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Abstract: Challenges related to achieving sustainable social-ecological systems (SES) are
transforming science and its role in society. Over the past few decades, integrated sciences
such as sustainability science and complex systems science have emerged as fields of
research and education, which transcend disciplinary boundaries and focus on
understanding of the dynamics of complex SES. A social-ecological system is a combined
system of social and ecological components and drivers that interact and give rise to
phenomena, which cannot be understood on the basis of social or ecological considerations
alone. A pivotal hinge is therefore needed to bridge social systems and ecological systems.
Based on the concepts of openness, directionality, connectivity, and complex dynamics
under the framework of nonequilibrium thermodynamics, the state of both systems could be
described as process networks of feedback loops and their related time scales. Ruddell and
Kumar (2009) argued that such a process network can describe the magnitude and direction
of the flow of energy, matter, and information among the different variables in complex, open,
dissipative systems. Identification and characterization of such network architecture may
provide us with scale-free approaches to integrating system components and drivers having
different dimensionality and complexity. As a first step in this direction, we have attempted to
delineate such a process network in ecohydrological systems by analysing the multivariate
time series data obtained from temperate forest ecosystems in Korea and based on
information flow statistics.
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1. Introduction

Human societies and natural ecosystems bear sevasequences due to an accelerating entropic jongger
experienced as climate change and global capitdl&ifkin, 2009). Here, the juggernaut metaphor ieplthe
sacrifice we must pay for dissipating energy, miy dy the unstoppable consumptive use of energguees,
but also by living systems for the maintenancehefirt organization. Non-equilibrium thermodynamidsan
open, complex system can best characterize suobrees that are flowing in (system entropy decrepkically)
and wastes that are flowing out (environmental aggytrincreasing globally) (Kleidon and Lorenz, 2005)
Systems that exchange mass or energy with theiowulings, and temporarily maintain themselves state
away from thermodynamic equilibrium as well as ealty reduced level of entropy, are called nonéhriim
systems (Prigogine, 1980). Biological systems asmoseconomic systems fall into this category (eRuth,
2005).

All living systems, including social-ecological $gms (SES), are inherently dissipative structufderefore,
they are subject to the second law of thermodynsniibe termdissipative structure denotes self-organizing
systems that produce entropy for the maintenantieedf order. The first law of thermodynamics (itbe law of
conservation) states that the total energy of tesyss conserved while the second law (i.e., tiedhentropy)
asserts that the entropy of an isolated systeriwigya increasing. The latter formulates that dimbptocesses
successively degrade the free energy of an isoketem over time, leading to entropy productiorre{ an
isolated system is a system in which no exchangmefgy, mass, and information occurs with the remvient

Kim et al. — Process Network Analysis 103



2011 TERRECO Science Conference
October 2 — 7, 2011; Karlsruhe Institute of Tecbggl Garmisch-Partenkirchen, Germany

(Jargensent al., 2007). In statistical terms, the path towarchkigentropy is a transition to more probable states
(Thermodynamics tells us not whatll happen but whatan happen.) Boltzmann (1886), who statistically
interpreted physical entropy as disorder, wrotd: tftthe general struggle for existence of animagénfs is
therefore not a struggle for raw materials — norefioergy which exists in plenty in any body in fbem of heat

— but a struggle for entropy, which becomes avéldélrough the transition of energy from the hat so the
cold earth.” In an isolated system, the productidnentropy eventually results in an equilibrium tstaf
maximum entropy with zero gradient (i.e., thermahitth). For this reason, living systems cannot béat
conditions of the thermodynamic equilibrium, buegghemselves as far as possible from that statéid sense,
the fundamental query of physicist Erwin Schrodim@®44) may be approched by defining lifeliagng in far-
from equilibrium.

