
Overview 
 
TRAGIC++ is an interactive forest stand simulation program.  In TRAGIC++, the 
development of a forest is simulated as the collective dynamics of individually growing trees, 
each of which competes with the others for light, space, and nutrients. Interaction is possible 
by removing or planting single or groups of trees and by changing the environmental 
conditions (light and nutrients). The TRAGIC++ program is based on a relatively simple 
process-based tree growth model that can be parameterised to represent trees of different 
species. 
 
The trees grow in a three dimensional world that consists of below and aboveground space.  
Below ground, the trees expand their root systems in search of “wusels”, which are generic 
nutrient packets that are provided as external input to the system on a yearly basis. In addition 
decomposing litter releases “wusel” to the soil, simulating an internal nutrient cycle. Above 
ground, trees expand their crowns and supporting biomass according to their wusel input and 
net photosynthetic productivity. It is assumed that trees maximise their instantaneous (annual) 
growth rates up to the constraints imposed by photosynthesis and nutrient uptake.   
 
A TRAGIC++ simulation proceeds in yearly time steps.  During each simulation cycle, 
energy and wusels are input to the system, and then the trees grow, reproduce, and die 
according to the rules of the model.  The overall cycle is as follows (this is the CForest::Cycle 
function): 
 

StartCycle(); 
 
  Replanting(); 
  Shadowing(); 
  CalcSigmaC();            //only used if climate data provided 
  Photosynthesis(); 
  Dying(); 
  Litterfall(); 
  GeoConstraintZ(); 
  GeoConstraintXY(); 
 
  RootDeath(); 
  Wuseling(); 
  Regeneration(); 
  Partition(); 
  RootGrowth(); 
 
  Thinning(); 
  Decomposition(); 
  Ageing(); 
 
  FinishCycle(); 
 
 
The details of each of these processes are described further in the other sections of this 
document. 
 
Most processes are computed for each individual tree on a species by species basis.  For each 
species in the forest, the trees are updated in order from tallest to shortest.  (Note that, in the 
program code, species are listed according to the order in which they are added to the forest.  
Since species are always treated in turn, this order, in addition to tree order, may affect 
simulation results in mixed species stands.)  
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The operation of the model is dependent upon the values of a number of key parameters that 
are input before runtime by the program’s user (see parameter list).  Some of these are forest 
level parameters that apply to all trees in the forest.  Others are species level parameters that 
apply only to the trees of a given species.  During runtime, the user also has the option to halt 
program execution, inspect all variables and modify the values of some of the parameters. In 
addition trees may be removed or planted (from the same or a new species) at any time during 
the run. 
 
Climate 
 
 
In the standard TRAGIC++ climate is not considered at all. Photosynthesis is estimated for 
each species by the annual yield of an unshaded unit of leaf dry matter (fixed SigmaC). It 
becomes modified, however, due to mutual shading of trees. There is an option to include 
climate data at daily temporal resolution in order to vary the photosynthetic capacity between 
years. This module is still under testing and not described here.  
 
 
Ground 
 
Wusels 
 
The belowground and rooting zone in TRAGIC++ is a discrete, three dimensional space. It is 
regularly divided into cubes having the unit of pixel3 (i.e. Voxel). Pixel length in metres is a 
forest level parameter of the model.  The size of pixel and voxel can be specified in the forest 
parameter list. Default values used in the example built into TRAGIC++ are 1.0 and 0.2 m 
respectively. The ground space is bounded in the horizontal plane at the forest edges. Beyond 
the edges it is extended as a torus to provide the shading and competitive parameter for light 
and nutrient interception. In the vertical plane the soil surface and the soil depth bound it 
respectively (the depth of soil is also a forest level parameter).  The soil, or ground, surface 
has a topology, in which the absolute elevation of each cubic pixel is determined by an 
arbitrary function. However, this function has to be provided prior to compilation, it is not 
part of the save and restart facilities. Currently a slightly modulated valley is used as the 
default surface (see parameters SIZE and SPACE in CTree.cxx at line 3066). If a special 
surface topology is required, contact Michael Hauhs at BITÖK.   
 
