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Abstract

Meteorologically measured fluxes of energy and matter between the surface and the
atmosphere originate from a source area of certain extent, located in the upwind sec-
tor of the device. The spatial representativeness of such measurements is strongly
influenced by the heterogeneity of the landscape. The footprint concept is capable of5

linking observed data with spatial heterogeneity. This study aims at upscaling eddy co-
variance derived fluxes to a grid size of 1 km edge length, which is typical for mesoscale
models or low resolution remote sensing data.

Here an upscaling strategy is presented, utilizing footprint modelling and SVAT mod-
elling as well as observations from a target land-use area. The general idea of this10

scheme is to model fluxes from adjacent land-use types and combine them with the
measured flux data to yield a grid representative flux according to the land-use dis-
tribution within the grid cell. The performance of the upscaling routine is evaluated
with real datasets, which are considered to be land-use specific fluxes in a grid cell.
The measurements above rye and maize fields stem from the LITFASS experiment15

2003 in Lindenberg, Germany and the respective modelled timeseries were derived by
the SVAT model SEWAB. Contributions from each land-use type to the observations
are estimated using a forward lagrangian stochastic model. A representation error is
defined as the error in flux estimates made when accepting the measurements un-
changed as grid representative flux and ignoring flux contributions from other land-use20

types within the respective grid cell.
Results show that this representation error can be reduced up to 56 % when ap-

plying the spatial integration. This shows the potential for further application of this
strategy, although the absolute differences between flux observations from rye and
maize were so small, that the spatial integration would be rejected in a real situation.25

Corresponding thresholds for this decision have been estimated as a minimum mean
absolute deviation in modelled timeseries of the different land-use types with 35 W m−2

for the sensible heat flux and 50 W m−2 for the latent heat flux. Finally, a quality flagging
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scheme to classify the data with respect to representativeness for a given grid cell is
proposed, based on an overall flux error estimate. This enables the data user to in-
fer the uncertainty of mesoscale models and remote sensing products with respect to
ground observations. Major uncertainty sources remaining are the lack of an adequate
method for energy balance closure correction as well as model structure and parameter5

estimation, when applying the model for surfaces without flux measurements.

1 Introduction

Long-term modelling of ecosystem fluxes between the terrestrial surface with its par-
ticular vegetation and the atmosphere are now widely used facilities of the scientific
communities. The need for that arises not only from the desire for better understanding10

of ecosystem processes, but also from society’s request for water and greenhouse gas
budgets. Within these data networks the eddy covariance (EC) method stands out as
the method of choice, utilized within large flux networks with the mentioned objectives
like FLUXNET (Baldocchi et al., 2001). A typical feature of such projects is the spa-
tial integration of flux data in order to derive budgets for entire ecosystem types (e.g.15

Jung et al., 2009). While observations are too scarce for regional estimates, integration
can be achieved via remote sensing data and mesoscale modelling using flux data as
the ground truth. These applications work on grid sizes of at least 1 km edge length.
Therefore the point measurements have to be related to a certain grid cell, reflecting
its properties. The representativeness of the data depends on the heterogeneity within20

this area, but also on the heterogeneity within the footprint of the measurements.
As upscaling is a problem occurring almost everywhere in earth science, there are

lots of approaches to the issue of proper aggregation. The nonlinearity between pro-
cesses and driving variables, as well as spatial heterogeneity, pose a major chal-
lenge for these approaches (Chen et al., 2009). While simple parameter aggregation25

schemes via mean values or effective parameters (using the “blending height” concept
after Mason, 1988) are widely used, there are more comprehensive flux aggregation
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methods available (e.g. Hasager and Jensen, 1999). Promising approaches stem from
coupling of models, given that coupling occurs via fluxes (Best et al., 2004), and mo-
saic or subgrid approaches (Avissar and Pielke, 1989; Mölders et al., 1996) should be
favoured over parameter averaging wherever possible. A sound basis for estimation
of representativeness error, related to both measurement footprints and grid size, is5

the sensor location bias given by Schmid (1997); Schmid and Lloyd (1999). Further
methods were proposed by Tolk et al. (2008), who calculate a representation error of a
course grid cell as the standard deviation of carbon dioxide fluxes from the respective
finer grid cells. They aim at scales beginning from grid cells with an edge length of
2 km up to 100 km. Only a few recent papers combine the scale of EC measurements10

and remote sensing data or mesoscale models in a physical way, i.e. by utilization of
footprint or SVAT modelling. Some studies develop parameterization schemes for re-
gional fluxes from observations aided by high resolution remote sensing data (e.g. Su,
2002; Ma et al., 2006). Recently, Chen et al. (2009) have offered a scaling method-
ology based on the footprint climatology of EC field sites and high resolution remote15

sensing data. They found better agreement between remotely sensed and EC derived
gross primary production (GPP) by weighting the former with the footprint climatology
than by equal weighting of the grid cells. This approach was also applied to a Chinese
field site (Chen et al., 2010).

The footprint approach, which has recently been widely accepted, relates mea-20

sured data to its sources. It is expected to play a crucial role for matching the scales
of EC measurements and remote sensing data or mesoscale models (e.g. Schmid,
1997). Schmid (2002) and Vesala et al. (2008) offer sound overviews of the existing
concepts. Validation concepts exist as well (Foken and Leclerc, 2004), but this is-
sue has yet to be investigated (Vesala et al., 2008). Comparisons in Göckede et al.25

