[RESEARCH PROPOSAL]

Economic Valuation of Conserving Soyang Lake and Its Catchment

Presentation @ TERRECO Workshop

April 12, 2010

Andy S. Choi & Man-sig Jun

Research Institute for Gangwon

Outline

I. Introduction

- **1. Soyang Lake Catchment and the Communities**
- 2. Water Conservation Levy
- 3. Objectives
- **II. Nonmarket Valuation**
 - **1. Public Goods**
 - 2. Choice Models
 - 3. Random Utility Models

III. Nexus

- **1. TERRECO & This Proposal**
- 2. Future Discussion

I. Introduction

1. Soyang Lake Catchment and the Communities

Regions	Area (km²)	Population (1,000)
Seoul	289	10,026
Incheon	188	1,331
Kyonggi	7,503	8,284
Gangwon	12,377	888
Chungbuk	4,043	484
Chungbuk Kyongbuk	4,043 181	484 1

Han River Catchment

I. Introduction

2. Water Conservation Levy (1/3)

- Upstream vs. downstream
- The Han River Act
 - ➔ Han River Catchment Mgmt Fund, 1999)
- Water Conservation Levy
 - → \$0.13/ton in 2008

2. Water Conservation Levy (2/3)

Region	Population (1,000)
Seoul	10,026
Incheon	2,596
Kyeonggi	8,284

Year	Levy rate (\$/ton)	Revenue (\$, Million)	
2000	0.07	147.43	
2001	0.09	197.49	
2002	0.09	212.02	
2003	0.10	230.01	
2004	0.10	240.51	
2005	0.11	261.34	
2006	0.12	287.10	
2007	0.13	311.14	
2008	0.13	333.82	

2. Water Conservation Levy (3/3)

Yearly Allocation (2008)	Amount (\$, Million)	%
Residents Support	0.53	24.43
Env. Treatment Facilities	0.96	44.26
Water Quality	0.22	9.96
Land Mgmt	0.41	19.02
Nonpoint Sources	0.01	0.65
Total Quantity Control	0.00	0.22
Operation	0.03	1.45
Total	2.17	

Appropriate Allocation?c

3. Objectives

- To estimate economic values of ecosystem services and water quality gained or lost in the Soyang Lake Catchment
- → To identify socially acceptable level of the levy rate
- → To find out appropriate allocations of the Fund

Communities' Preferences?

1. Public Goods

Nonrivalry

Source: Modified from Figure 1.4 of Bateman et al. (2002:30).

2. Choice Modeling

- Target goods as a bundle of attributes
- Respondents make choices, expressing 'trade-offs'
- Willingness-to-pay estimated using RUM

3. Random Utility Maximization Models (RUM)

$$U_{iq} = V_{iq} + \varepsilon_{iq}$$
 Matter of Probability!

$$P_{iq} = \frac{1}{\sum_{j=1}^{J} \exp(V_{iq} - V_{ij})} = \frac{\exp(V_{iq})}{\sum_{j=1}^{J} \exp(V_{jq})} = \frac{\exp(V_{iq})}{\sum_{j=1}^{J} \exp(V_{jq})} = \frac{(V_{iq} - V_{iq})}{(V_{iq} - V_{jq})} = \frac{(V_{iq} - V_{iq})}{(V_{iq} - V_{iq})} = \frac{(V_{iq} - V_{iq})}{(V_{iq} -$$

$$P_{iq} = P(i|i, j \in A) = P[(V_{iq} - V_{jq}) > (\varepsilon_{jq} - \varepsilon_{iq})]$$
$$P(\varepsilon_{j} \le \varepsilon) = \exp(-\exp-\varepsilon) = e^{-\varepsilon}$$

1. TERRECO & This Proposal (1/2)

Source: Tenhunen, John (2010)

Figure 1. Information flows

1. TERRECO & This Proposal (2/2)

Figure 2. Conceptual relationships

2. Future Discussion

- 1. Proposal evaluation and decision making (This workshop)
- 2. Project team formation (This workshop)
- 3. Detailed project plan (April ~ June, 2010)
- 4. Project implementation (As planned)
- ➔ The impact of socio-economic land-use decisions on ecosystem services in small catchments (Patrick Poppenborg and Thomas Koellner)
- ➔ Quantifying and evaluating trade-offs between multiple ecosystem services in Haean Catchment (Thomas Koellner et al.)