Within the ground, there are “voxels”, which constitute cubic pixels that may be exclusively 
occupied by the fine roots of one single tree.  Every voxel has a standard fine root mass 
(“voxel weight”, defined as a forest parameter), and this mass is therefore the smallest unit by 
which a tree can increase its root mass.  Only one tree can occupy a voxel at any given time.  
The volume of the ground which is occupied by tree roots is called the “voxel space”. During 
growth trees are updated in the sequence of their height. A voxel is assigned exclusively to 
any tree that attempts to grow into it. If this voxel had already been assigned as fine root to 
another (or the same tree), the voxel weight unit is added to the litter component. Root 
competition therefore increased the production of litter, but never the density of roots in any 
voxel. Small trees are favoured as they get the last chance of root growth in each cycle (see 
section on root growth below). 
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The random walk by which the Wusels are added to the forest each year is termed “wuseling”.  
During each simulation cycle, a fixed number of nutrient compartments (called “wusels”; the 
number of wusels added each year is a forest parameter), plus a variable number of wusels 
regained from decomposition, are added to the ground in the form of a random walk process.  
Each wusel carries with it a fixed mass of nutrients. (If one wants to impose a strictly constant 
nutrient supply during a rotation the decomposition rate has to be turned off, e.g. by setting its 
parameter to tiny values; see below. In this case the mass budget can not be displayed.) 
 
First, each new wusel is created, and is randomly assigned a position (x, y coordinates in 
pixels) in the ground. In the current version all wusel are started from the soil surface.  Next, 
each wusel’s position is increased by a value (i) selected randomly from the range 0<i<5, 
where i is an integer.  For the purposes of wuseling, the ground is assumed to be toroidal, so 
that there is wrapping in the x and y directions.  However, in the vertical direction, wusels 
whose z coordinate exceeds the soil depth are irreversibly lost from the forest.  After each 
wusels step of this random diffusion through the soil, each wusel’s position is compared to the 
position of all of the tree-owened-voxels in the ground to see if it has “hit” a fine root.  If a 
root has been hit, this hit its location and direction are recorded by the tree and is later used to 
fuel new biomass growth und to guide the direction of root growth.  In addition, when a wusel 
hits a root, all or part of its nutrient content is be absorbed by the tree.  Hence root uptake is a 
passive process during any given cycle, while the trees have to actively grow roots in order to 
increase their uptake chances (For further details, see root growth section.) 
 
The model does not include any considerations of soil hydrology or groundwater flow. The 
probabilities for the random walk are not accessible through parameters they might be 
changed prior to compilation only (see in CWusel.cxx at line 163 the method: 
CWusel::DoWusel). 
 
Decomposition 
 
Detritus is regularly added to the soil due to fine root turnover, litterfall, senesence, and 
cutting.  This annual litter biomass is distributed to three different quality classes depending 
on the nutrient content (to change the number of litter quality classes requires reprogramming 
as the budget would no longer hold). The decomposition releases the nutrients from each 
quality class according to the equations of Agren and Bosatta (1991). The parameter set for 
the decomposition routine can be specified at the forest level. The array containing the 
amounts of different litter quality becomes dynamically extended with each annual cycle it 
will be saved and reloaded along with the other run variables during a restart.  
 
The nutrient content of the litter becomes gradually released during decomposition and is 
annually added as Wusel to the ground. 
  
The conversion of the litter into quality classes is organised as follows: all woody litter 
(branches, transport roots, stem wood and heartwood) is transferred into the lowest quality 
class. For branches and transport roots this is done in the cycle when they die, while “dying” 
sapwood is first converted to heartwood and is only added when the respective tree dies and 
its timber is not removed. Leaf and fine root litter is added into the standard quality class in 
the cycle when they die. 
 
If a tree dies and has still an internal pool of free nutrients these are added to the leaf litter up 
to its doubled nutrient concentration and then added to the high quality litter class.  Extra 
nutrients remaining after that are taken out of the simulation by adding into a dummy variable 
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AccumI.   This variable constitutes another export of nutrients from the forest. It is introduced 
because of the passive nutrient uptake by trees. One may add or compare AccumI with the 
variable LostWusel, describing the export over the lower boundary of the belowground 
voxelspace resulting from the random walk. 
 
Trees 
 
Major parts of a tree 
 
A tree has above and belowground parts.  Above ground, a tree is made up of a vertical stack 
of segments, each of which may have up to 8 lateral branches that extend radially from the 
centre of the segment.  On each branch, there are needles (also called foliage).  Below ground, 
the tree has transport roots and fine roots. 
 