(2005) and Kljun et al. (2002) show better performance of Lagrangian stochastic mod-
els over analytical models. Further comparisons of Lagrangian stochastic models
with LES (Large Eddy Simulation) model predictions on a basis of 2-D footprint func-
tions showed good agreement for intermediate measurement heights and convective
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conditions (Markkanen et al., 2009). Also Finn et al. (1996) and Hsieh and Katul (2009)
assign reasonable performance to the Lagrangian stochastic forward model approach
on step change heterogeneity, even if this model type is only valid for horizontal homo-
geneous flow conditions due to the inverted plume assumption. However, not all flow
characteristics can be tackled by the footprint concept, as Foken and Leclerc (2004)5

state that influences of remote obstacles on measurements have been found, even if
the disturbed region is beyond the predicted source area. But nevertheless, footprint
analysis was combined with measurement quality in order to characterise complex
study sites (Göckede et al., 2004, 2006). This scheme was applied successfully for
CarboEurope sites (Rebmann et al., 2005; Göckede et al., 2008) and on the Tibetan10

Plateau (Metzger et al., 2006). Similar procedures were also conducted for FLUXNET
sites by Chen et al. (2009), but the scope was more quantitative and hints at the upscal-
ing issue: monthly and annual uncertainties in EC fluxes from a 59-year-old Douglas-fir
stand were attributed to variations in footprint climatology and estimated to be approx-
imately 15–20 %. The authors state that footprint-weighted EC fluxes can be used to15

estimate the bias between spatially-explicit ecological models and tower-based remote
sensing at finer scales.

The aim of this study is to combine footprint analysis and SVAT modelling to enhance
representativeness of EC-measured turbulent fluxes on a grid level of 1 km edge length,
which is a typical size for mesoscale models assisted by moderate resolution remote20

sensing data. Such models are utilized for comprehensive assessment of energy and
water budgets on a regional scale. This approach is useful for field sites with high sen-
sor location biases, where differences in fluxes from various patches are expected to
exceed model uncertainties. The need for such algorithms is underpinned by e.g. Avis-
sar (1995); Raupach and Finnigan (1995); Baldocchi et al. (2005); Kim et al. (2006). In25

this paper, a new upscaling strategy is proposed and evaluated in a case study. The
data and models used for this case study are described in Sect. 2. Furthermore, spe-
cific measures for representativeness of flux measurements are defined and the new
upscaling scheme is explained in Sect. 3. Section 4 starts with an evaluation approach
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for this case study and its results are presented including considerations about uncer-
tainty. Finally the implications are summarized in Sect. 5.

2 Methods

2.1 Site description

The investigated datasets were gathered within the LITFASS-2003 experiment from5

19 May to 17 June 2003, in a rural landscape around the Meteorological Observatory
Lindenberg of the German Meteorological Service (DWD) and its boundary-layer field
site Falkenberg, 52◦10′01′′ N and 14◦07′27′′ E (Beyrich and Adam, 2007). Fourteen
micrometeorological stations were operated over different surfaces, mainly agricultural
crops and forests, aiming at evapotranspiration estimates over heterogeneous land-10

scapes (Beyrich and Mengelkamp, 2006; Mengelkamp et al., 2006). Weather condi-
tions were fairly dry during LITFASS-2003, interrupted only by scarce rainfall episodes,
which led to a huge variability of water availability and evapotranspiration (Beyrich and
Mengelkamp, 2006).

For this investigation, datasets were used from three adjacent farmland sites (from15

North to South: A4, A5 and A6). While there was no obstacle between A4 and A5,
A5 and A6 were separated by a track with a hedgerow. Serving as cropland, A5 was
cultivated with rye, and A4 and A6 with maize, during the LITFASS-2003 campaign. All
sites were equipped as a full energy balance station, the turbulent fluxes were mea-
sured using a Campbell CSAT3 sonic anemometer and a Campbell KH20 hygrometer20

for A4, a Metek USA-1 sonic anemometer together with a KH20 for A5 and a CSAT3 in
combination with a LI-COR LI-7500 CO2/H2O gas analyser for A6. Further measure-
ments include radiation with all components for A5 (Kipp & Zonen CNR1 net radiome-
ter) and A6 (Eppley PIR Pyrgeometer, Kipp & Zonen CM24 albedometer), while for A4
only downwelling short-wave radiation (Campbell SP1110) and net radiation (REBS25

Q7) were recorded. Soil heat flux as well as soil temperature and moisture profiles
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were obtained by various instruments (Rimco CN3, Hukseflux HFP, REBS HFT, Camp-
bell 107 Probe, Pt100 and IMKO Trime EZ). Additional site-specific plant physiological
and physical parameters such as leaf area index (LAI), canopy height and soil texture
were recorded during the campaign, for details see Mauder et al. (2006).

As the campaign was conducted during a growing phase of the respective cereals,5

canopy height and therefore displacement height and roughness length varied through-
out the experiment. For A5 (rye), canopy height began with 90 cm, peaking with 150 cm
on 2 June with a final height of 130 cm, recorded on 12 June. A6 (maize) exhibits a
much larger variability, starting with 9 cm which could roughly be attributed to bare soil
conditions, and growing continuously to 60 cm on 10 June as the last record. Nearly10

the same pattern shows A4 (maize) with canopy heights ranging from 5 cm to 75 cm.

2.2 Postprocessing of turbulent flux data

The dataset of half-hour turbulent fluxes (n= 1392) was calculated using the software
package TK2 (Mauder and Foken, 2004), and the processing of LITFASS-2003 data
is described in detail in Mauder et al. (2006). Turbulent fluxes were filtered, excluding15

fluxes with poor quality (data with quality flags of 7–9 were excluded using a scheme
ranging from 1 to 9 by Foken et al., 2004). Fetch analysis by Mauder et al. (2006)
revealed homgeneous flow conditions and no internal boundary layers for A5 and neg-
ligible influence on A4 within the measurement heights zm =2.9 m and zm =3.25 m,
respectively. The A6 (maize) turbulence complex, however, was situated near the track20

accompanied by a hedgerow, leading to a disturbed flow field for a wind sector from
WNW to ENE. Consequently, A6 data was filtered for the disturbed sector. Further-
more, the contribution of the target land-use was determined by footprint analysis (see
Sect. 2.3), the respective half-hour flux values were excluded depending on wind direc-
tion and stratification and using a threshold of 80 % for the target contribution, which25

poses a representative measurement after Göckede et al. (2008).
The energy balance closure (EBC) for LITFASS-2003 sites was investigated by

