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Summary

Preferential flow of water in soil is now recognized as a common phenomenon. It results in complex flow

patterns that can be visualized by dye tracers and increases the risk of pollutants reaching greater depths.

We analysed the behaviour of a risk index for vertical solute propagation based on extreme value theory.

This risk index can be calculated from binary images of dye-stained soil profiles and is defined as the form

parameter of the generalized Pareto distribution. We did five tracer experiments with Brilliant Blue and

iodide under changing initial (variable initial soil moisture) and experimental conditions (different irriga-

tion rates). Our results indicate some persistence of the risk index against small changes of experimental

conditions such as the irrigation rate. On the other hand, it seems to be affected by initial soil moisture.

Comparisons of Brilliant Blue and iodide patterns show that the form parameter alone is not sufficient to

estimate the risk of vertical solute propagation. Therefore we propose to combine the risk index with the

scale parameter of the generalized Pareto distribution.

Introduction

Although preferential flow of water in soil was discovered in the

late 19th century (Schumacher, 1864; Lawes et al., 1882), it was

considered for a long time as exceptional. Today, it is regarded

as a common phenomenon that depends on the spatial hetero-

geneity and intensity of rainfall (Gish et al., 2004), water repel-

lency (Hendrickx et al., 1993; Ritsema & Dekker, 2000; Wang

et al., 2000), soil structure (Flury et al., 1994; Kulli et al., 2003;

Vogel et al., 2006) and biological factors such as the dis-

tributions of roots (Mitchell et al., 1995) and earthworm bur-

rows (Farenhorst et al., 2000; Shuster et al., 2002; Weiler &

Naef, 2003). Preferential flow results in complex flow patterns

that can be visualized by dye tracers. Brilliant Blue is fre-

quently used in vadose zone hydrology for such tracing stud-

ies, although its adsorption behaviour is non-linear and

depends on soil properties (Ketelsen & Meyer-Windel, 1999;

German-Heins & Flury, 2000; Kasteel et al., 2002). However,

it is readily seen against most soil colours and has acceptable

toxicological characteristics for environmental use (Flury &

Flühler, 1994; Mon et al., 2006).

Usually, the main information obtained from dye-stained

profiles is binary images – photographs of soil profiles that are

classified in stained (black) andunstained (white) parts. They are

used for qualitative description of flow regimes and for the visu-

alization of preferential flow (Öhrstöm et al., 2002; Kulli et al.,

2003; Weiler & Naef, 2003). Recent studies, however, took

a quantitative approach to tracer studies in soils by establish-

ing dye concentration maps (Aeby et al., 1997; Forrer et al.,

1999, 2000). This method needs calibration because the same

dye concentration has different hues depending on soil colour.

Forrer et al. (2000) reported 203 calibration samples in a ‘fairly

uniform Eutric Cambisol’ on an agricultural field. Morris &

Mooney (2004) used 100 samples to assess concentrations in

a small intact soil block (200 mm � 200 mm � 200 mm).

Such a calibration becomes complicated for soils with pro-

gressively changing colours because the number of calibration

samples increases rapidly. This is the case at our study site.

Indeed, we can distinguish four or five different main hues in

our soil and varying degrees of their combinations. Each of these

hues needs its own calibration between the possible concentra-

tion range of Brilliant Blue and the resulting RGB (Red, Green

and Blue) values on images. Therefore, we needed some other

approach to obtain quantitative information on flow processes

from stained profiles, one that does not require any information

on dye concentrations in the soil. Schlather &Huwe (2005) pro-

pose a risk index for groundwater vulnerability to pollutants

based on extreme value theory. It can be calculated from binary

images of dye-stained soil profiles and does not require any
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additional information on soil properties. The goal of our study

is to consider in detail the behaviour of the risk index for differ-

ent experimental and initial conditions.

Materials and methods

Dye tracer experiments

We did five tracer experiments in a Norway spruce forest in

southeast Germany. The soil is a Cambisol or a Cambic Podzol

with loamor sandy loamabove loamy sand. The stone content is

highly variable, and the pH is 4-5. We used Brilliant Blue FCF

and iodide as tracers. The latter served as reference because

Brilliant Blue may be retarded with regard to infiltrating water

as a result of adsorption on soil particles. Bowman (1984)

reported that the sorption behaviour of iodide is similar to that

of bromide, which is considered as the most suitable tracer for

watermovement in soil (Flury&Wai, 2003). In order to have the

same spatial resolution of flow patterns for both tracers, we

visualized iodide by a spray method proposed by Lu & Wu

(2003). Following this we applied a solution of iron(III) nitrate

and starch directly on the excavated soil profile. Iron(III) oxi-

dized iodide to iodine, which formed a dark-blue complex with

starch. This method worked well; however, the time reported by

Lu &Wu (2003) of about 1–2 hours for the colour reaction was

not sufficient for a good contrast to Brilliant Blue dye, andwe let

it develop during the night. Lu & Wu (2003) also proposed

a visualization method for bromide, but the Prussian blue com-

plex formed has a blue colour that would be too difficult to

distinguish from Brilliant Blue.