A social-ecological system is a combined systemsaafial and ecological components and drivers thiaract
and give rise to phenomena, which cannot be uratstsin the basis of social or ecological considanatalone.
It should be noted that both have to do wittworks and involvecomplex systems, and thus, an infodynamical
perspective could provide a framework to conneeséhtwo different systems in dimensionality and plexity.
Infodynamics (i.e., information dynamics) is a depenental perspective animating information thebyyway
of thermodynamics, in which information is definasl constraints on entropy production (Salthe, 20B8)m
this perspective, SES is an energy transformatystem that is increasingly constrained by inforowil array
(Jgrgensen, 2001). In a non-isolated dissipatigtesy, the second law of thermodynamics takes thm & a
continuity equation. Hence, the overall changentfapy of the system is determined from the looatease in
entropy within the system, and the entropy flux\@rgence (i.e., the net flux of entropy across shstem
boundary) (Kleidon and Lorenz, 2005). In steadyestavhich is a forced condition far from equilibmuand
maintained by a steady input of energy or matteg,production of entropy within the system balanttee net
entropy flux convergence. The entropy productiorSES increases at first, but eventually decreaseause
growth is limited by senescence, which is considexe a consequence of information overload (Sak6e3).
Far-from equilibrium, high-gain systems are immatur the infodynamic sense (or in tf@e loop mode in
resilience sense), whereas near equilibrium, loin-ggstems are relatively senescent (or inkidmk loop mode)
(Salthe, 2003; Walker and Salt, 2006).

From an Earth-system perspective, Michaelian (20&tently proposed against Darwinian theory of ratu
selection that excessive photon absorption andpieation have not been eliminated from plants bseéheir
basic thermodynamic function is to increase théal@ntropy production of the earth system inriteriaction
with the solar environment. This is achieved bgsitiating high energy photons into heat in the gores of
water, thereby augmenting the global water, cadomhenergy cycles. The very existence of theseesyaels the
maestro of natural harmony and diversity makespibssible on Earth. Kumar (2008) also enlightenshas
these flows, particularly theivariability, are the important agents for communicating infation across the
subsystems in the social-ecological systems, atetrdming the self-organized, evolutionary pathytifiglow.
Wonderfully, these cycles and theariability are the hands that weave the fabric of rich lifeoar planet, and
we humans are wrongly altering them in an unpreaedeway.

Considering the biological catalysis of the ecobalgical cycle as life’s thermodynamic function, \wave
attempted an information entropy-based method lier robust analysis of such systems, where feedlsack
important. Ecohydrological systems can be charaetras open, complex, dissipative systems, comgisf a
network of processes over a wide range of scaldsirarolving various feedback loops (Ruddell and kKum
2009). Here, complex systems are systems in wiaigfelnetworks of components with no central cordral
simple rules of operation give rise to complex edilve behavior, sophisticated information proasgsiand
adaptation via learning or evolution (Mitchell, Z)0The response of such a complex system to clsazage
disturbances depends on its particular contextatsiections across scales, and its past and twtedas. How
do we then define the state of such a system? Howne handle the different dimensionalities of whaables
associated with such a system and its environm®ulneating such networks of feedback loops for
ecohydrological systems in monsoon Asia is of goesitcern and urgently needed (e.g., Hong and Kol
However, the traditional correlation-based analysimnot delineate such complex processes with leétai
information on directionality and the strength bétcoupling between the variables. Following Rudded
Kumar (2009), we examined dependence among a sHriegiables measured at the flux towers in KoHbyx
qguantifying the information flow between the di#at variables along with the associated time lagse
objective of this study is to tesijth the time-series datasets obtained at tempdoagst sites in monsoon East
Asia having different levels of complexity and hegeneity, the applicability of information theory to
ecohydrological systems. We hope that these effailis eventually contribute to fulfill the objectds of
TERRECO (cf. Tenhunen et al, this proceedings).
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2. Methods and M aterials

We used Shannon'’s information entropy as our metlogy (Shannon, 1948) and calculated the transfeopy
(TE), in order to measure the reduction in the entropthe current state of a measured variafedue to the
knowledge of prior state in another variabl¢’, which is in addition to the information providdy the
immediate prior history ok (e.g., Ruddell and Kumar, 2009). We normaliZ&dusingm (set at 11) discrete
bins to estimate the probability distribution fupat The information flow process network consisfsthe
asymmetric pair wis@8E between thé" andj™ variable from the set af, observed variables and is represented
as an adjacency matrix (Kumar and Ruddell, 2010).