Mauder et al. (2006), and Foken et al. (2010) focused on this issue. The local closure
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of the three sites used here ranged from 60 % to 70 % of the available energy, while the
SVAT (Soil – Vegetation – Atmosphere – Transport) scheme used in this study closes
the energy balance by definition (see Sect. 2.4). This fact compromises direct compar-
isons of turbulent flux observations and modelled fluxes, as already shown for these
sites by Kracher et al. (2009). Therefore the sensible and the latent heat flux are cor-5

rected following Twine et al. (2000) as suggested in Foken (2008): the residual Res of
the energy balance is distributed among the turbulent fluxes while the Bowen ratio Bo
was preserved yielding the energy balance corrected heat fluxes QH,EBC and QE,EBC. In
order to avoid unreasonable huge corrections and artificial spikes, the correction was
not applied when Bo was negative or at least one of the turbulent fluxes fail to exceed10

the measurement accuracy, which was assumed to be 10 W m−2 in absolute values.
Instead, such values were excluded from further analysis.

After all filtering and energy balance correction, missing values sum up to 58–63 %
for QH,EBC and QE,EBC, and an even higher missing fraction in the case of A6 due to the
wind sector filtering. Most of these gaps, however, occur during the night, where from15

experience the fluxes are known to be low. Although this fact is somewhat comforting,
it raises the need for gapfilling to obtain unbiased results of mean fluxes on a daily ba-
sis or longer time scales. Therefore the energy balance corrected turbulent fluxes are
gapfilled with calibrated SVAT model runs for further analysis. The calibration proce-
dure is described in Sect. 2.4 and the influence of gapfilling on the results is discussed20

in Sect. 4.4.

2.3 Footprint analysis

In this study a Lagrangian stochastic forward model is used to estimate two-
dimensional contributions of source areas. While a general description of the model is
given by Rannik et al. (2003), it is used with a simplified parameterisation of turbulent25

flow according to conditions for low vegetation as used in Göckede et al. (2005). As La-
grangian stochastic models require high computational costs, source weight functions
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for each half-hour measurement were picked from precalculated tables following a pro-
cedure as used in Göckede et al. (2004, 2008).

As a forward model depends on the inverted plume assumption, horizontal homo-
geneity is required in principle. Experiences from past investigations and validations,
however, affirm its applicability even under heterogeneous conditions (e.g. Rebmann5

et al., 2005; Göckede et al., 2005, 2008; Markkanen et al., 2009, 2010). Further limits
stem from flow distortion due to large obstacles like hedges, creating flow patterns and
internal boundary layers which cannot be resolved by this model.

2.4 SVAT modelling

As the proposed upscaling scheme needs additional modelling, a SVAT scheme called10

SEWAB, developed by Mengelkamp et al. (1999) in the former GKSS Research Center,
Geesthacht, Germany, is implemented. This model has been chosen due to its energy
balance closure technique, which was well rated in a comparison study of Kracher
et al. (2009). Here only the principles of the model structure will be highlighted in
the following, for further information see the publications mentioned above as well as15

Kracher et al. (2009). The application and derivation of model parameters is described
in Sect. 2.4.2.

2.4.1 SEWAB model structure

Momentum flux (u∗) and sensible heat flux (QH) were calculated using a bulk approach

u∗ =
√
CD ·u(z) (u(0)=0) (1)20

QH = ρ ·cp ·CH ·u(z) · (Tg−T (z)) (2)

with the drag coefficient CD, the Stanton number CH and cp as the specific heat capac-
ity. u(z) and T (z) denote wind velocity and air temperature at height z, while Tg repre-
sents the surface temperature. The Stanton number CH is parameterised depending
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on aerodynamic and thermal roughness lengths as well as atmospheric stratification
following Louis (1979). For the latent heat flux QE a bulk approach also applies in
analogy to Eq. (2) in general, but the flux is split up into evaporation from bare soil
and vegetated surface flux, the latter again composed of evaporation from wet foliage
and transpiration from dry foliage. While for evaporation from bare soil and wet foliage5

the Dalton number equals the Stanton number CH, the transpiration drag coefficient
was parameterised with the aerodynamic resistance and the stomatal resistance after
Noilhan and Planton (1989). Similar, the soil heat flux QG is estimated by

QG = λ

(
Tg−TS1

∆zS1

)
(3)

with the thermal conductivity λ and the first soil layer temperature TS1 with a thickness10

of ∆zS1 =2 cm. Soil temperature distribution is described by the diffusion equation
and vertical soil water movement is governed by the Richards equation. Relationships
between soil moisture characteristics were used from Clapp and Hornberger (1978).
The net radiation is written as

Q∗
R =−Rswd(1−a)−Rlwd+εσT 4

g (4)15

with the albedo a, the emissivity ε, the Stefan-Boltzmann constant σ and the net radi-
ation Q∗

R. Downwelling short-wave and long-wave radiation (Rswd and Rlwd) were not
parameterised for this dataset but prescribed as a part of the forcing data. Finally, the
energy balance is given by

−Q∗
R =QH+QE+QG (5)20

which is closed in SEWAB by definition. While all components are given with separate
equations without using the balance equation, the closure is achieved by an iteration of
the surface temperature Tg until the residual disappears. Thus, instead of charging one
flux to serve as balance residual, the discrepancy is shared by all fluxes sensitive to
Tg. Directly affected are QH, QG, and the upwelling long-wave radiation (see Eqs. (2),25

(3) and (4)), but also QE via the temperature dependent specific humidity of saturation.
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2.4.2 SEWAB parameter estimation

