Effects of Polyacrylamide (PAM) and Biopolymer on Erosion Control and Plant Growth

Yasser Awad, Sang Soo Lee and Yong Sik OK*

Department of Biological Environment
Kangwon National University, Korea
Introduction

- Highland is located at >600 m altitude and produces various crops at low temperature.

- Productive highland is very limited due to its steep slope and soil erosion.
In Korea, annual soil loss estimated over 11 MT/ha.

Soil erosion reduces crop productivity due to losses of soil organic matter and nutrients from a fertile topsoil.

Soil erosion causes a nonpoint source pollution affecting water quality and aquatic system.
Anionic polyacrylamide (PAM) is an emerging method to reduce soil erosion and runoff.
Effectiveness of PAM

- PAM increases infiltration, thereby increasing plant germination, plant growth, and plant survival during drought.

- PAM stabilizes soil aggregate, thereby reducing soil erosion and runoff.
PAM’s Mode of Action

- For PAM in water with sufficient electrolytes, coulombic and van der Waals forces attract soil particles to anionic PAMs.

- Ca$^{++}$ in water shrinks the double layer around soil particles and bridges between soil surfaces and PAM, enabling flocculation.
Case Study I

Application of PAMs for Reducing Soil Erosion using Simulated Rainfall
Objective

➢ To investigate the effects of different PAMs for reducing soil erosion and turbidity.
Materials and Methods

Properties of tested PAMs

<table>
<thead>
<tr>
<th>Item</th>
<th>Property</th>
<th>Yangfloc</th>
<th>Magnafloc 336</th>
<th>Soilfix G1</th>
<th>4611</th>
<th>SD 46312</th>
<th>9601 PULV</th>
<th>9901</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Granular power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>White</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>Little or no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solubility in water</td>
<td>Soluble</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td></td>
<td>0.60~0.80</td>
<td>0.75</td>
<td>-</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>pH (0.5% solution)</td>
<td></td>
<td>6~8</td>
<td>6~9</td>
<td>6~9</td>
<td>4~9</td>
<td>4~9</td>
<td>4~9</td>
<td>5.5~7.5</td>
</tr>
</tbody>
</table>
Materials and Methods

- Rainfall simulator was used to evaluate the application of PAMs at 10 and 20% slopes.

- Aqueous PAMs at 10 and 40 kg/ha were applied to the soil surface.

- After air drying, simulated rainfall was applied at an intensity of 30 mm/h.
Materials and Methods
Results & Discussion

Reductions in turbidity ranged 25~60% at 10 kg/ha and 83~91% at 40 kg/ha.
Results & Discussions

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Slope 10%</th>
<th>Slope 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Turbidity</td>
<td>Reduction (%)</td>
</tr>
<tr>
<td>Control</td>
<td>2310</td>
<td>0</td>
</tr>
<tr>
<td>Soilfix G1</td>
<td>121</td>
<td>94.8</td>
</tr>
<tr>
<td>Magnafloc 336</td>
<td>91</td>
<td>96.0</td>
</tr>
</tbody>
</table>

The table above compares the turbidity reduction of different treatments at slopes of 10% and 20%. The results show that the addition of PAM significantly reduces turbidity, with the highest reduction observed for Magnafloc 336 at 97.3%.
Conclusion

- Mean turbidity in runoff was reduced by 94.7 and 84.8% at 10 and 20% slopes with 40 kg/ha vs. CK.

- Magnafloc 336 was the best for reducing sediment loss, up to 60.6% and 25.2% at 10 kg/ha, and 90.3% and 92.7% at 40 kg/ha with 10% and 20% slopes.

- All PAMs significantly reduced sediment loss at 10% and 20% slopes.
Case Study II

Reductions in Soil Erosion with PAM and Biopolymer
Objective

➢ To evaluate the effectiveness of a synthesized biopolymer for reducing soil erosion compared to PAM
Materials and Methods

1,2) Biopolymer (LSAA) was synthesized from lignin, starch, acrylamide and acrylic acid.

