

Hojeong Kang Yonsei University Korea 2010 TERRECO

Contents

- 1 Backgrounds
- 2 Denitrifier abundance
- 3 Denitrifier diversity
- 4 Summary

Denitrification process

- Reduction of NO₃⁻ to N₂O or N₂
- Terminal e⁻ acceptor for anaerobic respiration
- Key controlling variables
 - Anaerobic conditions
 - Carbon supply
 - NO₃ availability

Importance

- Water quality amelioration
 - Key and permanent removal of NO₃⁻
- Greenhouse gas
 - N₂O is ca. 250 times stronger than CO₂

Measurements for the process rates

- Acetylene blocking method
- Disappearance or flux of NO₃⁻
- Direct measurement of N₂
- ¹⁵N NO₃- dilution method
- 15N isotope pairing method

Denitrifying bacteria

Facultative anaerobes

Enzyme systems

Methods for denitrifiers

- Conventionally, culture based methods were employed → only 1-5 % are culturable
- Molecular approaches
 - Cloning & sequencing
 - Fingerprinting methods (T-RFLP)
 - Q-PCR

T-RFLP

(Terminal Restriction Fragment Length Polymorphism)

(rdp8.cme.msu.edu/html/t-rflp_jul02.html)

Real Time Q-PCR

 Reaction setup: The SYBR® Green I Dye fluoresces when bound to double-stranded DNA.

Denaturation: When the DNA is denatured, the SYBR® Green I Dye is released and the fluorescence is drastically reduced.

(Source: Quantabio.com)

com)

Study sites

Mountain wetlands

Objectives

- To determine abundance (Q-PCR) & diversity (T-RFLP) of denitrifying bacteria in various types of wetlands
- To determine relationship between microbial information and denitrification process rate

Abundance vs. Process rates (NirS)

Abundance vs. Process rates (NirS)

Abundance vs. Process rates (NosZ)

Diversity vs. Process rates (NirS)

Abundance vs. Diversity (NirS)

Absence of correlation between microbes and process rates

- Most denitrifiers are facultative anaerobes
- Gene copy number in each bacterium is highly variable
- Shortcomings of acetylene blocking method

Summary

- Abundances (Q-PCR) are relatively stable in each system
- Process rates varies substantially

Acknowledgements

- Drs. S-H. Lee, S-Y. Kim & Ms. Y-J. Kim
- Profs. C. Freeman & W.J. Mitsch
- KRF, MoE and TERRECO for financial support