The model runs were achieved with two different sets of parameter for each station, an
optimised and a “realistic” set. The former are intended to show a maximum fit to the
existing data for gapfilling (Sects. 2.2, 3.2). The parameters were optimised simultane-
ously for QH,EBC and QE,EBC with the coefficient of efficiency serving as the objective5

function (see Eq. (10)) using a SCE-UA (Shuffled Complex Evolution University of Ari-
zona) algorithm (Duan et al., 1992, 1994) followed by a MOSCEM-UA (Multiobjective
Shuffled Complex Evolution Metropolis – University of Arizona) algorithm (Vrugt et al.,
2003). This procedure was applied to SEWAB just as described in detail by Johnsen
et al. (2005). The performance of these runs and their influence on the uncertainty of10

the upscaled fluxes is discussed in Sect. 4.4.
The realistic parameters were estimated using the detailed information gathered by

Kracher et al. (2009). The goal of these model runs is to transfer knowledge of the
target land-use, where measurements exist, to an unknown adjacent land-use type by
adjusting the site specific parameters (see also Sect. 3.2). As a consequence, param-15

eter optimisation is not appropriate: it is very unlikely to allow estimation of parameters
suitable for transferring to other land-use types, even if the physical basis of the model
might be correct, due to the problem of equifinality. For this purpose it would be cru-
cial to find a best strategy for adapting model structure and parameters, but this task
goes beyond the scope of this work. Only to show in-principle feasibility of this goal,20

the parameters were taken nearly unchanged from the realistic sets in Kracher et al.
(2009) as an “unbiased” estimate, because they did not compare the results with en-
ergy balance corrected measurements. An overview of the most important parameter
gives Table 1. As A4, like A6, contained maize and showed the same growth pat-
tern during the LITFASS-2003 campaign, both parameter sets differ only slightly in25

canopy height and roughness length. Nevertheless, some changes were inevitably
made to adapt the parameters to their purpose: All hydrological extra modules in SE-
WAB like ponding, variable infiltration capacity (VIC), subsurface runoff and baseflow
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according to the ARNO concept, or depth dependent saturated hydraulic conductivity
(Mengelkamp et al., 1999, 2001) are switched off as they all contain parameters for
which it is problematic to find realistic values. Furthermore, the roughness lengths are
originally assessed from the measurements. In order to exclude this information, z0
is assumed to be one-tenth of the canopy height. Unfortunately the minimum stom-5

atal resistance Rs,min, estimated as 300 s m−1 for wheat (source: Altman and Dittmer,
1966) and applied for A5, lead to far too low QE compared to the observed QE,EBC.
While this estimate may be reasonable for an individual Triticum aestivum plant, more
recent, modelling oriented, studies tend to lower values, e.g. Schulze et al. (1994) give
90 s m−1 for cereals (sample size: 5) or Alfieri et al. (2008) with 23–25 s m−1 for two10

winter wheat fields with intermediate precipitation. Thus, estimates for Rs,min differ
quite a lot and moreover, Ingwersen et al. (2011) argue for a variable Rs,min. Therefore
we decided to select a uniform Rs,min for all sites and choose 60 s m−1 for A5, which is
the same value as used for maize. And lastly, the LAI value from Kracher et al. (2009)
for the maize field (A4 and A6), 1.5, seemed to be estimated for the total surface.15

Therefore the value was scaled with the inverse fraction of vegetated area 0.7−1 for a
consistent usage in SEWAB. At the end, the parameters for the sites A4 and A6 differ
from A5 only in canopy height, roughness length, albedo, LAI, root depth and fraction
of vegetated area.

While these parameters are kept constant in the model for the whole measuring20

period, the real parameters evolved in time as the experiment was conducted during
the growing phase and especially the maize sites showed a significant development of
canopy height and, consequently, also other parameters in Table 1. This results in a
loss of predictive capacity of the model. On the other hand, a broader range of model
performance within the dataset is achieved, raising the opportunity of investigating the25

relationship between model fit and success of the upscaling procedure.
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2.4.3 SEWAB forcing data

The model is forced with a half-hourly dataset derived by the LITFASS-2003 experiment
(see Sect. 2.1) consisting of precipitation, air temperature, wind velocity, air pressure,
relative humidity, downwelling short-wave and long-wave radiation. As these standard
meteorological variables exist for each of the three sites, the optimised runs were driven5

by the individual forcing sets in order to obtain the best fit. In contrast, for the evaluation
of the upscaling scheme the realistic runs were forced with only one dataset (from A5)
as would be the case in prospective application. Nevertheless, the different sets were
useful for error estimation as discussed in Sect. 4.4.

2.5 Statistics10

For evaluation of model performance simple comparisons are carried out using the bias
B and the mean absolute error MAE

B = N−1
N∑
i=1

(Pi −Oi ) (6)

MAE = N−1
N∑
i=1

|Pi −Oi | (7)

with O as the observations and P the model predictions. Thus the MAE provides a15

measure for model performance or model fitting. There is also a need in this study
to quantify the differences between two time series of observations and two series of
predictions in the same manner as it is done by the MAE, although the last applications
measure dissimilarity more than “errors” in the sense of “failure”. In order to avoid
confusion with the mean absolute deviation or absolute mean difference, which are20

commom terms with different meanings, we define the desired measures as
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Dobs := N−1
N∑
i=1

∣∣O1,i −O2,i

∣∣ (8)

Dmod := N−1
N∑
i=1

∣∣P1,i −P2,i

∣∣ (9)

with O1,O2 as observations and P1,P2 as predictions from the respective land-use types
1 and 2. As a goodness of fit measure serves the coefficient of efficiency (CoE) or
Nash-Sutcliffe coefficient. Introduced by Nash and Sutcliffe (1970), the CoE reads as5

follows

NS =1−

N∑
i=1

(Pi −Oi )
2

N∑
i=1

(Oi −O)2

(10)

with O as the mean of the observations. The CoE has a range of [−∞,1] and should not
be mistaken for the more common coefficient of determination R2. Although the general
definitions equal each other, R2 is predominantly used to assess model performance10

between observations and predictors via linear regression by ordinary least squares
(Everitt, 2002), and in this case partitioning of the total variance into explained and
residual variance does hold, restricting the range of R2 to [0,1].