We applied 64 mm of tracer solution on plots of about 2 m2

using a sprinkler similar to that proposed by Ghodrati et al.

(1990). The irrigation rate was either 32 mm hour�1 (referred

to as ‘low’) or 64 mm hour�1 (‘high’), and the concentration of

both tracers in the solution was 5 g l�1. The maximum 10-

minutes intensity recorded at the study site between 1999 and

2006 was 22 mm and the maximum 1-hour intensity was 54

mm. So the applied irrigation rate was fairly high but not

unrealistic. Before the experiment, plots 1 and 2 were covered

for approximately 2 weeks and are referred to as ‘moist’; plots

4 and 5 were covered for approximately 5 weeks and are called

‘dry’. The initial matric potential before the plots were covered

was �157 hPa at 0.2 m, �53 hPa at 0.3 m and �14 hPa at 1.0

m depth. Plot 3 was not covered and represented the actual

field moisture conditions of the study site. Here, the matric

potential before tracer application was �52 hPa at 0.2 m, �46

hPa at 0.3 m and �25 hPa at 1.0 m depth. Plot 2 was addition-

ally irrigated with 64 mm of water just before tracer applica-

tion. Prior to irrigation, we removed the spruce cones as they

covered a large portion of the soil surface, but left the litter

untouched. Table 1 summarizes the experimental boundary

conditions.

The day after the irrigation, six vertical 1 m� 1m soil profiles

were excavated at intervals of 20 cm in the central part of the

plot. We lit them by halogen projectors to supplement the nat-

ural daylight in the forest and photographed them with a CCD

camera in RAW format. In this lossless format the image is not

processed by the camera software and must be transformed in

JPEG or TIFF by appropriate graphics software. Thus finer

control is gained over white balance, sharpness or colour space.

A rectangular frame and a grey scale were placed around the

profiles for later correction of distortion and white balance

adjustment. Soil samples were taken for texture analysis in the

laboratory, and Figure 1 summarizes the results. Nine profiles

(one, two or three per plot) were treated with the indicator solu-

tion of iron(III) nitrate and starch to visualize iodide. They were

photographed the same way as Brilliant Blue patterns.

In some sections of plot 3, large blocks of stone prevented us

from digging deep enough. So we were obliged to diminish the

spacing between profiles to 10 cm to prepare them in sections

without blocks. Nevertheless, only four profiles had the desired

depth of about 1 m and were suitable for further analysis.

Image processing

The profiles were lit by halogen projectors, with the result that

the colour temperature of the images differed from that of day-

light. Therefore white balance was adjusted in Photoshop CS2

RAW-Converter (Adobe, 2005) via the grey scale. Then the

photographs were corrected for perspective and radial distor-

tion with the software PTGUI (New House Internet Services

B.V., 2005). Radial distortion is due to imperfections of the

lens and was modelled by a fourth degree polynomial:

rsrc ¼ a r4dest þ b r3dest þ c r2dest þ ð1 � a � b � cÞ rdest; ð1Þ

where rsrc is the radius between a pixel and the centre of the

original image (source, measured in pixels), and rdest is the

radius in the corrected image (destination, measured in pixels).

The radii rsrc and rdest are scaled such that the value 1 corre-

sponds to:

1

2
max ðwidth; heightÞ; ð2Þ

of the image. Parameters a, b and c are so-called lens parame-

ters and can be adjusted in PTGUI. Furthermore, the software

Table 1 Experimental conditions for dye tracer experiments

Plot Initial moisture Irrigation rate/mm hour�1

1 ‘Moist’a 64

2 ‘Moist’ 64b

3 ‘Natural’c 64

4 ‘Dry’d 64

5 ‘Dry’ 32

aCovered for approximately 2 weeks.
bPre-irrigated with 64 mm of water just before tracer application.
cNot covered.
dCovered for approximately 5 weeks.