3,4) LSAA was powdered after drying to a constant weight at 60°C.
Materials and Methods

Infrared spectrum of biopolymer (LSAA)
Materials and Methods

Properties of PAM and Biopolymer

<table>
<thead>
<tr>
<th>Contents</th>
<th>TN (%)</th>
<th>TC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesized PAM (LSAA)</td>
<td>5.32</td>
<td>28.41</td>
</tr>
<tr>
<td>Magnafloc 336</td>
<td>13.23</td>
<td>40.15</td>
</tr>
<tr>
<td>Soilfix G1</td>
<td>16.28</td>
<td>42.22</td>
</tr>
</tbody>
</table>
Materials and Methods

- PAM and LSAA at 200 kg/ha were applied to the soil surface at 36% slope.

- After a week incubation, simulated rainfall was applied at an intensity of 20 mm/h.

- The sediment load and water quality in runoff were analyzed.
Results & Discussion

Soil loss and reduction ratio in runoff

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Soil loss (kg/ha)</th>
<th>Reduction ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1187.0 a*</td>
<td>-</td>
</tr>
<tr>
<td>LSAA</td>
<td>27.1 b</td>
<td>97.8</td>
</tr>
<tr>
<td>PAM</td>
<td>56.6 b</td>
<td>95.5</td>
</tr>
</tbody>
</table>
Total N in runoff was increased in PAM-treated soil.

Difference between LSAA and PAM was found in total P.
Results & Discussions

Suspended solids were reduced by 97.8 and 95.6% in LSAA- and PAM- treated soils compared to untreated zone, respectively.
Results & Discussions

Runoff from soils treated with PAM and LSAA compared to control.
Conclusion

- Sediment with PAM and LSAA at 200 kg/ha reduced by 97.8% and 95.5% compared to the untreated soil.

- Total N (T-N) and total P (T-P) in runoff from LSAA-treated soil were similar to the untreated soil.

- PAM increased T-N and T-P in the runoff compared to the untreated soil.

- LSAA is an alternative to PAM for reducing soil loss, T-N, and T-P.
Case Study III

Effects of PAM and biopolymer on Chinese cabbage growth and soil properties
Objective

➢ To evaluate the effectiveness of PAM and biopolymer (LSAA) on soil properties and Chinese cabbage growth.
Materials and Methods

- Aqueous PAMs and LSAA at 0.05% and 0.1% were evaluated using a Chinese cabbage (Brassica campestris L.) seed germination bioassay.
Materials and Methods

- Pot experiment was conducted in a rain shielding house.

- Chinese cabbage seedlings (30 days after sowing) were transplanted to 1/5,000a Wagner pots.

- Aqueous PAMs (Soilfix G1 and Magnafloc 336) and LSAA were applied at 0.35 g/pot.
Materials and Methods

- Plants were sampled eight weeks after transplantation.
- Plant biomass, leaf length, leaf width, and the number of leaves were determined.
Results and Discussion

%Germination as affected by treatments
Results & Discussions

![Bar chart and images showing the results of different treatments on aggregation and water holding capacity. The bar chart compares Control, Soilfix G1, Magnafloc 336, and LSAA treatments. The images show the surface characteristics before and after treatment.]
Results & Discussions

Fresh and dry weights of Chinese cabbage
Conclusion

- PAMs and LSAA at 0.5 and 1% increased cabbage seed germination by 95-98%.
- PAMs and LSAA increased plant biomass by 42-70% compared to the control.
- Soil aggregates were stabilized by 71, 73 and 66% with the Soilfix G1, Magnafloc 336 and LSAA.
Case Study IV

PAM and LSAA Efficacy on Erosion Control and Radish Growth in the Field
Objective

➢ To evaluate the effectiveness of PAM and LSAA on soil erosion control and radish growth in a field-scale experiment.
Materials and Methods