2.6 Spatial integration of fluxes

The upscaling scheme proposed in this study and described in Sect. 3.2 connects ex-15

isting QA/QC tools for EC flux measurements with a procedure for spatial integration of
fluxes on a grid size of about 1 km edge length, utilizing footprint and SVAT modelling.
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For this task, the relationships between observations, source area and grid represen-
tative fluxes should be considered from two perspectives as displayed in Fig. 1. A hy-
pothetical grid cell is assumed to contain M land-use types, each covering a fractional
area a(g)

j and featuring the specific fluxes Fj ,j ∈ [1,2,...,M]. Typically, measurements
are conducted on one land-use of interest or target land-use. We define here the land-5

use type 1 to be the target land-use and the respective fractional area a(g)
1 = a(g)

tar and
the target land-use flux F1 = Ftar.

The first perspective to consider is the flux for an entire grid cell (Fig. 1a): Letting the
land-use specific fluxes Fj and their fractional areas be known, a grid representative

flux F (g) can be obtained by the tile approach,10

F (g) =
M∑
j=1

a(g)
j ·Fj (11)

assuming Fj to be homogeneous for each land-use type (see Fig. 1a). This approach
has been already applied to the LITFASS-2003 area on a landscape scale (Beyrich
et al., 2006).

On the other hand, observations collected on a tower of a given height reflect the15

properties of a source region in a corresponding upwind distance from the device. This
region can be determined by footprint analysis, delivering a source weight function,
which essentially assigns a relative contribution to the measured signal for each pixel
in the land-use domain according to the resolution of the footprint model. These rela-
tive contributions can be aggregated to a fractional weight for each land-use type a(f )

j20

(Fig. 1b). Then an observed flux Fobs at the tower is related to the land-use specific
fluxes, in analogy to Eq. 11, by

Fobs =
M∑
j=1

a(f )
j ·Fj (12)
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The location and extent of this source area is changing rapidly in time, with its temporal
dynamics mainly driven by wind direction and stratification in the surface layer.

3 Upscaling of flux measurements

3.1 Representativeness of flux measurements

In this section we aim to provide a framework for assessing a representation error for5

flux measurements in a heterogeneous landscape. As stated by Nappo et al. (1982),
representativeness is a value judgement and depends on situation and purpose. Con-
sequently, we follow Nappo et al. (1982) in general by defining measures for repre-
sentativeness error in analogy to the proposed criterion for point-to-area representa-
tiveness, but the equations are adapted to the specific problem as follows: We restrict10

ourselves to a situation we judge to be typical when using EC flux measurements for
mesoscale modeling or as ground truth for remote sensing data. Let us consider again
the hypothetical grid cell, Fig. 1, as described in Sect. 2.6. Assuming each land-use
type to be homogeneous, the real flux from the entire grid can be obtained by Eq. (11).
Unfortunately, not all land-use specific fluxes Fj required are known in reality, but the15

measurements provide the flux from areas of target land-use. Although this assumption
is often temporally violated, in many cases Ftar can be obtained with a certain accuracy
by cautious quality checks and footprint analysis followed by a gapfilling algorithm. The
most simple, but often used, approach for spatial integration is to assume the target
land-use to be representative for the whole grid cell:20

F (g)
tar = Ftar (13)

In contrast, we propose in this study a model-aided grid representative flux F (g)
mod:

F (g)
mod =a(g)

tar ·Ftar+
M∑
j=2

a(g)
j ·Fj,mod (14)

5180



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

This flux is composed of Ftar from the measurements and the modelled fluxes
Fj,mod,j ∈ [2,3,...,M] as a surrogate for the missing Fj . Furthermore, substitution of

F (g) by the surrogates F (g)
mod or F (g)

tar lead to grid representativeness errors according to
Schmid (1997), which can be defined as mean absolute errors δmod and δtar respec-
tively.5

δmod = N−1
N∑
i=1

∣∣∣F (g)
i −F (g)

mod,i

∣∣∣ (15)

δtar = N−1
N∑
i=1

∣∣∣F (g)
i −F (g)

tar,i

∣∣∣ (16)

When evaluating the success of the proposed spatial integration F (g)
mod, one may ask for

the advantage of applying F (g)
mod instead of F (g)

tar , i.e. modelling the fluxes from adjacent
land-use types and combining it with the target flux instead of simply using Ftar for the10

entire grid cell. This can be formulated as an absolute reduction in error (ARE) or in
the style of a proportional reduction in error (PRE):

ARE := δtar−δmod (17)

PRE :=
δtar−δmod

δtar
(18)

Positive ARE and PRE indicate successful application of the proposed spatial inte-15

gration (without information regarding significance), negative values indicate that F (g)
mod

performs even worse than F (g)
tar . Unfortunately ARE and PRE can only be calculated,

when F (g) is known, which restricts this evaluation to experimental case studies. Here
a case study is constructed with the LITFASS-2003 data set, which is explained in
detail in Sect. 4.1.20
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3.2 Upscaling concept

The general idea of the concept is to derive grid representative fluxes by combining
the observations from the target area with modelled data from the other land-use types
within the grid cell. The workflow of this concept can be divided into three parts: a flux
data post processing part, a gapfilling part and a spatial integration part. Furthermore,5

the second and the third part depend on the site characteristics. We differentiate here
between two situations: The measurement tower is located within the land-use of in-
terest, or target land-use, in a way that a substantial part of the measurements can be
attributed as a pure signal from this land-use type. This will be, furthermore, called the
target case. The opposite is then the mixed case, where a pronounced heterogeneity10

exists around the sensor and most of the data reflects the properties of two or more
land-use types. While the target case should be typical for low vegetation landscapes,
the mixed case may occur more often for high tower measurements or airborne mea-
surements. With respect to the datasets used, we focus in this study on the first, or
target, case.15

3.2.1 Target case: identifiable target land-use

In this section the workflow for the target case is described in detail and displayed in
Fig. 2. In the first part state-of-the-art flux corrections and quality assessment as used
in Mauder et al. (2006) are conducted. A first footprint analysis delivers the spatial
context of flux quality and the fraction of flux contribution from the target area in order to20

characterize the site (Göckede et al., 2008). Consequently, bad rated data is excluded
at this step.

