Nomenklatur - Übersicht

	Multivariate Regression	Hauptkomponenten- analyse	Korrespondenz- analyse	Clusteranalyse	Diskriminanz- analyse
Name der synthetischen Variable	Regressand	Hauptkomponente	-	Clusterzugehörigkeit	Diskriminanzfunktion
Wert der synthetischen Variable	Schätzwert für reale Variable	Faktorwert	Wert in 1./ 2. Dimension	(Clusterzugehörigkeit)	Diskriminanzwert
durch synth. Variable erklärte Gesamt- Streuung	erklärte Varianz	Anteil der Eigenwerte		(Anteil der Fehlerquadratsumme)	Anteil der Eigenwerte (Diskrimanzanteil)
durch synth. Variable erkl. Streuung der einzelnen Variablen	-		Anteil der Eigenwerte (der Trägheit, der Streuung, der Inertia)	-	-
Korrelation zwischen realer und synthetischer Variable	partielle Korrelation	Ladung	-	-	Ladung

Multivariate Analyse: Take-Home Message

- 1. Die meisten Standardmethoden basieren auf *linearen Zusammenhängen* im Datensatz.
- In der Regel gibt es verschiedene Maßzahlen für die Güte des Verfahrens, die unbedingt beachtet werden sollten (ein großes r² alleine sagt noch nicht viel aus!).
- 3. Multivariate Verfahren werden überwiegend eingesetzt, um
 - · einzelne Werte vorherzusagen (Regression)
 - die *Dimension* des Datensatzes zu *reduzieren* (Prozessanalyse, Visualisierung)
 - Gruppen zu identifizieren (klassifizieren).
- 4. Die Verfahren verlangen i.d.R. ±subjektive Entscheidungen des Anwenders, die zu begründen sind.
- 5. Die Ergebnisse der hier vorgestellten *Verfahren sind nicht unabhängig* voneinander.

Versuch / Experiment

Ein Versuch ist eine

- (1) systematische Beobachtung der (Abhängige Variable AV)
- (2) Auswirkungen einer planmäßigen Veränderung (Unabhängige Variable UV)
- (3) unter weitestgehender Ausschaltung oder
 Kontrolle von Störfaktoren. (Stör*v*ariable *SV*)
- => Forderungen (*MaxKonMin*-Prinzip; *Krelinger 1973*):
- zu (2): Maximale Variation der postulierten Einflussgrößen (Primärvarianz)
- zu (3): **Kon**trolle der Randbedingungen, Minimierung ihrer Varianz (**Sekundärvarianz**)
- zu (1): Minimierung der Beobachtungsfehler (Fehlervarianz)

Grundbegriffe der Versuchsplanung

Definitionen:

- Kausalität
- Hypothesen: H₀: μ₁ = μ₂ = μ₃ = ...;
 H₁: μ_i ≠ μ_i = für mindestens zwei μ_i, μ_i
- Validität = Zulässigkeit der Schlussfolgerungen aus dem Experiment
 - intern: Ergebnisse der Untersuchung sind logisch eindeutig interpretierbar
 - extern: Ergebnisse der Untersuchung sind generalisierbar
- n-faktoriell: n Einflussfaktoren (UV), p-fach gestuft
- unabhängige Variable UV = Einflussgröße = Behandlung = Treatment: beliebig skaliert
- abhängige Variable AV: mind. intervallskaliert (=> Mittelwerte und Varianzen interpretierbar)

Minimierung der Fehlervarianz

- Richtigkeit und Präzision der Messung
- Ausreißer
- Fehlende Werte

Maximierung der Primärvarianz

Wenn die Beziehung zwischen UV und AV

linear ist: Wahl von extremen Werten der UV

• kurvilinear ist: Wahl von optimalen Werten der UV

unbekannt ist: Unterteilung in möglichst viele Stufen der UV

(möglichst kleine Abstufungen)

UV = unabhängige Variable

AV = abhängige Variable

Minimierung der Sekundärvarianz

- 1. Eliminierung der Störvariablen
- 2. Konstanthaltung (Annahme einer linearen Beziehung zwischen SV und AV)
- 3. Umwandlung von Störvariablen in unabhängige Variablen (SV \rightarrow UV)
- 4. Parallelisierung (Einzelmessungen werden in eine Rangreihe der Werte bzgl. der Störvariablen gebracht, dann nacheinander den Versuchsbedingungen zugeordnet)
- **5. Wiederholungsmessung** (dieselbe Gruppe wird unter den verschiedenen Versuchsbedingungen getestet)
- **6. Blockbildung** (Blöcke = Gruppen homogener Untereinheiten, auf die die einzelnen Versuchs-Varianten verteilt werden)
- 7. Randomisierung (zufällige Verteilung der SV auf die einzelnen Gruppen)

Lateinisches Quadrat

(Latin Square)

Ziel: Minimierung des Einflusses zweier Störvariabler.