A tree’s mass is divided into three main parts: productive biomass, supporting biomass and 
heartwood.  Productive biomass is the sum of the tree’s foliage mass and fine root mass.  
Supporting biomass is the sum of a tree’s branch, segment and transport root masses.  
Together, the sum of the productive and supporting biomass constitute a tree’s total living 
biomass.  Heartwood consists of supporting biomass that is no longer alive (i.e., sapwood that 
does no longer supply any foliage).  Heartwood simply serves as structural material in the 
tree’s stem. 
 
The biomass and bookkeeping in TRAGIC++ focuses at theses masses and the locations of 
fine roots, stem segments and branches. It does not keep track of the locations of transport 
roots, needle age classes or of  outer shape of the stem. The diameter at 1.3 m height is 
calculated instantaneously from the form factor, tree height and total stem biomass (sapwood 
and heartwood). Hence excessive height growth on top of a stagnant sapwood pool may cause 
the diameter and cross section to decline. This is, of course, to be avoided through 
parameterisation. In other words TRAGIC++ uses a constant form factor for each species (see 
species parameter list). 
 
For each tree, masses of excess, or unused, energy (carbon) and nutrients (nitrogen) are stored 
in the variables EPool and IPool, respectively.  The size of these pools will increase if a tree 
is not able to meet its potential foliage or root growth.  The tree can also draw from these 
pools as required, but backflow of energy is restricted to 10% of current value of  NetPhoto 
(see line 1625 in Ctree.cxx:   Reusefraction = 0.1F;). In the current version backflow of 
nutrients from the pool is entirely prohibited (see line 1610 in Ctree.cxx:   Double 
ReleaseFactor = 0.0F; as it would give an error in the nutrient budget otherwise) 
 
Other derived variables used to describe the size and shape of a tree include: 
 

Elevation = ground level elevation of tree’s stem (m) due to topology provided 
Height = vertical distance between ground elevation and top of tree crown (m) 
Real height = elevation + height (m) 
Crown height = distance between the top and bottom of a tree’s crown (m) 

 
Volume =  volume of tree crown, assuming a conical shape (m3) 
Tree bounds = edges of the rectangle that circumscribes a tree, as defined by the radii 
of it’s longest branches 
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As a tree gains mass, its total number of segments and, thus, its cross-sectional area increase.  
A tree may also expand radially by growing more branches, or by adding foliage to existing 
branches. Growth of the crown geometry is provided by two processes: the height growth as a 
function of the individual height growth strategy (provided by species-specific parameter) and 
the new foliage from the current year. It is assumed that the leader shoot does not require any 
additional foliage and hence new foliage is distributed by adding branches to last year’s leader 
and lateral expansion of existing branches. In addition the actual height growth may be less 
than the potential height growth controlled by the root uptake of nutrients (see below).  
 
 
Photosynthesis 
 
The way that a tree’s photosynthesis is calculated depends upon the program settings.  The 
simplest way is “via fixed SigmaC”.  With this method, it is assumed that the tree converts 
radiant energy to biomass at a fixed potential rate per year, equal to the value of the SigmaC 
tree species parameter.   
 
A segment’s potential gross photosynthesis (kgDW) is calculated as a function of foliage 
weight (Wf), SigmaC, and the photosynthetic light ratio (PLR, kgDW/kgC).  The total potential 
gross photosynthesis for a tree (Pg, kgDW) is then computed as the sum of all of the segment 
level values.  A given segment’s gross photosynthesis is only counted if it exceeds respiration 
otherwise the branches are shed from this segment for which respiration exceeds 
photosynthesis. 
 
The equation is as follows: 
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SFPHi  = Shading foliage per hectare for the local segment  

 
α and β are the species specific shading parameters. There is hence some inconsistency as the 
shading is calculated from any biomass that is within  the upward cone from a segment 
including other species of course. However, the extinction parameters to calculate PLR are 
used from the species that is shaded by this biomass. Hence it is rather the shading sensitivity 
that becomes lumped into these parameters.  
 
Once gross photosynthesis and respiration (see below) have been computed, a tree’s net 
photosynthesis (Pn, kgDW?) is calculated as follows: 
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Other photosynthesis calculation methods have not been sufficiently tested and are not 
included in this description. 
 