104 C. Bogner et al.

# 2007 The Authors

Journal compilation # 2007 British Society of Soil Science, European Journal of Soil Science, 59, 103–113



PTLENS (Niemann, 2005) offers a data base of these values for

many different types of cameras. Besides radial distortion, per-

spective distortion occurred because of rotation of the camera

with respect to the photographed profile. We corrected it by

setting control points all along the sides of the rectangular

frame and adjusting them to horizontal and vertical lines. To

decrease computing time, the image size was reduced such that

1 cm corresponded approximately to 6 pixels. This reduction

did not affect further calculations as preliminary tests with dif-

ferent image resolutions had shown. In some images parts of

the plot surfaces or shadows of the frame were visible. These

regions would disturb further processing and were cut off. So

the upper boundary of the output image corresponded to the

first line in the photograph where the plot surface was no lon-

ger visible. Using MATLAB 7.1 (The MathWorks, Inc., 2005b)

and the Image Processing Toolbox (The MathWorks, Inc.,

2005a), we extracted the blue patterns from Brilliant Blue

stained images by a colour-based segmentation by k-means

clustering (MacQueen, 1967) in the CIE 1976 L*a*b* colour

space. Segmentation of iodine–starch patterns by k-means

clustering algorithm was not good enough because the colour

of the iodine–starch complex and that of the upper soil hori-

zons were similar. Therefore we tried a classification based on

hyper cuboids, an approach implemented in HALCON (MVTec

Software GmbH, 2005). Finally, after segmentation, we gener-

ated binary images with stained parts in black and non-stained

in white and calculated the dye coverage function p(d) (the

number of stained pixels per depth d).

Extreme value model

Schlather & Huwe (2005) proposed a method for quantitative

analysis of images fromdye tracer experiments based on extreme

value theory (see Coles (2001), for an introduction). They

applied the generalized Pareto distribution, a limit distribution

of the extreme value theory with two parameters, to an idealized

model of dye drops that run through soil along paths. The main

idea is that the maximum depth z of a dye-stained path after

n drops converges to the so-called generalized extreme value

distribution (GEV), if n / N and the following assumptions

as stated in Schlather & Huwe (2005) are satisfied:

‘1 any drop stains the path continuously up to the travel

distance;

2 z is in the maximum domain of attraction of the generalised

extreme value distributions (Resnick, 1987);

3 the travel distances of the drops are independent and identi-

cally distributed.’

Statement 2 means that the maxima of z become GEV dis-

tributed. Excesses below greater depths converge to the gener-

alized Pareto distribution H:

Hðd; xr; sÞ ¼ 1 �
�
1 þ xrðd � DÞ

s

�� 1
xr

; ð3Þ

where D is the threshold depth beyond which the data are

assumed to follow closely the Pareto distribution, d is the pro-

file depth (d and D are measured in pixels on a photograph,

d > D), xr is the form parameter (xr 2 R) and s is the scale

Figure 1 Particle-size distributions of the soil fine fraction on plots 1 (a) to 5 (e). Sand fraction is defined as 2000 – 63 mm, silt 63 – 2 mm and clay

<2 mm. The different depth sections correspond to soil horizons.
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parameter (s > 0), such that (1 þ xr (d � D) /s) > 0. Schlather

& Huwe (2005) argued that the dye coverage function p(d) is

an estimate of the probability that a path is stained at least

down to this depth, modulo a constant factor m. The distribu-

tion 1 � H is fitted to the normalized dye coverage function

p(d)/m and describes the conditional probability that a path is

still stained to a depth d, given that it is stained to the depth D

(for d > D). The form parameter xr is defined as a risk index

for vulnerability of groundwater to pollutants. Although the

theoretical model describes drops travelling along distinct

paths, Schlather & Huwe (2005) stated that it could be applied

both to preferential and matrix flow. In the case of matrix

flow, paths are replaced by micropaths and drops by infinitesi-

mal volumes of dye (the terms ‘micro’ and ‘infinitesimal’ are

used in the sense of Marshall et al. (1996)). So the model

always describes the predominant flow regime.

In this study we slightly modified the interpretation of the

risk index. We think that the form parameter of the generalized

Pareto distribution should be interpreted as a risk index for

vulnerability of groundwater to pollutants only in regions with

fairly homogeneous geological material between the soil surface

and the water table, as in sedimentary basins with shallow water

tables. The groundwater at our site is 8–10 m below the surface,

and so we prefer to qualify xr as a risk index for vertical solute

propagation.

The parameter xr determines the form of the generalized

Pareto distribution. If it is negative, the distribution has an

upper end point, that is dye infiltration stops before attaining

a certain depth and the dye coverage function reaches zero. In

this case, there is a low risk of solute’s propagating in greater

depths. If xr is positive then the distribution has no finite

upper point, it decreases slowly and does not reach zero.