For the second part, the preprocessed flux data has to be filtered according to the
land-use contributions to ensure that the flux information stems from one land-use type.
A high quality standard for this task may be 80 % or higher contribution from the target25

area. Now the energy balance closure for the target area can be determined and an
energy balance closure correction can be applied, which is implemented after Twine
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et al. (2000) in this study. After all these steps many data points are discarded, raising
the need for gapfilling. Therefore a land surface model is calibrated and validated
for the target land-use. Merging this calibrated run with the data yields a full energy
balance closed target area flux Ftar.

For spatial integration it has to be checked whether fluxes from other land-use types5

Fj ,j ∈ [2,3,...,M] within the grid cell of interest are expected to deviate considerably
from Ftar. In this case, the land surface model is activated again to simulate the target
land-use with parameter as realistic as possible, yielding Ftar,mod. This model simula-
tion is then transferred to the other land-use types Fj,mod by appropriate modification of
the site specific parameters. Now spatial integration can be performed with Eq. (14),10

delivering F (g)
mod as an estimate for the true grid representative flux F (g). As true fluxes

from adjacent land-use types are unknown, the PRE, Eq. (18), cannot be evaluated.
Instead, a surrogate measure can be obtained quantifying the difference between the
modelled fluxes Dmod, Eq. (9), and the spatial integration is accepted or rejected ac-
cording to the threshold X .15

Dj,mod =N−1
N∑
i=1

∣∣Fj,mod,i −Ftar,mod,i

∣∣>X (19)

The applicability of Dj,mod and the threshold value X is discussed in Sect. 4.3. In
any case, quality assessment is conducted with respect to point-to-area and target
representativeness (Schmid, 1997; Schmid and Lloyd, 1999). A flagging scheme is
proposed in Sect. 4.620

3.2.2 Mixed case: pronounced heterogeneity

In this case footprint analysis reveals significant influence of adjacent land-use types
on the measured flux and Ftar 6= Fobs. Again considering Fj to be homogeneous for each
land-use type and the source weight function from the footprint analysis to be real, Fobs
is related to the land-use specific fluxes Fj via Eq. (12). The energy balance closure,25
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however, is difficult to assess for a mixed signal and therefore the simulations of tur-
bulent fluxes tend to overshoot Fobs, when applying Eq. (12) to the land-use specific
model runs. Recent studies suggest a connection of this imbalance to surface het-
erogeneity and secondary circulations (Foken, 2008; Foken et al., 2010). Therefore a
reasonable assumption is that measurements from nearby surface types exhibit a uni-5

form relative residual of the measurements (i.e. turbulent energy divided by available
energy). Under this assumption, the source weight integrated model simulations are
proportional to Fobs.

Fobs ∼
M∑
j=1

a(f )
j ·Fj,mod (20)

Therefore the right hand side of Eq. (20) can be regressed versus Fobs. The resulting10

modelled fluxes are then the basis for the spatial integration.

4 Results and discussion

4.1 Evaluation concept

In Sect. 3.1 a spatial integration strategy is proposed in Eq. (14) with F (g)
mod, composed of

the measured flux from the target land-use Ftar and modelled fluxes from other land-use15

types present in the grid cell intended for upscaling. The advantage (or disadvantage)
of this approach over simply using Ftar for the entire grid cell is given in terms of absolute
and proportional reduction in error ARE and PRE, respectively, defined in Eqs. (17)–
(18). These measures can only be given if the true fluxes from all land-use types in the
grid cell are known. Therefore, a grid cell is considered here with the postprocessed,20

energy balance closed and gapfilled flux data from LITFASS-2003 sites A4 (maize),
A5 (rye) and A6 (maize), see Sects. 2.1, 2.2, as the true fluxes Fj from the respective
surfaces. The realistic SEWAB runs (Sect. 2.4.2) were taken to be the modelled fluxes
Fj,mod, as they could in principle be derived without flux data.
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In the case of more than two land-use types within the grid cell (M >2), the PRE and
ARE do not only depend on the different fluxes, but also on the respective fractional
land-use contributions a(g)

j (use Eqs. (11), (13)–(16) in Eqs. (17)–(18)). Thus, effects
originating from flux differences within the cell may be boosted or weakened according
to their contribution. In order to focus on the influence of flux differences, we restrict5

ourselves to only two land-use types to reveal the relationships more clearly. The
annotations for M =2 simplify as follows:

Ftar = F1 Flux from target land-use

Fsur = F2 Flux from surrounding land-use

a(g)
tar = a(g)

110

a(g)
sur = a(g)

2 =1−a(g)
tar

ARE2 = ARE |M=2

PRE2 = PRE |M=2

Applying now Eqs. (11), (13)–(16) in Eqs. (17) and (18) for M =2 yields

ARE2 = a(g)
sur ·N−1

N∑
i=1

∣∣Fsur,i −Ftar,i

∣∣−∣∣Fsur,i −Fsur,mod,i

∣∣=a(g)
sur · (Dobs−MAEsur) (21)15

PRE2 = 1−

N∑
i=1

∣∣Fsur,mod,i −Fsur,i

∣∣
N∑
i=1

∣∣Fsur,i −Ftar,i

∣∣ =1−
MAEsur

Dobs
(22)

In contrast to the general PRE, the PRE2 is now independent from fractional land-

use areas and the ARE2 scales only with 1−a(g)
tar . Simply speaking, the PRE2 shows

positive values and therefore indicates a success in reducing the representativeness
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error as long as the difference in observations Dobs exceeds the modelling error of the
surrounding land-use MAEsur, and vice versa. It should be mentioned here, that the
PRE2 can be interpreted as a generic and baseline-adjusted coefficient of efficiency,
as proposed by Legates and McCabe (1999). It differs from the original NS in Eq. (10)
by using the sums of absolute errors rather than the sums of squared errors and by re-5

placing O with Ftar as the so-called baseline series. However, no theoretical distribution
exists for PRE2, which makes it difficult to assess significance, but this problem could
be overcome by bootstrapping techniques (Legates and McCabe, 1999).