 
Respiration 
 
Maintenance respiration (kgDW) is computed for both above and belowground tree parts as 
follows: 
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where i denotes a tree segment.  
 
If the net photosynthesis calculation method is via fixed SigmaC, maintenance respiration is 
also considered to include a foliage component, such that: 
 

MaintResp2 = MaintResp1 + ff WR ⋅  
 
 
Partitioning 
It is assumed that trees maximise their growth rate by dynamically adjusting the specific 
activity of roots (calculated from the mass of currently acquired nutrients per dry mass of fine 
roots: SigmaI) with the specific activity of shoots  (given in currently acquired Carbon per dry 
mass of roots: SigmaC1). Thus if root uptake constraints growth proportionally more roots are 
grown and if shoot photosynthesis constraints growth more foliage is grown.  
 
Hence a tree’s net mass increase due to photosynthesis is partitioned to above and below 
ground parts of the tree according to the following rules that are intended to maintain a 
constant ratio between a tree’s root uptake ( Iσ , kgI/kgDW) and foliage photosynthesis ( Cσ , 
kgC/kgDW). Iσ  and Cσ  are calculated as follows: 
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where HitAmount is the mass of wusel absorbed by the fine roots in the current cycle (kgI). 
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1 This is an species specific parameter provided on input, unless the option with variable climate is used. In the 
latter case it is dynamically calculated from the meteoric variables. 
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where IFract is the ratio of nitrogen content in tree to total living biomass (kgI/kgDW): 
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PIs (kgI/kgDW) is a series specifying the nutrient contents in various biomass components, 
where: 
 

PIs0 = 0.003; PIs1 = 0.003; 1)n(003.0PIsn +=  n>1 
 
[An additional variable is always calculated but seems to be no longer used: 
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The partitioning coefficients ( stbrf ,,,,λ ) are then calculated iteratively for a tree (max 16 
iterations), until the sum of these is equal to ε±1 .  This is done according to the following 
general procedure: 
 
First, select an initial value for fλ  (start with 0.5), calculate the new crown growth based on 
this value, and then set values for bλ  and sλ as follows: 
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Root partitioning coefficients are estimated as follows: 
 

( )frr λαλ ⋅= ,02.0Max  7.0≤rλ  
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If the sum of the five coefficients is not close to one, the value of fλ  is then modified a little 
and the process is reiterated. 
 
In the above equations, the double-subscript t is used to refer to the most recently computed 
value in the iteration cycle, and t-1 is the value that was recorded one cycle prior to t.  
Recycled sapwood in the branches and segments of a tree is computed during tree senescence 
routines (see description below). 
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If a tree’s HitAmount (kgI absorbed by fine roots) is less than the value of the IIcrit species 
parameter, or if the tree has no net photosynthesis this cycle, then partitioning is not 
performed.  In such cases, the tree is said to have undergone a dry cycle.  If a tree has more 
than DieMaxDryCycle (species parameter) consecutive dry cycles, it will die. This is the only 
way a tree can die due to lack of nutrients. 
 
 
 
 
Regeneration 
 
If regeneration is selected (in the species list), then each mature tree ( > 25 years) in the forest, 
at each time step, has the opportunity to regenerate (currently 1 attempt is allowed for each 
tree/cycle, however the offspring may fail to find a suitable place to grow (see below) and is 
in that case transferred to the litter cohort). 
 
A new tree is created with the standard initial settings for its species.  The new tree will 
initially obtain the height strategy (ao, a1, a2) and partition-root-to-height growth parameters 
from the parent tree.  If mutation is switched on, these four parameter values will then be 
mutated according to the deviation levels specified as program parameters. 
 
A random location is chosen at the ground and it is tested if the newly generated tree would fit 
into this location without aboveground overlapping existing trees. If it fits it is added to the 
list of trees and the stand statistics are updated accordingly. For a detailed description how 
this updating of the various classes is organised in TRAGIC++ see Dörwald (1999). 
  