Therefore the risk of solute propagation is high. Values of xr
around 0 describe a transition zone. The scale parameter s

‘stretches’ the distribution and can easily be interpreted for

negative form parameters. Given a fixed negative xr, s depends

monotonically on the maximum infiltration depth, that is the

deeper the maximum infiltration depth the larger the value of s.

So for the same value of xr, the risk of solute propagation

increases with larger values of s (Figure 2). For positive form

factors, s is difficult to measure in the field. But for a fixed pos-

itive xr, the portion of the stained area in a certain depth is

greater for larger values of s. Indeed, as s ‘stretches’ the distri-

bution, larger values of 1 � H, that is larger portions of

stained pixels, can be found deeper in the soil.

Schlather & Huwe (2005) affirmed that the scale parameter s

depends strongly on experimental conditions such as the

amount of sprinkled tracer solution or the time between irriga-

tion and excavation of profiles. The behaviour of the form

parameter xr under changing initial or experimental conditions

is not clear, even though it seems to show some persistence

against small variations.

For a reliable estimation of the risk index of a soil, Schlather&

Huwe (2005) proposed taking at least 15 pictures. We used 28

pictures from five different experiments. Our goal was not to

characterize the site but rather to understand the behaviour of

the risk index under various initial and boundary conditions.

Parameter estimation

As stated above, the generalized Pareto distribution describes

excesses below greater depths, so wemay not consider processes

near the soil surface. We first estimated the parameter xr and
then s. The estimation of xr is complex and recalls the ideas of

Schlather & Huwe (2005) that are summarized in the following

(see also the extension package SOPHY ver 1.0.25 (Schlather,

2005) of R (R Development Core Team, 2007)). Assume that

we know the threshold D beyond which the data follow

(approximately) the Pareto distribution. Then the parameter

xr and the parameter s can simultaneously be estimated by

a non-linear parameter optimization, e.g. non-linear least

squares or maximum likelihood. As we do not know D, xr has
to be estimated for a range of values of D. We might expect to

get the same value of xr for any D, except for some (small)

error. This, however, is not true, and ideally xr(D) behaves as

in the sketch in Figure 3.

The horizontal line designates the true value of xr and the

circles indicate the estimated values of xr depending on the

threshold depth D. Three areas of D can be distinguished,

marked by the two vertical lines. The middle part gives the

correct estimation of xr. To the left, D is not large enough, so

that we are outside the assumed asymptotics, that is the

assumption that the data can be approximated by a Pareto

Figure 2 Effect of increasing values of scale parameter s on the prob-

ability distribution 1 � H. Form parameter xr is fixed to �0.3, scale

parameter s equals 100 (solid line), 200 (dashed line) and 300 (dotted

line), D equals 0.
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distribution below such a threshold D is wrong. To the right,

the number of data available below the (large) threshold of D

is small, so that larger variations in the estimation are visible.

Schlather&Huwe (2005) aimed: (i) to find themiddle part, (ii)

to estimate xr from the middle part, and (iii) to do it automati-

cally. To achieve (iii) they suggested to take as middle part the

values of D, where the maximum number of stained pixels of

p(d) (d > D) lies between 50 and 80%. For robustness, the

median of the corresponding values of xr(D) is taken to get

a final estimate for xr. In contrast to xr, the scale parameter

will depend on D even under idealized conditions. Hence, we

cannot get a final estimate for s in a similar way. Instead, we

chose as the value of D the depth where p(D) equalled 80%,

and we estimated s in a next step whilst keeping xr and D fixed.

The maximum likelihood estimator is frequently used for fit-

ting parameters, as it is possible to calculate confidence inter-

vals because of its approximate normality (Coles, 2001).

However, the maximum likelihood estimator did not behave

well for our data, and so we preferred the least-squares estima-

tor until a better estimator that provides confidence intervals is

found.