Methode: Jede Variante ist genau einmal in jeder Zeile und in jeder Spalte

vertreten.

Einschränkungen: Wechselwirkungen zwischen AV, SV1 und SV 2 können nicht

untersucht werden.

n-dimensionale Erweiterung: Latin Hypercube

_		
7uns	ahme vor	. SV 1

				\longrightarrow
Zunahme	Α	D	С	В
	C	В	Α	D
von SV 2	D	Α	В	C
	В	C	D	Α

Versuch / Experiment

Ein Versuch ist eine

- (1) systematische Beobachtung der (Abhängige Variable AV)
- (2) Auswirkungen einer planmäßigen Veränderung (Unabhängige Variable UV)
- (3) unter weitestgehender Ausschaltung oder Kontrolle von Störfaktoren. (Stör*v*ariable *SV*)
- => Forderungen (*MaxKonMin*-Prinzip; *Krelinger 1973*):
- zu (2): Maximale Variation der postulierten Einflussgrößen (Primärvarianz)
- zu (3): **Kon**trolle der Randbedingungen, Minimierung ihrer Varianz (**Sekundärvarianz**)
- zu (1): *Min*imierung der Beobachtungsfehler (*Fehlervarianz*)

Varianzanalyse = ANOVA

(Analysis of Variance)

<u>Ziel</u>: Bestimmung des Anteils verschiedener Einflussfaktoren (UV) an der beobachteten Varianz der AV

=> Untersuchung der Signifikanz von Mittelwertdifferenzen

Varianz: = mittlere quadrierte Abweichung

= Summe der quadrierten Abweichungen, geteilt durch die Anzahl der Freiheitsgrade

beachte: **alle** der bisher vorgestellten multivariaten Verfahren führen eine Zerlegung der Varianz durch, der Begriff der **ANOVA** ist jedoch für dieses Verfahren reserviert!

Quadratsummenzerlegung

für einen einfaktoriellen, p-fach gestufter Versuch mit jeweils n Wiederholungen

generell: Varianz
$$(\hat{\sigma}^2) = \frac{\text{Quadratsumme } (QS)}{\text{Freiheitsgrade } (df)}$$

$$QS_{tot} = QS_{treat} + QS_{Fehler}$$
 und $df_{tot} = df_{treat} + df_{Fehler}$

Gesamt-Varianz (Stichprobenvarianz):

$$\hat{\sigma}_{tot}^2 = \frac{QS_{tot}}{df_{tot}} = \frac{\sum_{i=1}^{n \cdot p} (x_i - \overline{x})^2}{(n \cdot p) - 1}$$

Treatment-Varianz:
 \$\overline{x}_p\$: Mittelwert der Merkmalsauspr\u00e4gungen f\u00fcr die einzelnen Stufen der Behandlung

$$\hat{\sigma}_{treat}^{2} = \frac{QS_{treat}}{df_{treat}} = \frac{n \cdot \sum_{l=1}^{p} (\overline{x}_{i} - \overline{x})^{2}}{p - 1}$$

Fehler-Varianz:

$$\widehat{\sigma}_{Fehler}^2 = \frac{QS_{Fehler}}{df_{Fehler}} = \frac{\sum_{i=1}^{p} \sum_{m=1}^{n} (x_m - \overline{x}_i)^2}{p \cdot (n-1)}$$

Prüfgröße: F-Wert

- Wenn die $\mathbf{H_0}$ gilt ($\mathbf{H_0}$: $\mu_1 = \mu_2 = \mu_3 = ...$), dann stellt die Treatmentvarianz eine erwartungsgetreue Schätzung der Fehlervarianz dar: $\hat{\sigma}_{reat}^2 = \hat{\sigma}_{Fehler}^2$
- Prüfgröße F: $F = \hat{\sigma}_{treat}^2 / \hat{\sigma}_{Fehler}^2$
- zu vergleichen mit tabellierten Werten für $df_{treat} = p \cdot 1$ Zählerfreiheitsgrade und $df_{Fehler} = p \cdot (n \cdot 1)$ Nennerfreiheitsgrade
- <u>Interpretation</u>: wird der tabellierte F-Wert überschritten, so unterscheiden sich **mindestens zwei** der *p* Stufen der Behandlung signifikant voneinander

