

Bayceer

Bayreuth Center of Ecology and Environmental Research

TERRECO 2010 WORKSHOP Dr. Hans-Frisch Straße 1, Bayreuth 12 APR. 2010

2010 work plan

Estimation of stand level gas exchange fluxes

E. Jung and P. Zhao

Bayreuth Center of Ecology and Environmental Research

Water use by forests in Haean Catchment

Sap flow measurements in South Korea, 2010

Eun-Young Jung and Dennis Otieno Dept. of Plant Ecology

In

Bayreuth Center of Ecology and Environmental Research

Introduction

How much water is used by forests in Haean catchment?

Different Elevation

Different Forest Structure

Different Meteorological Condition

Different Species Composition

Different On/Off Set

→ Estimate Stand Transpiration!

Th

Bayreuth Center of Ecology and Environmental Research

2009 Result Elevation, Forest Structure, Species Composition

Th

Bayreuth Center of Ecology and Environmental Research

2009 Result Elevation, Forest Structure, Species Composition

Th

Bayreuth Center of Ecology and Environmental Research

2009 Result Elevation, Forest Structure, Species Composition

2009 Result

Dept. of Micrometeorology

Ih

Bayreuth Center of Ecology and Environmental Research

TERRECO

Dept. of Micrometeorology

Th

Bayreuth Center of Ecology and Environmental Research

2009 Result Elevation, Forest

Ih

2009 Result Elevation Forest

Bayreuth Center of Ecology and Environmental Research

Elevation, Forest Structure, Species Composition

Ih

Bayreuth Center of Ecology and Environmental Research

2009 Result Stand Transpiration

Bayreuth Center of Ecology and Environmental Research

www.bayceer.de

2009 Result Stand Transpiration

Correct over-estimation of understory transpiration!

Add measurements to interpret forest stand transpiration of Haean catchment

No more data gaps!

and Environmental Research

www.bayceer.de

2010 Work Plan 1. Sap flow measurements

Quantify tree water use by over- and under-story species

2 different sap flow methods

Ih

- Thermal Dissipation Probes
 - (**TDP**, Granier 1987)
- ➔ Overstory (DBH > 10 cm)
- Stem Heat Balance
 - (SHB, Sakuratani 1981)
- → Understory (DBH < 10 cm)</p>

and Environmental Research

2010 Work Plan 1. Sap flow measurements

Quantify tree water use by over- and under-story species

- 2 different sap flow methods
- Thermal Dissipation Probes
 - (**TDP**, Granier 1987)
- ➔ Overstory (DBH > 10 cm)
- Stem Heat Balance
 - (SHB, Sakuratani 1981)
- → Understory (DBH < 10 cm)

www.bayceer.de

5 Litter Traps at each sites

50 x 50 x 50 cm

www.bayceer.de

2010 Work Plan

3. Leaf Area Measurements

How leaf area changes along the seasons?

- 1. Select sample shoots
- 2. Count number of the leaves on the shoot
- 3. Measure width and length of 20 randomly selected leaves

2010 Work Plan

4. Leaf Transpiration and Leaf Water Potential

What are the species-specific characteristics of water use?

Bayceer

Bayreuth Center of Ecology and Environmental Research

2010 Work Plan

5. Crown Architecture Modeling (Y-Plant, Pearcy and Yang 1996)

Achieve better understanding of species-specific water use

→ Light-capture efficiencies of different species?

2010 Work Plan

Dept. of Micrometeorology

Ih

Bayreuth Center of Ecology and Environmental Research

Th

Bayreuth Center of Ecology and Environmental Research

2010 Work Plan Time Schedule

APR		MAY	JUN	JUL	AUG		SEP	ОСТ	
D	Haean, KorealN		Deutschland - Data Analysis		XXIII IUF RO	Haean, Korea			
	1. Leaf Area			- Practical course			af Area / Litter Traps		
					1. Leaf Area / Litter Traps				
	2. Somatal Conductance			-		2. So	2. Somatal Conductance		
	3. Leaf Water Potential4. Carbon Isotope		3. Leaf Water Potential						
					4. Ca	arbon Isotope			
	5. Vegetation Map (Site D)			6. Crown Architecture Modeling (Y-Plant)					
	7. Sap flow measurements								
	8. Site Climate and Soil Water Contents Monitoring								

TERRECO

www.bayceer.de

References

- Chapin, F.S., Matson, P.A., Mooney, H.A. 2002. Principles of terrestrial ecosystem ecology. Springer, New York
- Granier, A. 1987. Evaluation of transpiration in a Douglas-fir stand bymeans of sap flow measurements. Tree Physiol 3:309–319.
- Otieno, D., Schmidt, M., Kinyamario, J., Tenhunen, J. 2005. Responses of Acacia tortillis and Acacia xanthophloea to seasonal changes in soil water availability in the savanna region of Kenia. Journal of Arid Environments.62:377-400.
- Pearcy, R.W., Muraoka, H., Valladares, F. 2005. Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol 166:791–800.
- Sakuratani, T. 1981. Heat balance method for measuring water flux in the stem of intact plants. J. Agric. Meteorol. 1:9–17.
- Tieszman, L.L., Archer, S., 1990. Isotope assessment of vegetation changes. In: Osmond, C.B., Pitelka, L.F., Hidy, G.M. (Eds.), Plant Biology of the Basin and Range, vol. 80. Ecological Studies, pp. 144–178.
- Nasahara, K.N., Muraoka, H., Nagai, S., Mikami, H. 2008. Vertical integration of leaf area index in a Japanese deciduous broad- leaved forest. Agric For Meteorol 148:1136–1146

Th

Bayreuth Center of Ecology and Environmental Research

Thank you!