 
Height growth 
 
A tree’s potential height growth over a given year is modelled with the following equation: 
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The value of  is then modified according to the current growing conditions of the tree 
as follows:  

potH∆

 
η*potreal HH ∆=∆  

 
where: 

( ) tRoot2Heigh*1 4
Rλη −=  5.102.0 ≤≤η  

 
If a tree has no geometrical constraints on its growth, then its total height will be incremented 
by .  If, however, the branches of another tree cover the top of a tree’s crown, its height 
growth may be limited.  In such cases, if the amount of free space above the tree is less than 

realH∆
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realH∆ , the tree will only increase in height by the amount specified by the minimum height 
growth species parameter.  
 
This partitioning variable for root growth (LambdaR) is used to adjust the potential height 
growth to the actual site conditions in terms of nutrient availability. The factor Root2Height is 
provided form the species parameter set, but is treated as a tree specific variable, as it may be 
changed by mutations during inheritance. 
 
Thus trees that need more roots (i.e. on poor soils) reduce their height growth by this 
mechanism. The sensitivity of this process may be explored over evolutionary runs during 
which the strategy parameters are allowed to change during regeneration events (see 
parameter list: strategy deviation parameters at the species level).  Only the strategy deviation 
parameter for Root2Height is also used during a planting event in order to randomise this 
factor in the individual trees due to a normal distribution where the standard deviation is given 
in the deviation parameter. When one wants to plant identical trees only, make sure the 
deviation parameter for initial tree height (MaxDHeight) and for the Root2Height factor are 
set to zero. 
 
Crown growth 
The second process that controls crown expansion is the distribution of new foliage. The 
distribution function DIST has three species-specific parameter (CrnPar0, CrnPar1, CrnPar2)  
for a quadratic function (see strategy parameter list and line 687 in CTree.cxx): 
 
Double Value =      Owner->Params.Strategy.PartitionCrown[0]*sq(x) +  

Owner->Params.Strategy.PartitionCrown[1]*x + 
Owner->Params.Strategy.PartitionCrown[2]; 

 
This prescribes the vertical distribution within the crown. This distribution may become 
locally modified by further parameters described below. 
 
Among branches the new foliage is distributed due to horizontal differential shading.  The 
branch with lowest and highest shading biomass (i.e. biomass that casts shade onto this 
branch) receives the highest and lowest amount of new needles, respectively. The species 
parameter StemPlasticity controls how much the difference between the basal coordinates of 
the stem (base) and the centre of the shading biomass distorts the segment links out of the 
vertical, i.e. by increasing this parameter trees are allowed to grow towards light gaps.  
 
Once the new foliage for each branch is assigned, it is decided how much each individual 
branch has to be extended. This is controlled by two parameters (InOutPart, Kg2Cm). 
InOutPart says how much of the new branch foliage is used for extending the branch. For this 
extension Kg2Cm is used to convert foliage mass into crown sector volume and the radius for 
this branch is updated accordingly. In addition a maximum of branch overlap is checked. If a 
branch extends more into a neighbour crown than allowed by this parameter. In the current 
version almost no overlap is allowed. This can only be changed prior to compilation (line 49 
in CTree.cxx). Excess new foliage that becomes “ungrowable” due to these constraints is 
transferred to the energy pool variable (EPool).  
 
#define BRANCH_MAXOVERLAP (0.0005)    
 
Underground, a tree increases its root mass as required to access nutrients (“wusels”) in the 
soil.   A tree’s growth in TRAGIC++ may become limited by geometrical or by biomass 
constraints (lack of C or nutrients) in its aboveground parts. The underground growth is only 
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restricted by the total volume provided and the immortal voxel, otherwise no geometrical 
restrictions apply to the fine root growth, that is supposed to be entirely opportunistic (i.e. into 
the direction where the roots where most often hit by wusel during the last round of the 
random walk). No geometric relationship is established between transport roots and fine roots. 
The transport roots are an abstract compartment for each tree that is calculated from the total 
age of its roots and a transport root cost factor that is set globally for the underground 
(TRootAgeCost in forest parameter list). 
 
 
Root growth 
 
A tree’s root growth has two parts: fine root growth and transport root growth.  Fine root 
growth is partly a random process (in terms of geometry), whereas its mass is determined by 
net photosynthesis and nutrient availability (via wusel hits).  Transport root growth is a 
deterministic function of fine root growth. 
 
For each tree, potential fine root growth is first calculated as a function of net photosynthesis 
and root partitioning, where: 
 

NrOfFueledVoxel = Max(0, 
tVoxelWeigh

P* nRλ ) 

 
this value is compared with the number of “growable” voxels, which is a function of wusel 
availability, and the smallest of the two values is used to compute fine root growth. 
 

