i=1(ŷi − yi)2, where

ŷi are the predicted and yi the measured SOCCs. We selected
the model with the smallest AICc as the most plausible.

To assess the model quality, we used the RMSE, the mean
error ME = 1

n

∑n
i=1 ŷi − yi and the coefficient of determina-

tion R2 = 1 −
∑n

i=1(yi − ŷi)
2/

∑n
i=1(yi − ȳ)2, where ȳ is

the mean SOCC.



2.5. Monte Carlo simulations

SMOTE has two random components because it selects spectra
randomly (with replacement) among the nearest neighbours
and weights the difference between spectra by a random num-
ber (between 0 and 1). To study the influence of these random
steps, we generated 100 different datasets S1 through S6. Each
data set was then used to spike the calibration data set L, to
build a new PLS model and to predict the data set F.

3. RESULTS AND DISCUSSION

The first principal components (PCs) explain 85.4% and 11.2%
of variance, respectively. We can clearly identify two distinct
groups of samples: the calibration data set L and the field
spectra F (Fig. 1). In other words, the data sets L and F differ.
The synthetic points that were projected into the space spanned
by the PCs resemble the field spectra as expected.

The distinct characteristics of the data sets L and F accord
well with the difficulties to predict the data set F by using the
laboratory spectra L only (Table 1 and Table 2). Although the
LOOCV of model I yields a moderate RMSE and a large R2,
the validation on the data set F fails.

Spiking the calibration data set L with synthetic spectra
increases the prediction accuracy of the SOCC in the data
set F. Actually, the RMSE decreases and R2 increases with
increasing number of synthetic points both for the LOOCV
and the validation (Table 1 and Table 2). However, the number
of model parameters also increases from 2 to 7.

The Monte Carlo results show only a small variability in
the interquartile range. However, some synthetic data sets in
model V produced R2 values smaller than −0.53, the value
we obtain in model I on air-dried samples only. This might
be due to the combination of neighbours during smoting. In
general, models with 5 neighbours were more accurate than
those with 3 neighbours. However, the number of neighbours
had a smaller influence on the prediction accuracy than the
number of synthetic points.

It is difficult to decide a priory how many synthetic points
should be included in the calibration. Indeed, in a classification
problem the goal is to approximate an equal distribution of
different classes such that the rare class becomes an ordinary
one. In regression, however, we do not know which features of
the data make them rare. For our data, the range of SOCC in
the data set L is larger than in the data set F. Therefore, we con-
clude that concentration is not responsible for the difference
between these data sets.

Based on the Monte Carlo results we chose one synthetic
data set from model VI, namely the one with the median
number of model parameters and the best R2 in the validation.
Thus, the calibration data set includes 31 air-dried and 24
synthetic spectra. Compared to model I, spiking the air-dried
data set L with these synthetic spectra clearly improves the
prediction of the data set F (Fig. 2).
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Fig. 1. Principal component analysis of calibration data set L,
validation data set F and one synthetic data set S5. The symbol
size was scaled according to the SOCC.
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Fig. 2. Results of (a) leave-one-out cross-validation on data
set L (model I), (b) validation on data set F, (c) leave-one-out
cross-validation on data set L spiked with a synthetic data set
(model VI) and (d) validation on data set F.

4. CONCLUSIONS

We propose a framework to predict soil properties from in situ
acquired field spectra by spiking air-dried laboratory calibra-
tion data by synthetic ones generated from these field spectra.
In general, the prediction accuracy increases when a sufficient
number of synthetic points is included in the calibration. How-
ever, because it is difficult to determine this number a priori,



Table 1. Statistics of the PLS calibration. Median values and 25% and 75% quantiles in parenthesis.

Model Data set(s) N(%) k p RMSE (mg g−1) R2 ME (mg g−1)

I L – – 2 6.25 0.77 −0.20
II L and S1 100 3 5 (4; 5) 5.29 (5.18; 5.47) 0.80 (0.79; 0.81) −0.06 (−0.10; −0.01)
III L and S2 200 3 6 (6; 6) 4.51 (4.47; 4.56) 0.83 (0.83; 0.84) 0.07 ( 0.03; 0.11)
IV L and S3 300 3 7 (6; 7) 4.01 (3.98; 4.06) 0.85 (0.84; 0.85) 0.08 ( 0.05; 0.11)
V L and S4 100 5 4 (3; 5) 5.31 (5.16; 5.55) 0.80 (0.78; 0.81) −0.02 (−0.10; 0.04)
VI L and S5 200 5 6 (6; 6) 4.51 (4.45; 4.55) 0.83 (0.83; 0.84) 0.06 ( 0.01; 0.10)
VII L and S6 300 5 6 (6; 7) 4.05 (4.02; 4.08) 0.84 (0.84; 0.85) 0.07 ( 0.05; 0.09)

Table 2. Statistics of the PLS validation. Median values and 25% and 75% quantiles in parenthesis.

Model RMSE (mg g−1) R2 ME (mg g−1)

I 6.18 −0.53 −3.88
II 3.09 (2.82; 3.58) 0.62 (0.49; 0.68) −0.03 (−0.53; 0.79)
III 2.00 (1.79; 2.40) 0.84 (0.77; 0.87) 0.14 (−0.01; 0.36)
IV 1.31 (1.08; 1.58) 0.93 (0.90; 0.95) 0.16 ( 0.06; 0.27)
V 3.06 (2.79; 3.56) 0.62 (0.49; 0.69) −0.28 (−0.70; 0.79)
VI 2.12 (1.81; 2.39) 0.82 (0.77; 0.87) 0.24 (−0.04; 0.48)
VII 1.62 (1.29; 2.07) 0.89 (0.83; 0.93) 0.18 ( 0.02; 0.37)

we recommend to generate several synthetic data sets to find
an appropriate model.
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