In this study no significances were assessed. Instead, intercomparisons between
the gapfilled and energy balance corrected measurements of turbulent energy fluxes10

QH,EBC and QE,EBC from the LITFASS-2003 stations A4 (maize), A5 (rye) and A6
(maize) and respective SVAT model runs were conducted. In the context of the up-
scaling scheme proposed in Sect. 3, these fluxes are assumed to be the real fluxes in
a grid cell, containing the target land-use (Ftar) and a surrounding land-use (Fsur). The
threshold values X proposed in Sect. 3.2.1 were established by evaluating daily PRE215

values in Sect. 4.2 and exploring the relationships to Dobs and Dmod in 4.3. Finally, the
thresholds were discussed by considering the relevant uncertainties in Sect. 4.4 and
the influence of the footprint in Sect. 4.5.

4.2 Model performance

Figure 3 displays the energy balance corrected fluxes vs. the calibrated model runs.20

The Nash-Sutcliffe coefficient NS (Eq. (10)), shows quite reasonable fits for A4 and
A5 with values ranging from 0.74 to 0.92. The performance for A4 is worse, which
may be attributed to the special conditions of the site influenced by a forest edge at a
distance of 150 m. As “special conditions” are common features in field surveys, this
data set improves the study by broadening the range of possible outcomes. Compared25

to the findings from Kracher et al. (2009), this result indicates that the coherence be-
tween observations and model outputs can be significally enhanced by energy balance
closure correction, and bias can be reduced. However, the application of the spatial
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integration requires physically justified parameterisation, and therefore the the fluxes
are compared to the realistic model runs as well (Fig. 4). As expected, the realistic
runs perform not as well as the calibrated ones, with more bias for all fluxes and poor
coherence for A4.

To ensure a consistent averaging for further investigation of daily and summary5

statistics, all observations are gapfilled with the optimised model runs. While this
practice is a necessity for providing average values, some bias might be introduced
in the evaluation and evident when comparing model runs with observations, includ-
ing gapfilled values derived by another model run. Although large gaps exist due to
all postprocessing steps (see Sect. 2.2), most of the gaps occur during nighttime. In10

relation to the set of turbulent flux data, where the absolute values exceed 10 W m−2,
energy balance corrected flux observations constitute up to 78 % for A4, 67 % for A5
and 53 % for A6. The influence of this procedure is discussed in Sect. 4.4.

Summary statistics according to the evaluation concept (Sect. 4.1) are given in Ta-
ble 2. Shown are mean fluxes for the whole period as well as mean absolute differences15

between observations Dobs, between simulations of the realistic model runs Dmod and
the mean absolute error MAE.

The reduction in error measures ARE2 and the PRE2 are calculated for each paired
combination of the sites A4 to A6, and the indices (1) or (2) indicate whether the first or
the second station of a specific pair is the target land-use. The suboptimal performance20

of the realistic model run A4, as seen already in the scatterplot (Fig. 4), is reproduced
in the MAE with highest values for QH,EBC and QE,EBC at A4 station. Nevertheless, the
PRE2 for A4 as adjacent land-use and A5 as target land-use shows positive values
with 0.43 for QH,EBC and 0.28 for QE,EBC, implying a reduction of representativeness
error by 43 % and 28 %, respectively. The reason for this is, that the fair model fit of A425

is compensated by an even larger difference between the observations of A4 and A5.
So the Dobs can be interpreted as the potential: the more the fluxes between land-use
types differ, the higher is the representation error of using only the target land-use, and
therefore the larger the reduction of representativeness error can be by modelling the
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adjacent land-use types. Best PRE2, ranging from 38 % to 56 %, are achieved with A5
and A6 in the grid cell as well as A4 and A5, provided that A4 is the target land-use.
For A4 and A6 in a grid box no significant error reduction can be achieved for all fluxes,
and in half of the cases it gets even worse. This outcome is expected, as both A4
and A6 contain maize, showed similar dynamics and therefore differ not so much from5

each other. Comparing the different fluxes, QH,EBC performs best due to better model

fitting than QE,EBC. The absolute reduction in error ARE2 with a(g)
tar =50 % seem to be

quite low, but one has to keep in mind that in this case study the fluxes do not differ so
strongly among the sites, anyhow.

As a surrogate for significance, the PRE2 is also evaluated on a daily basis, and the10

variation of these daily values are displayed in Fig 5. The specific paired combination
and the assignment of the target land-use is coded according to a colour scheme. Most
of the results for the whole period (Table 2) are confirmed, with distinct positive PRE2
for the turbulent fluxes at combinations (A4, A5) and (A5, A6) and not decisive or even
negative values for (A4, A6).15

4.3 Evaluation of the threshold for spatial integration

The application of the spatial integration includes the modelling of adjacent land-use
types, where little or no data is available. The Dmod is suggested in Sect. 3.2.1, Eq. (19)
as a surrogate for the PRE2 in order to accept or reject the spatial integration. Its
applicability and a reasonable threshold X is discussed in this section, beginning with20

the Dobs and its relationship to the PRE2.
The Dobs exhibit a huge temporal variation on a daily basis (not shown), which is

attributed to the temporal evolution of turbulent fluxes due to the rapid growth of the
maize fields (A4 and A6). These variations are reflected in daily PRE2 (see Fig. 5),
providing the opportunity to investigate the relationship to Dobs, which is displayed in25