NrOfGrowableVoxel = hitsN
xelVoxelPerPi

PixelSize
wthMaxRootGro50

⋅








 ⋅

  

 
where Nhits is the number of root voxels that have been hit by a wusel in this cycle. 
 
For a number of times, equal to the number of potential new root voxels (either 
NrOfFueledVoxel or NrOfGrowableVoxel), the tree is given the opportunity to grow a new 
voxel.  For each potential case, the tree grows new fine root mass into the voxel where a 
wusel is located that hit one of its roots.  The tree then gains fine root mass equal to the mass 
of one voxel.  Next, the wusel for that hit is moved one pixel away, allowing the tree to grow 
another voxel in that direction in another iteration.  The root growth loop iterates cyclically 
through all of the tree’s recorded wusel hits (whose locations move by one pixel each time 
they are “used”), until the tree has attempted to grow it’s allowed number of potential new 
voxels. 
 
Note that voxels are “owned” by a tree.  If one tree grows into another tree’s voxel, ownership 
is transferred, and the initial voxel owner loses fine root mass.  Each tree, however, has one 
“immortal” voxel located directly below its stem.  This voxel cannot be lost to another tree.  
When a voxel is lost by a tree, the equivalent amount of fine root mass is added to the soil 
humus. 
 
Transport root growth (“fine root cost”, FRC, kgDW) is computed as Min( FRC, FRC ) 
where: 
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FRC = stTRootAgeCo*
NrOfVoxel

AgeOfVoxel*elsNrOfNewVox  

 
NrOfNewVoxels = number of voxels gained by tree in this cycle 
AgeOfVoxel = tree variable, the value of which is increased each time a tree gets a new voxel 
NrOfVoxel = variable equal to the number of voxels currently owned by the tree 
 
Once the fine and transport root mass increases have been computed, a carbon budget is 
performed where: 
 

rnR WPDiff ∆−⋅= Rλ   and tnT WPDiff ∆−⋅= Tλ  
 
∆Wr (kgDW) and ∆Wt (kgDW) are the net mass increases due to the growth of new roots.  DiffR 
(kgDW) and DiffT (kgDW) are subtracted from the tree’s net photosynthate (Pn).  If  Pn is 
exceeded, then additional mass is removed from the tree’s ePool to compensate. 
 
Next, a tree’s realized root growth is compared to its potential root growth.  If a tree has not 
realized its potential growth, the difference is added to the iPool. 
 
Realized root growth (IIRealRootGrowth, kgI) is calculated as: 
 

1t3r PIsWPIsW ⋅∆+⋅∆  
 
where PIs1 and PIs3 (kgI/kgDW) are taken from the series described previously.  
Potential root growth (IIPotentialRoots, kgI) is calculated as: 
 

n13 P)PIsPIs( ⋅⋅+⋅ TR λλ  
 
 
Stem growth 
 
Stem diameter (D, m) for a given segment is calculated as a function of total living and non-
living stem biomass, and tree height (H, m), using the following formula: 
 

( )( ) 






 +
⋅=
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Senescence 
 
As a tree becomes larger, and some parts of its mass are largely shaded, some limbs begin to 
senesce.  On branches that are no longer productive, sapwood and needles will be dropped as 
litter.  Also, a portion of segment sapwood will be turned into non-living heartwood whenever 
foliage is shed from the tree. 
 
Heartwood production 
 
A young segment’s mass is considered to be made up entirely of living biomass (sapwood).  
As a tree grows, lower segments begin to produce heartwood when the following condition is 
true: 
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Segment.UpperHeight < Tree.LowestSeg.Height + (Tree.Height – Tree.LowestSeg.Height) 
*SEGMNT_HEARTWOOD_PRODFACTOR2 
 
where the height of a segment is the difference between its upper and lower heights, and  
SEGMNT_HEARTWOOD_PRODFACTOR2 = 1.0. 
 
The above condition is stored in a boolean segment level variable called “heartwood 
producing death height”. As this variable is currently set to one heartwood is built from each 
segment that reaches max NeedleAge. 
 