We used the time series data in 2008 from two adjaKoFlux tower flux sites (in deciduous and ceroius
forests) located in Korea. The description of tlitessand the data can be found in AsiaFlux homepage
(http://www.asiaflux.net). In this analysis, we ested 15 variables associated with ecohydrologid an
biogeochemical processes in forests, which are sgheric pressurdPf), net ecosystem GxchangeNEE),
gross primary productivityGPP), ecosystem respiratioRIE), latent heat fluxI(E), precipitation Precip), solar
radiation Ry), air temperatureT]), vapor pressure deficiVPD), soil temperatureTg), soil water contentg\C),
sensible heat fluxH), canopy temperatureld), wind direction WD), and wind speedWS). We computed
process networks for each of thirty-six sub-dailyet lags between 30 minutes and 18 hours. Our rgbect
analysis shows that this subdaily time scale erplhi30-40% of the variances of the above variaddssciated
with carbon and water cycles, reflecting that tlaisge is an important scale of land-atmosphereadati®ns. In
this process, the complexity and heterogeneity elohbe in the observed flux data may hinder the apfitin
and interpretation of such information flow stdtist Therefore, estimation and methodological isswere
examined by comparing these two adjacent foregtsdifferent levels of heterogeneity and complexity

3. Preliminary Results

The adjacency matrix for the 15 variables result2 10 potential pairwise couplings, about 25% duivbich
were found to be statistically significant at omenwore time lags in May 2008, for example, for bd#tiduous
and coniferous forests. Preliminary results on nekwnatrix are presented in Tables 1-4.

Table 1. Network matrix for mutual information

Gwangneung Forest, 2008 May, GDK(GCK)

AL PA MEE GPP RE LE Precip Rg T YED Ts SWE H Tc WD WS
PA 935¢94)  27(34)  29(35 123(69 19(28  18(18) 47 (4B 118{35 67 (6) 163() 142(157) 38(54) 107 (39) 51(38  49(62
MEE 27 (34) 555586 442 (473) L8 (3) 73(68) 1213 112(8% 1929 3163 () 22(26) 7988 3(3.68) 24(34) 24038
GPP  29(35) 442 47.3) S64(573) 2(13) 7773 14@s) 11741 2128 37 @3 2z() 2129 79109 32034 2538 24 (4)
RE 12.3 (6.9) 18 {3) 2015  S33#E5) 25(1L8)  23(08)  42(29) 546{23% 158(10 187 () 82(35 31{23 453(233) 239(L4) 34 (17)
LE 19(28) 73(69) 7773} 25(L8 496636 07 (12 & (38) 3 (36) 43 (63) 23 () 254 53(92) 35(41) 23{22) 15 (4.4
Precp  18{18)  12(13) Ll4(L5  23(08 07(12) I52@58 16(15) 23@L 168 L6 () 25 (3.7 04 (1) 19(z4) 1212  08(L8
Rg 4748 112@9 1L7(11) 42029 g (9.8 16(15) 622592 451 65 (79) 39 () 32(54) 198217 62(63) 4148 2663
T 118(95) 19(29)  21(26 546(239) 3386 23021 4(51)  g45(@il) 185(157) 222 () 85(8) 3142  35(553) 29{29) 3135)
wPD 67 () 3143 37@3 159010 43(63) 16(1L6) 65(7Y 1B5(157) &L9FEE 9T () 7(5.2) 43(62) 1B6(164) 28(29) 34 (7.3}
TS 163 () z[) 22 () 187 () 23 () 1617 39 ) 2220 97 () 563 () 139 () 344 185 () 33 53 ()
SWC 142 (157) 22(26) 21(29) BZ(3S) 250 25037 3204 8.5 (8) 7(52) 138 () 659657 2751  75(7.9) 38 (3) 3360
H 38(54) 79(86) 79 (9) 31{23 5393 091 198(217) 31{42] 43(62) 34 () 27(51) | 639(653) A49(48) 45(56 24 (59
Tc 10.7 (9.9) 3 (3.6) 32(34) 453(233) 35(1) 19(24) B2(63) 55(553 1B6(164) 195 7579 4048 93325 28132 3538
WD 51(38)  24(34) 25(38  29(L4) 2327 12(12 4146 2929 2829 39 (1) 39(3) 43 (56  28(32) 4ZE@9l) 32(43)
ws 49 ®2)  24(38) 24 (4) 34(L7) 15(44) 08(L8) 2663 3135  34(73) 530 33(51)  24(58)  315(38) 3242 FA9747)

