
Characterization of Microbial Communities in Lakes and Reservoirs – a New Method for Cultivating Bacteria Samples from Natural Environments

Kangwon National University

Tae Seok Ahn, Dawoon Jung, and Eun Young Seo

Contact: ahnts @kangwon.ac.kr

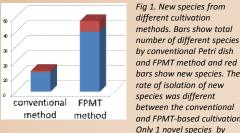
Introduction of a New Cultivation Method

Materials and Methods

Sampling site

Any location such as lakes, reservoirs, soils, sediments, rivers, etc. can be sampling sites. Our experiment was performed at soda lake, Buus nuur in Mongolia.

Lake water, sediment and shoreline soil samples were collected on 11
September, 2011 from Buus nuur, Mongolia


- The water temperature, salinity and pH at the sampling site were 12.1°C, 10.9 psu and 8.9, respectively.

Filter plate microbial trap (FPMT)

1. We used UNIFILTER filtration microplates (Whatman No 7700-1806, Germany) with 96 wells as the principle growth device.

- 2. Each well of the plate has at the bottom a hydrophilic polyvinylidenefluoride (PVDF) membrane (0.45-µm pore-size), and sits on a plastic support with 1 mm hole.
- 3. The R2A media in 0.7% (wt/vol) agar was administered to each well
- 4. Upper part of the plate was sealed with the Breathe-Easy[™] membrane to prevent contamination from the air.

Results

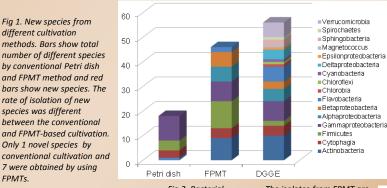


Fig 2. Bacterial taxonomic groups identified by different methods. The isolates from FPMT are significantly more diverse than conventional Petri dish method.

Fig 4. Overlap between identified Phyla analyzed with three different approaches (conventional Petri dish, FPMT and DGGE).

Values in the center of each circle represent the total number of Phyla from each method.

Table 1. Bacterial taxonomic groups

obtained by different methods.

Conclusion

• FPMT-based cultivation allowed us to cultivate more microbial isolates than standard approaches

• FPMT-based culture collection was significantly more diverse and novel.

• This indicates that FPMT culture may help close the gap between the large microbial diversity in nature and much smaller diversity of currently existing culture collections.

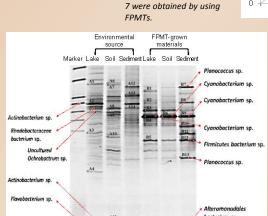


Fig 3. PCR-DGGE profiles from environmental sources and FPMT-grown materials. The number of DGGE band from environmental samples was more abundant than those from the FPMT-grown biomass.

Research Approach:

The majority of microorganisms from natural environments cannot be grown in the laboratory. To overcome this problem, several attempts have been made to cultivate a greater number, such as addition of signaling molecules, lowering nutrient concentrations, extending incubation time, using alternative gelling agents and in situ cultivation. Here we developed a new in situ culture method termed "filter plate microbial trap (FPMT)" and applied it for bacterial isolation from soda and saline lakes. We used both conventional and FPMT-based cultivation to grow microorganisms from this lake, and compared the culture collections among themselves and also to a DGGE-based, culture-independent survey of microbial inhabitants.