For stratified soil as at our study site, to find themiddle part to

estimate xr was more complex. The dye coverage functions

were multimodal with a more or less pronounced second maxi-

mum in the lower soil (see Figure 4d, the first maximum is at

the soil surface, the second one in about 130 pixels depth). So,

following the proposition in Schlather & Huwe (2005), we

applied the Pareto distribution only to the lowest part of the

soil profile. Undocumented comparisons between different fit-

ting procedures showed best results when we used the part of

the dye coverage function where p(d) lies between 0 and 80%

of the number of stained pixels at its second maximum. We

took the median of these values to calculate the final xr. We

estimated the scale parameter s in R (R Development Core

Team, 2007) by unweighted non-linear least-squares regression

using the form parameter xr determined in SOPHY (Schlather,

2005) and taking the depth where p(D) equals 80% of the

number of stained pixels at the second maximum, as D. In

forthcoming versions of SOPHY, the final estimation of the

scale parameter s will be implemented. As a measure of good-

ness of fit, we calculated the coefficient of determination R2

defined as

R2 ¼ 1 � +fpðdÞ � p̂ðdÞg2

+fpðdÞ � �pg2
; ð4Þ

where p(d) is the number of stained pixels in the depth d (d > D),

p̂ðdÞ is the estimated number of stained pixels in the depth

d and �p is the mean number of stained pixels in the part of the

profile used for fitting the 1 � H distribution. The coefficient

of determination can be negative if the enumerator is larger

than the denominator, that is if the chosen function fits the

data worse than a vertical line through the mean of the data

(Kvålseth, 1985).

Results

Qualitative analysis of flow patterns

In the following section we adopt the nomenclature proposed

by Weiler & Flühler (2004) to describe flow processes based on

the appearance of flow patterns. Figure 4 shows examples of

binary images and their corresponding dye coverage functions.

The soil profiles we excavated had a litter layer up to 10 cm thick

and its first few centimetres were homogenously stained on all

plots. The infiltration front broke into preferential paths in the

lower part of the litter layer. Thus infiltration into the loamy

upper soil (see Figure 1 for soil texture data) was inhomoge-

neous, andwater flow bypassed large portions of the soil matrix

in the upper 10–20 cm of the profiles. Accordingly, the dye

coverage function decreased rapidly. In the upper soil, we found

blue stained roots, indicating that there had been macropore

flow in root channels.

The maximum of the dye coverage function was represented

by large stained spots found between 20 and 40 cm. Texture

analysis did not indicate any abrupt changes, but the root system

was less dense. So one possible explanation is that macropore

flow in root channels decreased and the flow regime changed to

predominantly heterogeneous matrix flow. Further studies

Figure 3 Schematic evaluation of the form parameter xr with chang-

ing threshold depth D. The horizontal line designates the true value

of xr and the two vertical lines mark three areas of D: in the middle,

xr is correctly estimated; to the left, D is not large enough and the

data cannot be approximated by a Pareto distribution; to the right,

the number of data is small, so that larger variations in the estima-

tion are visible.
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should investigate if the root system is really responsible for this

transformation of flow regime.

In the lower soil, heterogeneous matrix flow and fingering

dominated, but water flowed alongmacropores containing both

dead and living roots when these were encountered. This was

especially the case on plots 1 and 2. The exchange of water and

solute between macropores and soil matrix was greater on

‘moist’ plots (1, 2 and 3) than on ‘dry’ plots (4 and 5). The effect

of pre-irrigation on plot 2 supported this observation, because

the stained spots on this plot were larger than on plot 1.

Plots 1, 2 and 3were stained down to the bottomof the profile,

that is 1 m, whereas on plots 4 and 5 dye infiltration stopped at

between 70 and 80 cm. On plot 3 less dye infiltrated in greater

depths than on plots 2 and 3, as indicated by a smaller portion of

blue-stained surface. The surfaces of the stones in plot 3 servedas

preferential flow routes and were stained.

Figure 5 shows an example of Brilliant Blue and iodine�
starch patterns on plot 4. In the upper 10 cm of the soil, there

was no significant difference between the two tracers, neither in

the location of the tracers inside the profile nor in the covered

surface (see Figure 5, 0–40 pixels depth). But lower in the soil

the iodine�starch spots were larger and the infiltration depth

of iodide was greater than that of Brilliant Blue.

Two critical aspects remain when we compare the infiltration

depths of Brilliant Blue and iodide. First, the redistribution time

was different for Brilliant Blue and iodine�starch profiles, as the

last were allowed to react overnight. Lu & Wu (2003) stated in

their work that 1–2 hours of reaction are sufficient for the devel-

opment of the iodine�starch complex.At our site the first colour

reaction was visible after approximately 2 hours. So there was

indeed fixation of iodide after only a few hours of reaction. Once

fixed, iodide becomes much less mobile as the molecules of the

iodine�starch complex are large. But the contrast to Brilliant

Blue, especially in areas stained byboth tracers, was too low, and

therefore, the iodine�starch complex was allowed to develop

overnight. Thus, even if there was a difference in redistribution

times, it was less than 12 hours. Secondly, the minimum concen-

tration still visible on a profile might be different for the two

tracers, and so the actual infiltration depth could be greater.