Table 1 shows the matrix for the mutual informatimiween pairs of variables at zero time lag. Soueziable
X indexi is in rows; sink variabl& indexj is in columns. Matrix is symmetric. Italics indteamatrix diagonal.
All values are in percent. The values before artti warenthesis are for deciduous (GDK) and conifeforest
(GCK), respectively. Table 2 shows the matrix foe percentage of uncertainty of each Y explaineX lfgiot
shown). Table 3 shows the matrix for the ratio ke tmaximum lag to mutual information for all sigoént
couplings. Table 4 shows time lags of significaribimation flow on the interval, including the firsignificant
lag, last significant lag, number of significanggéa and peak time lag. Significant lag times arestffast
(number), max].

Table 2. Network matrix for uncertainty percentage (not shown)
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Table 3. Network matrix for the ratio of the maximum lag to mutual information

Gwangneung Forest, 2008 May, GDK(GCK)

Atz PA MNEE Gep AE LE Precip Rg T WPD Ts SwWC H Tc wD WS
BA x ) x (x} x(x) X ) 2.7 () 1{x) X {x) X (x} X (x) x{-) x (x) x (x) X (x) % (2.8) X (x)
MNEE ® ) 0.110.1) 0101 x (x] 071 1.2 (13) x ) x {x) x (x) ® i) x (x) 0.7 (0.7) ® (2 x{2.2) x (%)
GPP ® K 0.2{02) 01021 ¥ ix] o7 1141 ® ) x (%) % (x) x(-) ® (K} Q7007 ® (x) * (2.1) X [x)
RE % {x) % (1.3) (27 x{0.1) 224 0.8 (1) % {x) x {x} x (x) s ¥ () X {x) % (x) x (%) ¥ (x)
LE % {x) 07 (1) 0.6 (0.8) ¥ (%) 01 (0.1) 19(13) x {x) % {x) * (x) x (=) X (x) X (x) % (%) x () X (0
Precip ® ) 15 (x} 17 &) ¥ x) 23 (%) 0.1 (0.1) % {x) x (x} X (x) ® i) 124 32 (x) % (x) % {x} ® (%)
Rg K] 0.7 0.9 0.7 (0.8 x{1.2) 0.7 (0.8) 1201 ® {x) % (x} X {x) x{-) () 03 (x) % {x) xA{1.7) x {x)
T x {x) 3.4 () ® () x{0.2) * (%) LERV ] * {x) x [x} x (x) ®{-) ¥ (¥ x 00 % (1) x ix} X [x}
VPO % () 2(16) 17 (16 ¥ (%) 13(11) 12 x {x) x {x} % (x) x (=) % (x) X (x) % () % (3.2) ¥ (x)
Ts L] 350) x4 x () 25 () 134} s x () ® ) i) %) x ®() x [} #i-
SWIC ®{x) x {22) x(2.1) X {x) x (16} 0.8 (0.6) ® ) x ) x (x) ® {1 * (x) x (x] X (x) x (2.9) X [x)
H (K] 0.8 (0.8) 0.8 (0.8) *®{15) 0.9 (0.8) 23(18) ® {x) *® {x) ® (x) w ) * (¥} 0109 % (x) x [x) X [x)
Te x ) 21119 X () *{0.2) 14 i) 1(08) x ) x {x) x (x) xi-) ® [¥) x {x) % (x) x [x) X (x)
WD ® ) 27 2.1 2.6 (1.9 % x) 22 (32) 1.8 (L5) % {x) x {x} x (x) ® i) ® (%) x () % (x) x (0.1) x [x)
WS XK x {2} % (x) x{21) X (x) 18 () X {x) x (%} X (%) ® -1 % (x} X {x) % (x) x (%} X {x)

Table 4. Network matrix for time lags of significant information flow on the interval

Gwangneung Forest, 2008 May, GDK(GCK)

Tau P MNEE GeEp AE LE Precip Rg T VPO Ts SWiC H Tc WD WS
2 x () x (¥} % () X (] 1'3"(":)”332 1’[17’ ’ X (] x (%) % (x) - x %) % (x) X ix) o ;:1] 3 x (%)