- PAM and LSAA at 40kg/ha were applied to the soil surface.
- Radish was cultivated with/without mulching.
Materials and Methods

Size: 18m × 3m
Slope: 15~20%
Altitude: 708m
Regional rainfall duration and intensity

<table>
<thead>
<tr>
<th>Samples</th>
<th>Date</th>
<th>Duration</th>
<th>Amount (mm)</th>
<th>Main event (mm/day)</th>
<th>Maximum (mm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup></td>
<td>09-7-10</td>
<td>07. 08~07. 09</td>
<td>227</td>
<td>25.2</td>
<td>41.5</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>09-7-16</td>
<td>07. 11~07. 15</td>
<td>353</td>
<td>70.6</td>
<td>39.0</td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>09-7-26</td>
<td>07. 17~07. 26</td>
<td>154</td>
<td>15.4</td>
<td>23.5</td>
</tr>
<tr>
<td>4<sup>th</sup></td>
<td>09-8-13</td>
<td>08. 07~08. 12</td>
<td>177</td>
<td>29.5</td>
<td>13.5</td>
</tr>
</tbody>
</table>
Results and Discussion

<table>
<thead>
<tr>
<th>Sampling</th>
<th>Control</th>
<th>LSAA</th>
<th>Soilfix G1</th>
<th>Control</th>
<th>LSAA</th>
<th>Soilfix G1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sediment (kg/10a)</td>
<td>Water (ton/10a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td>4616</td>
<td>3439</td>
<td>2329</td>
<td>194.3</td>
<td>205.0</td>
<td>199.6</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>3522</td>
<td>2400</td>
<td>2292</td>
<td>311.6</td>
<td>311.6</td>
<td>311.6</td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>1873</td>
<td>1658</td>
<td>1116</td>
<td>87.6</td>
<td>82.3</td>
<td>77.0</td>
</tr>
<tr>
<td>4<sup>th</sup></td>
<td>2028</td>
<td>1847</td>
<td>1376</td>
<td>135.6</td>
<td>125.0</td>
<td>119.6</td>
</tr>
<tr>
<td>Sum</td>
<td>12091</td>
<td>9344</td>
<td>7113</td>
<td>729.1</td>
<td>723.9</td>
<td>707.8</td>
</tr>
</tbody>
</table>
Results and Discussion

Concentrations of NO$_3$ and NH$_4$ in the soil
Conclusion

- PAM and LSAA promoted the growth of radish, and reduced soil erosion.

- With mulching, Soilfix G1 and LSAA reduced sediment by 44.9 and 33.6%.

- Without mulching, Soilfix G1 and LSAA reduced sediment by 41.2 and 22.7%.
Summary

- PAMs and LSAA stabilized soil aggregates, thereby reducing soil erosion and increasing the water-holding capacity.
- PAMs and LSAA enhanced the plant growth by increasing porosity and available water.
- LSAA can be an alternative to PAM.
Future Works

- In Haean, compost (animal manure) with high DOC is applied to the soil at conventional farms.

- This practice may increase the potential for carbon loss due to soil erosion.
Hypothesis

- Soil aggregate increases the retention capacity of organic substances (DOC) in the soil.
- PAM increases soil aggregate.
- PAM may reduce the loss of carbon (DOC) from soil.
Simulated rainfall column experiment

The amendments:

1. Control (untreated soils).
2. PAM at 10 kg/ha
3. PAM at 40 kg/ha
4. PAM at 10 kg/ha + compost
5. PAM at 40 kg/ha + compost
6. PAM at 10 kg/ha + 15N fertilizer
7. PAM at 10 kg/ha + 15N fertilizer
Measurements

Chemical

DOC, 14C and 15N

Physical

Soil surface seal (pore-size distribution & cumulative porosity) measurement using HRCT
CT Analysis

All CT images were analyzed by dividing the sample into sub-regions.

Images were measured for voxel gray-scale using ImageJ ver. 1.34s