Risk indices

In order to balance small fluctuations in the dye coverage func-

tion, we superposed all Brilliant Blue stained profiles of the same

plot. Figure 6 shows these superposed profiles and the fitted

distribution 1 � H. Table 2 presents the risk indices xr and the

scale parameters s. To demonstrate the variations of the risk

indices between profiles of one plot, minimum and maximum

Figure 4 Example images from dye tracer experiments on plots 1 (a)

to 5 (e). Six pixels correspond to 1 cm. Left column: binary images

from Brilliant Blue stained profiles with blue parts in black and non-

stained regions in white. Right column: the corresponding dye cover-

age functions.
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of estimates of xr on single profiles are shown in the columns

‘Minimum of xr’ and ‘Maximum of xr’. We used only single

profiles where 1 � H was successfully fitted (visual check) and

where R2 exceeded 0.5 to calculate the minima and maxima.

Except on plot 3, the calculated risk indices are negative. It

means that the dye infiltrationwill stop before reaching a certain

depth. Thus there is a low risk of solute moving to greater depth

below the analysed part of the profile. The risk index on plot 3

equals 0. Here, the dye coverage function decreases exponen-

tially and does not reach 0, but the amount of dye carried to

greater depth below the analysed profile might be negligible

(Schlather & Huwe, 2005).

On plots 1 and 2, several Brilliant Blue profiles had a multi-

modal dye coverage function with two similar maxima in the

lower soil (as in Figure 4a, depths 200 and 530 pixels, respec-

tively), so even superposing them did not result in a monoton-

ically decreasing function. Especially on plot 1, the third

maximum appeared in the last third of the profile and led to

a poor fit. One possible reason for this is the automated pro-

cedure to determine the starting point of the fit.Another reason

is that the generalized Pareto distribution does not reflect flow

processes in soils completely as the model theory is based on

idealized assumptions. The distribution 1 � H is a mono-

tonically decreasing function, and the quality of the fit

depends strongly on the monotonicity of the dye coverage

function. Therefore, the model is not suitable for dye cover-

age functions with pronounced multimodal behaviour as on

plot 1.

We did not superpose iodine�starch stained profiles because

there were too few. Risk indices based on these patterns were

compared with those of Brilliant Blue of the same profile. The

maximum difference in length between Brilliant Blue and iodi-

ne�starch profiles on the same plot was 26 pixels or 4 cm.

Table 3 shows the results for profiles where 1 � H was success-

fully fitted (visual check) and where R2 exceeded 0.5 for Bril-

liant Blue as well as for iodine–starch patterns.

Except on plot 3, where R2 was small, risk indices xr for

iodine�starch are less than those for Brilliant Blue patterns,

indicating a lower risk for propagation of iodide. This is in

contradiction with the greater infiltration depth of this solute

and is discussed below.

Discussion

Risk index for stratified soils

As mentioned by Schlather & Huwe (2005), especially in strati-

fied soils with pronounced differences in physical properties

between horizons, the application of the generalized Pareto dis-

tribution to several strata is problematic. At our study site, the

stratification seems to be due to changes in root distribution

between 20 and 40 cm depth. Macropore flow that starts in the

upper soil ends asmatrix flow in lower horizons with a less dense

root system.When theflowprocess changes as a result of varying

physical properties the dye coverage function cannot be repre-

sented by one single distribution 1 � H. The evident solution is

to use only the lowest part of the profile to fit the distribution

as we did in our study. This accords with the limit law of the

extreme value theory stating that the behaviour of the process

at great depths is independent of the behaviour near the origin

(Schlather & Huwe, 2005).

Furthermore, Schlather & Huwe (2005) stated in their paper

that preferential flow is frequently linked to a positive risk index

and matrix flow to a negative one. This is no longer true for

stratified soils because only the lowest part of the profile is con-

sidered. At our study site, despite the occurrence of macropore

flow in the upper soil, the calculated risk indices are negative, as

the distribution 1 � H is fitted only to the lowest strata, and

there the dominant flow regime is inhomogeneous matrix flow.

So for correct assessment of risk of vertical solute propaga-

tion, the analysed profile depth should be taken into account.