NEE A (528133 rj:t:\i x 11?‘55; iii{ﬁﬁ; ¥ xH b 6 e (j;ﬁé i :i—a:‘ﬂe) Xk

GPP ¥ (%) [::g;g;i] (;ZEE;:‘ X (x) rlll;:l;)};] ;f:[ﬁi} x{x) X (¥} X {x) x{) X %) [;;‘E:'; x {x) :2_;;4]3] x(x)
5 T S e rigjiﬁjf) 1-5[:[;;1 e £ i b ) e i A X
L= X0 &Z::‘i] C:ﬁi x ) j:ﬁ;;] &;;’E;;iz ¥ ) x () I X0 X0 X () X () X0 X

Pricp % () 1-11n 2-35[?)36 X () 12-12(1312 2'-12(8!‘3 E6 X o) ) 1111 33-38(4)36 X (%) X wi

(x) [x) {x) (2-7(5)3) (=) {x)
W0 Chan aom msamen asem gees (Y W xm o xe xR w0 b, xw
T ¥ (x) 4'“:;)1}4 % (x) 11—6)((6]2‘; x (%) [iftjzi} ¥ {x) * [¥) x {x) wiz) * (%) % () ¥ * (x) x )

WO B Cenan casem M qasem eamm B B 0 xE w8 gy @

Ts x () 55-5;;135 x () x{-) 1-36;1}1; 1_?}.?15 x (=) x () * (-} L] x 1 X} x () x [ * (-}
)

Swe %00 [1—8:»';&1 (1—29)235]1: 3 (1—9?6;31 {11;3;:[[335]165] i X ¥ * G ¥ 0 :a—;;m) xha
TR odom avow aramm geee easene (B @ w o xe o xm HE a0 osw aw
Tc X (x) [ji‘;gi} « 1K) :1_5):5)1} Lff;l l;:;tji] x {x) % {x} X {x) x{-) x (%} % (x) X %) * (%) x [x)

we o xie 211[58311 1[“2:?:3? 5 112;1601230 1[;552;3;1 x 0 X %00 Xt X ) R A
WS ® (%) x [x} ¥ (x) l'23'2:f1123: * (=} B-Tij;lb ® x) x (=] * fx) x =) x (%) * (x) ® ix) x (=] x {x)

Figure 1 shows an exemplary arrangement of submgstenformation flow, feedback, and time scales tha
define the May 2008 state of the ecohydrologicateay. Subsystems are defined as a group of vasiabldch
are structurally equivalent such that they shareommon role in the larger system structure. They ar
aggregations of individual nodes that share sinpltterns of coupling type and time scale. Nodethénsame
subsystem should share synchronization-dominatagliogs. Forcing or uncoupled-dominated couplingsam
that coupled nodes do not belong to the same sidmsy#s seen in Fig. 1, a self-organizingbulent subsystem
was formed fromH, LE, NEE and GPP, which sharegfeedback couplings at < 1-2 hr time scale. gjnoptic
subsystem was formed frowPD, T., T, RE and SWC, which sharesynchronization, serving as a large-scale
forcing to other subsystems. Aatmospheric boundary layer (ABL) subsystem was formed; and the self-
organizations via hierarchical aggregations atamali scale were identified, as indicated by Rudadet! Kumar
(2009). Furthermore, disappearance of such regseigbrganizing subsystems that bind the turbuéert ABL
subsystems at longer time scales were also obselwedg the dry spell in spring and the summer roons
season.
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VPD, T,,. T T.... SWC, P,
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5 Ry

i -
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Figure 1. The process network for May 2008, an arrangement of subsystems, information flow, feedback, and
time scales that define the state of the ecohydrological system in Gwangneung deciduous forest in Korea.

Despite the complexity and heterogeneity that vimtzedded in the field observation data obtaineGEK site,
we were able to delineate process networks fromtivamiate time series data by using informationwflo
statistics as suggested by Ruddell and Kumar (2088hultaneous consideration of mutual information
(measure of synchronization) and transfer entropguge of synchronization) enabled us to identifg th
differences between two states of the ecohydroddgigstem on the basis of variations in the pattéfeedback
coupling on the network. Further analysis and &tyudre currently in progress.
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