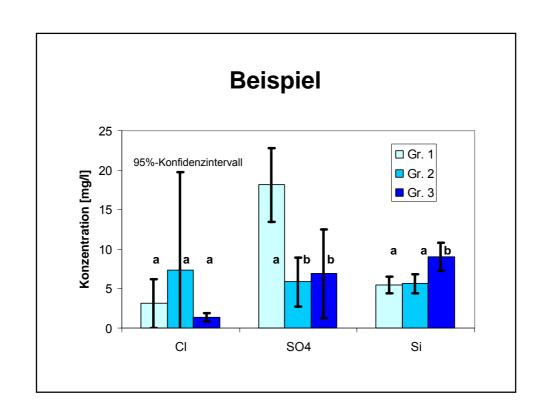
Ungleiche Stichprobenumfänge

Stichprobenumfang für die Treatmentstufe i

Summe aller Untersuchungseinheiten

für gleiche Stichprobenumfänge: für ungleiche Stichprobenumfänge:

$$QS_{treat} = \sum_{I=1}^{p} (\overline{x}_i - \overline{x})^2$$


$$QS_{treat} = \sum_{I=1}^{p} (\overline{x}_i - \overline{x})^2 \cdot n_i$$

$$\begin{array}{llll} df_{tot} &= (n \cdot p) - 1 &= N - 1 & df_{tot} &= N - 1 \\ df_{treat} &= p - 1 & df_{treat} &= p - 1 \\ df_{Fehler} &= p \cdot (n - 1) &= N - p & df_{Fehler} &= N - p \end{array}$$

$$df_{tot} = N - 1$$

$$df_{treat} = p - 1$$

$$Af = N$$
 p

Mehrere t-Tests oder eine ANOVA?

- Für den einfaktoriellen, zweifach gestuften Ansatz entspricht die ANOVA einem t-Test
- Für den mehrfaktoriellen und/oder mehrfach gestuften Ansatz wären
 - viele einzelne t-Tests erforderlich => steigende Wahrscheinlichkeit, dass einzelne Tests f\u00e4lschlicherweise signifikante Unterschiede aufweisen
 - 2. Untersuchungen der *Wechselwirkungen* zwischen verschiedenen UV mittels t-Test nicht möglich

Wechselwirkungen zwischen UVs

= der Anteil des Gesamteffekts verschiedener Faktoren, der von der addierten Wirkung (Superposition) der Einzeleffekte abweicht

Bsp.: Erhöhung des Weizenertrags durch

- N-Düngung um 25%,
- · Applikation eines Fungizids um 20%,
- Kombination aus N-Düngung und Fungizid-Applikation um 30% (statt um 50%).

Voraussetzungen der ANOVA

- **1. Quadratsummenzerlegung** → Voraussetzungs-frei
- **2. F-Test** → Voraussetzungen:
 - Normalverteilung der Fehlerkomponenten (= Abweichungen der Messwerte vom jeweiligen Stichprobenmittel) (selten überprüft)
 - gleiche Varianzen der Fehlerkomponenten (Bartlett-Test, Levene-Test)
 - Unabhängigkeit der Fehlerkomponenten innerhalb und zwischen den Stichproben (s. Randomisierung)

kritisch: kleine, ungleichgroße Stichproben und heterogene Varianzen

=> Ausweichen auf verteilungsfreie Verfahren (Kruskal-Wallis)

Aufgabe

- Testen Sie jeweils mittels t-Test und einfaktorieller ANOVA die beiden Gruppen auf signifikante Unterschiede der Mittelwerte für verschiedene Variablen.
- Stellen Sie zum Vergleich die Mittelwerte und 95%-Konfidenzintervalle aller Variablen sowie der Hauptkomponentenwerte der beiden Gruppen grafisch dar. Kennzeichnen Sie signifikante Unterschiede mittels unterschiedlicher Buchstaben.
- 3. Führen Sie zum Vergleich für die drei Gruppen eine Diskriminanzanalyse mit den Werten der *Variablen* durch.