Combination of form and scale parameters

Smaller risk indices for propagation of iodide are in contradic-

tion with the greater infiltration depth of this solute. It is not

surprising that the formparameter changes, asBrilliantBlue and

iodide have different sorption characteristics. Especially in the

lower soil where heterogeneous matrix flow and fingering dom-

inated, Brilliant Blue was retarded with regard to iodide and

their respective dye coverage functions differed in shape. We

can resolve the contradiction by using both parameters, xr and
s, to estimate the risk of vertical solute propagation. As men-

tioned before, the scale parameter s ‘stretches’ the generalized

Pareto distribution. So for the same risk index xr the probability

Figure 5 Example of Brilliant Blue (black) versus iodine�starch

(grey) patterns on plot four. Six pixels correspond to 1 cm.
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to find stained pixels at a certain depth increases with larger

values of s. The combination of xr and s determines a complete

probability distribution. Figure 7a shows the real difference

between the risk of solute propagation based on Brilliant Blue

(solid line) and iodine�starch patterns (dashed line) (see

Figure 5 for patterns). The length of both profiles used for

the adjustment of the generalized Pareto distribution differs by

only 7 pixels (about 1 cm). The dashed line is situated right of

the solid line, indicating a higher risk for iodide propagation.

The same procedure should be applied to assess the risk of

Brilliant Blue propagation. Plots 4 and 5 are good examples.

Here, the estimated risk indices are similar, but the scale param-

eters vary as predicted by Schlather & Huwe (2005) because of

changing experimental and initial conditions. So the estimated

actual risk of solute propagation is different on these plots. In

Figure 7b we show the probability distributions 1 � H for the

five superposed Brilliant Blue profiles (see Table 2 for parame-

ters). For correct interpretation the fitted distributions are

plotted for the part of the profile they were calculated for, that

is beyond the threshold depth D. Despite the negative risk

indices, it is clear that preferential flow is responsible for deep

Figure 6 Dye coverage function of superposed profiles (dots) and fitted distribution 1 � H (line) on plot 1 (a) to plot 5 (e). Six pixels correspond

to 1 cm.

Table 2 Calculated risk indices for superposed profiles

Plot xr s R2 Minimum of xr
a Maximum of xr

a

1 �0.9 377 �0.49b 0.4 1.3

2 �1.1 334 0.62 �1.0 0

3 0 94 0.99 0 0.1

4 �0.3 118 0.97 �0.9 0.0

5 �0.2 61 0.98 �0.1 0.5

aMinimum and maximum of xr for single (not superposed) profiles

show the variation of the risk index within the plot. Results are pre-

sented for profiles where 1 � H was successfully fitted (visual check)

and where R2 exceeded 0.5.
bA negative R2 indicates that the adjusted curve fits the data worse

than a vertical line through the mean value of the data.

Table 3 Risk indices for profiles with Brilliant Blue and iodide–starch

patterns

Plota

Brilliant blue Iodide–starch

xr s R2 xr s R2

2 �0.9 46 0.85 �1.0 245 0.71

3 0.1 74 0.89 3.5 5 0.54

4 �0.5 159 0.87 �1.4 659 0.80

5 0 58 0.96 �0.9 261 0.96

aAdjustments on plot 1 did not give satisfying results.
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infiltration of the tracer. Based on our data, the estimated risk

for solute propagation tends to increase from ‘dry’ to ‘moist’

plots.

Dependence of the risk index on boundary conditions

In our experiment, changing the irrigation intensity from 64 to

32 mm hour�1 seems to not affect the risk index significantly.

Indeed, xr on plot 4 was �0.3 and on plot 5 �0.2 (Table 2). But

according to the theory, the scale parameter s changes (halves)

as experimental conditions are modified. The combination of

the two parameters indicates a higher risk of solute propaga-

tion on plot 4, that is for the higher irrigation rate.

It is more difficult to see the effect of pre-irrigation on plot 2

as the fit is unsatisfactory. Moreover, it cannot be compared

with plot 1, which has similar initial moisture conditions

because the distribution 1 � H could not be fitted properly on

this plot either. But as indicated by the dye coverage func-

tion, the stained surface was larger on the pre-irrigated plot 2

than on plot 1. This would support the hypothesis that the

initial soil moisture is an important factor. Compared with

‘dry’ plots 4 and 5, the risk index on plots 1 and 2 is lower,

but s is much larger. The risk on plot 3 is the highest in

accord with the highest initial moisture content. The tail of

the distribution decreases exponentially (xr ¼ 0), and the dye

penetrates deeper than on other plots. But as stated in

Schlather & Huwe (2005), the transported mass might be

negligible. Indeed, the dye-covered surface in the lower part

of the profile is more important on plots 1 and 2 than on plot

3. So after combining xr and s, the complete distribution 1 � H

supports a higher risk of vertical solute propagation for moist

initial conditions.

Actually, initial soil moisture seems to be a crucial factor. Dye

coverage functions on ‘moist’ plots fluctuatedmore thanon ‘dry’

ones, so the quality of the fit was poorer, especially for single

profiles. More rapid flow velocities and interactions between

preferential flow paths and a moister matrix are one possible

explanation. Hence, flow patterns are more complex, and the

resulting dye coverage functions do not decreasemonotonically.