For each simulation cycle, the “health” of each segment in each tree is assessed.  First, any 
segments that have a Pn value which is less than MaintResp are marked as “dead”.  Next, for 
all living segments, the age of the needles on each branch is assessed, and if they are found to 
be older than the maximum allowable needle age, their mass is added to the tree’s senescent 
foliage litter pool, and the branch is marked as dead.  
 
The amount that becomes heartwood (SenSegSapWeight, kgDW) is calculated as follows: 
 

SenSegSapWeight = SapwoodRecyclingFactor*DeadSegmentSapwood 
 
Note that no recycling is effective when the SapwoodRecyclingFactor = 1 whereas complete 
recycling and thus no generation of heartwood implies SapwoodRecyclingFactor = 0. 
SenSegSapWeight is added to the tree’s heartwood mass, and the remainder is stored as 
recycled sapwood weight.  The recycled sapwood weight is used elsewhere in the model to 
calculate the sapwood partitioning factor, sλ . 
 
Senescent branch sapweight is added to the litter pool (PITSB).  Of course, dead branches 
also make up senescent branch sapweight. 
 
A tree also produces litter from other sources as a regular part of growth and functioning.  
Needles that are older than the maximum needle age (tree species parameter) are dropped, and 
fine root mass is returned to the soil due to the imposed fine root mortality. 
 
The death of fine roots is given by a fixed annual mortality (species parameter for senescence 
of roots: Sr). Thus the roots are characterised by a half life time, whereas all other living 
biomass die by either achieving a maximum age (leaves) or due to local negative energy 
budgets (e.g. if old branches require a net input of energy). However, each tree is assigned at 
least one immortal voxel below its stem base (see wuseling section). This root voxel cannot 
be overgrown by any other tree neither can it die due to the assigned fine root mortality.  
Hence the tree can only die by running out of foliage and hence energy, but it will always 
have at least one root voxel. 
 
As the hits of the Wusels guide the direction of root growth a tree with an extending root 
system may have been hit by only few or no wusel during the last cycle. In this case a 
procedure termed pseudo-wuseling is used to provide virtual hits. They stem from the same 
random walk, but do not deliver nutrient along with their hits. 
 
 
Shading 
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The “Shadowing” routine is called at the begining of each iteration of the yearly forest cycle.  
It is used to calculate the mass of foliage that contributes to shading on each branch of a tree.  
The shading foliage mass will come in part from branches on the same tree as the shaded 
branch, and also from branches on neighbouring trees.  The shading routine does not consider 
the position and angle of the sun or the species that is casting this shade. 
 
The shading foliage mass is later used in the crown growth routines to calculate the amount of 
photosynthesis and hence of new biomass that will be added to a branch. 
 
A value for the shading foliage mass for each of the branches in a forest is calculated 
according to the following procedure: 
 
For each tree (called the “shadower”), the first step in the shadowing routine is to compile a 
list of all trees whose bounds fall within the tree’s shading rectangle.  The shading rectangle is 
defined as: 
 

ShadowerTreeBounds expanded to:  
(ShadowerTreeRealHeight-ShadowedTreeElevation)*tan(ShadowAngle) 

 
where: 
 
ShadowAngle =   half angle of shadow cone (forest parameter) 
ShadowerTreeBounds =  rectangle whose edges are defined by the distance of the tree’s 

longest branch 
 
Any tree whose bounds lie within the area of the expanded bounds rectangle of the shadower 
tree is added to the list of candidate trees for shading.  The bounds are extended by the size of 
the plot and then truncated at the stand edges (i.e., there is only one wrapping in each 
direction around the torus to find shading tree). 
 
Next, for each tree in the list of shaded trees, each branch is checked to see if it falls below 
any of the branches of the shadower tree.  If a branch falls below a branch on the shadower, 
then a mass of shading foliage is added to that branch.  The amount of shading foliage to add 
is computed as follows: 
 

ShadingFoliageWeightToAdd = 
CumFoliageWeightofShadingBranchSegment/BRANCHES 

 
where the cumulative foliage weight of the shading branch segment is the mass of all foliage 
on that branch’s segment, plus the sum of all foliage on the segments above.  BRANCHES is 
a program parameter, the value of which is equal to 8. 
 
If a branch shadows more than one branch on a segment, then the 
ShadingFoliageWeightToAdd is distributed evenly amongst all branches on the shaded 
segment. 
 