Finally, the risk index seems to depend on the tracer, but we

need more data (iodine�starch stained profiles) to verify this.

Although experimental and initial conditions for Brilliant Blue

and iodide are the same, their risk indices and scale parameters

tend to differ in the same profile. This phenomenon is probably

due to different physical properties of the two tracers (especially

their sorption behaviour) and is not a characteristic of the risk

index.

Conclusions

We varied experimental and initial conditions for our tracer

experiments and used two different tracers, Brilliant Blue and

iodide, to study the behaviour of the risk index xr. Our results

support the hypothesis formulated by Schlather & Huwe (2005)

that the risk index is to some degree invariant to changing exper-

imental conditions (such as irrigation rate) and that the scale

parameter s strongly depends on them. The initial soil moisture,

however, seems to have a large influence on the risk index.

We propose to combine the two parameters of the general-

ized Pareto distribution to estimate the risk of vertical solute

propagation in soils. The scale factor s reflects the maximum

infiltration depth (for negative risk indices) or the amount of

stained area at a certain depth (for positive risk indices). This

information is important to assess correctly the risk and

should be taken into account. Furthermore, a complete proba-

bility distribution 1 � H allows us to compare plots with dif-

ferent initial and experimental conditions or various tracers.

For stratified soils, only the lowest part of the profile was used

for the adjustment of the 1 � H distribution. Thus the depth

should be explicitly included when one interprets the risk of

vertical solute propagation.

To deal with strongly fluctuating or not decreasing dye

coverage functions, the theory should be improved to account

for tortuosity of flow paths. Provided that the dye coverage

function decreases monotonically, the estimated risk for solute

propagation can serve to classify soils. In stratified soils, differ-

ent flow regimes can occur in different regions of the profile. To

Figure 7 (a) Probability distribution for

Brilliant Blue (solid line) and iodine�starch

patterns (dashed line) on plot 4. (b) Proba-

bility distributions of the superposed Bril-

liant Blue stained profiles. The depth of the

profiles is about 600 pixels, so in the case of

plots 1, 2 and 3 the dye reached the bottom

of the profile.
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assess the risk for vertical solute propagation the generalized

Pareto distribution should be fitted to the lowest part of the soil

profile. But it could possibly be applied to single horizons as well

to characterize the various flow regimes within the profile. Fur-

ther studies should help to identify homogenous zones of flow

patterns corresponding to different flow regimes or reflecting

different physical soil properties. Weiler & Flühler (2004), for

instance, proposed an interesting classification approach using

stereology. Applied to such homogenous zones, fitting results of

the distribution 1 � H could be improved.
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Kvålseth, T.O. 1985. Cautionary note about R2. American Statistician,

39, 279–285.

Lawes, J.B., Gilbert, J.H. & Warrington, R. 1882. On the Amount and

Composition of the Rain and Drainage Water Collected at Rothamsted.

Williams, Clowes & Sons, London.

Lu, J. & Wu, L. 2003. Visualizing bromide and iodide water tracer in

soil profiles by spray methods. Journal of Environmental Quality, 32,

363–367.

MacQueen, J.B. 1967. Some methods for classification and analysis

of multivariate observations. In: Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability, Volume I (eds

L. M. Le Cam & J. Neyman), pp. 281–297. University of Cal-

ifornia Press, Berkeley, CA.

Marshall, T.J., Holmes, J.W. & Rose, C.W. 1996. Soil Physics. Cam-

bridge University Press, Cambridge.

Mitchell, A.R., Ellsworth, T.R. & Meek, B.D. 1995. Effect of root

systems on preferential flow in swelling soil. Communications in Soil

Science and Plant Analysis, 26, 2655–2666.

Mon, J., Flury, M. & Harsh, J.B. 2006. Sorption of four triaryl-

methane dyes in a sandy soil determined by batch and column

experiments. Geoderma, 133, 217–224.

Morris, C. & Mooney, S.J. 2004. A high-resolution system for the

quantification of preferential flow in undisturbed soil using obser-

vations of tracers. Geoderma, 118, 133–143.

MVTec Software GmbH 2005. Halcon Version 7.1 [WWW document].

URL http://www.mvtec.com/halcon/ [accessed on March 2006].

New House Internet Services B.V. 2005. PTGui Version 5.5 [WWW

document]. URL http://www.ptgui.com/ [accessed on February

2005].

Niemann, T. 2005. PTLens Version 6.4 [WWW document]. URL

http://epaperpress.com/ptlens/ [accessed on February 2005].
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