Geometrical limitations to growth 
 
The above-ground forest space is divided into a 2D array of pixels that describe XY location.  
The position of any part of a tree is therefore defined by its XY location (in pixels or metres) 
and its height above the ground.  No two parts of a tree can occupy the same position.  The 
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routines, GeoConstraintZ and GeoConstraintXY, check the positions of tree stems, segments 
and branches relative to others to ensure that the trees do not overlap in space. 
 
The GeoConstraintZ function checks for the presence of another tree’s branches or segments 
above the crown of a tree.  If a tree’s crown is obstructed, the value of the tree’s FreeHeight 
variable is set to the difference in height between the crown tip and the obstructing branch or 
segment.  The tree’s net height growth is then constrained to the value of the 
MinimumHeightGrowth tree species parameter. 
 
The GeoConstraintXY function checks for restrictions to a tree’s side growth.  Restrictions to 
the side will prevent a tree from growing branches of even lengths all around a segment.  
They may also cause a tree to begin to bend its stem away from the restrictive object.  When 
this occurs, new segments are grown with pixel locations slightly offset from the locations of 
previous segments.  The degree of offset can be set with the StemPlasticity tree species 
parameter. 
 
Forest 
 
Cutting  
 
When a user specifies that tree should be cut, there are several options that can be selected 
regarding the export of biomass from the forest: no export, timber export, export all but 
heartwood, and biomass export.  These differ slightly with regards to which parts of the tree’s 
biomass are removed from the forest, and which are left on the forest floor. 
 
If “no export” is selected:   
 
TreeYield = SegmntSapwood + Heartwood 
 
Replanting 
 
In addition to “natural” regeneration, the program enables the user to “plant” trees in the 
forest.  Thus, near the beginning of each simulation cycle, the “replanting” function is called 
in which new trees with standard initial settings for their species are created and situated in 
the positions specified by the user. 
 
Thinning 
This is the main interactive feature of TRAGIC++. Trees can be visually inspected in 2- and 
3d representations. Navigation through the forest stand is possible by using the keyboard 
keys, but greatly facilitated by using a “spacemouse” (see website). Histograms of all tree 
variables (e.g. diameter distributions) can be interactively created at run time in order to 
decide which  trees to mark (positive) or remove (negative selection). 
 
A Java front end application has been added to allow for a remote interactive thinning 
exercise through the Web (by Mark Stricker, see Webpage). The transfer of data between 
TRAGIC++ and Jtragic uses XML Files, the same format that is also used to save and restart 
simulation runs. 
 
 
Fire 
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If the forest is destroyed by fire (at a predefined probability set at the forest level), 50% of the 
heartwood is added to the litter fraction while all other biomass is exported from the stand. 
 
 
Mass budget 
The performance of the programm is checked by continuously updating the budgets for 
Carbon und Nutrients. In both case all input and output over the course of the run and 
balanced against the current pools sizes within the forest.The two variables 
(StatTotalCarbonBudgetError, StatTotalLoadBudgetError) at the forest level are given in 
absolut units and should be compared to total inputs, for example. Same inevitable small 
errors occur when regeneration is allowed. In some cases the budget may become wrong due 
to a restart. In general, runs should not be accepted, if the relative error compared to total 
inputs exceeds 0.1 %. If exceptional budgets errors are reproducable contact BITÖK). 
 
 
Parameter list 
 
- list parameters for forest & species with brief description of each, and link to equation 

where they are used. 
- (see other file) 
 
List of symbols 
 
Abbreviations: 
 
DW  dry weight (dry biomass) 
C carbon 
I soil nutrients (content of a wusel) 
 
A  age of tree (years) 
a0,1,2  height growth parameters 
 
D stem diameter (m) 
H tree height (m) 
 
 
Wt mass of transport root (kgDW) 
Ws mass of stem (stem sapwood) (kgDW) 
Wr mass of fine root (kgDW) 
Wb mass of branch (branch sapwood) (kgDW) 
Wf mass of foliage (kgDW) 
Wh mass of heartwood (non-living tree biomass) (kgDW)  
 
Pg gross photosynthesis (kgDW) 
Pn net photosynthesis (kgDW) 
 
R  root to height partition tree strategy parameter (no units) 
References: 
Agren and Bosatta (1991) 
Dörwald, W.  (1999) 
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