Fig. 6: The scatterplots show daily Dobs versus daily PRE2, the combination of sites
again coded according to a colour scheme and the target land-use specified by the
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symbols. It is reasonable to assume a coherence between these two variables, be-
cause larger differences in observed fluxes raise the potential of successfully replacing
an observed flux by a modelled one, a fact which is reflected in PRE2, where Dobs oc-
curs in the denominator (Eq. (22)). In the ideal case, that the daily modelling error for
the surrounding land-use MAEsur (numerator in Eq. (22)) is constant, this coherence is5

a perfect hyperbola y = 1−C/x with y x→∞−→ 1 and the modelling error equals the Dobs
between observations for PRE2 = 0. The displayed ideal lines were drawn using the
respective MAEsur (see Table 2) for the whole period as constant C. Now deviations
from the ideal line are explained only by variations in daily MAEsur. It follows that the
outcome of the spatial integration for a whole measurement campaign can be approx-10

imated with Dobs, and the threshold X is marked by the intersection point of the ideal
line with the x-axis (Fig. 6). Using the maximum intersection points for all combinations
from Fig. 6, the thresholds for minimal Dobs to obtain a positive PRE2 are 24 W m−2 for
QH and 42 W m−2 for QE.

The PRE2, as used until now, gives an answer to the question of whether modelling15

errors exceed Dobs. For applications of the scheme for the target case, however, only
Ftar is known, and not the fluxes from adjacent areas. Therefore, a surrogate measure
has to be found of whether modelling of the adjacent area was successful. A simple
attempt would be to relate the difference in mean modelled fluxes Dmod to PRE2 in
order to see if a similar threshold of minimum differences can be found as for mean20

observed fluxes. Figure 7 displays the daily Dmod versus PRE2 in the same style and
ideal lines as Fig. 6. It is obvious that the Dmod do not reach as high values as the
Dobs, which is also reflected in the values for the whole period (Table 2). The reason
is that the model is not capable of reproducing the whole variance between the fluxes
of different sites by changing only a few parameters, as done here (see Table 1). As25

a consequence, using the thresholds X as established in the previous paragraph for
rejecting or accepting the spatial integration according to Eq. (19) leads to only a few
false acceptances, indicating the threshold X as a robust estimate. On the other hand,
lots of false rejections are produced, so it might be the case in real application that
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the spatial integration would be rejected, even though the outcome was positive. One
has also to keep in mind that the unknown MAEsur of the adjacent land-use has to be
approximated by the model fit of the target land-use MAEtar. In this case study, these
estimates are to some extent unbiased as the parameters were estimated for each
site simultaneously without fitting, but they differ quite largely from site to site. But it is5

reasonable to assume that the model fit will get worse when transferring the parameters
to an unknown land-use type. So there should be an independent minimum threshold
established, which can be derived by uncertainty estimations.

4.4 Consideration of uncertainties

The application of the proposed upscaling scheme includes many steps, which all may10

introduce errors in the results. The most significant sources of uncertainty are the
uncertainty of the flux data itself and uncertainties due to the energy balance closure
correction, the gapfilling and the modelling uncertainty of the spatial integration. As the
last two sources depend on modelling, these uncertainties can be discussed in terms
of model input uncertainty, parameter uncertainty and uncertainty of the model struc-15

ture. The uncertainty of the flux data is already widely discussed in the community (e.g.
Mauder et al., 2007b). Based on the EBEX-2000 EC sensor comparison experiment,
Mauder et al. (2006) give uncertainty estimates from 10 to 30 Wm−2 for QH and 20
to 40 Wm−2 for QE, depending on sonic anemometer types following the recommen-
dations by Foken and Oncley (1995), and on data quality. Hollinger and Richardson20

(2005) infer the random error of flux measurements by deviations between two nearby
instruments and Richardson et al. (2006) from one time series with subsets under sim-
ilar conditions. Despite these being substantially different approaches, both yield error
quantities similar to Mauder et al. (2006).
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4.4.1 Uncertainty due to the energy balance closure and gapfilling

The residual of the measured energy balance, given with about 70 % of the available
energy for A5 and A6 and only 60 % for A4, constitutes a large potential source of error.
In absolute values, the mean residual (without gapfilling) ranges from 75 to 90 Wm−2

during daytime and from −25 to −10 Wm−2 during nighttime. Day- and nighttime fluxes5

were distinguished here by a threshold of 10 Wm−2 for Rswd, and the data gaps are
assumed to be independent from flux magnitude for each group in order to give mean
values for non-gapfilled time series. The daytime error is expected to be reduced by
the correction for energy balance closure according to the Bowen ratio after Twine
et al. (2000), which is seen to be the best first guess for this issue (Foken, 2008),10

although there is no reason to assume scalar similarity between temperature and water
vapour transport (Ruppert et al., 2006; Mauder et al., 2007a), and others propose
a correction only for QH (Ingwersen et al., 2011). After EBC correction, all missing
values are gapfilled, including those where the EBC correction was not applied due to
non-compliance with the requirements (see Sect. 2.2). This leads to a mixed influence15

of gapfilling and EBC correction for daytime values and no influence of EBC correction
on the nighttime values, as nearly no data was corrected due to EBC during night.

In order to disentangle the different error sources, one can set up the following as-
sumptions: (i) Although common SVAT models are always a simplification of reality and
prone to structural uncertainty, they are in principle able to resemble the true turbulent20

flux partitioning with a certain accuracy. (ii) The optimisation algorithm used is capable
of finding a model solution which approaches this accuracy given the true fluxes. It fol-
lows that the gapfilling model would approximate the true fluxes with same accuracy as
it approximates the (probably wrong) given QH,EBC and QE,EBC. Therefore, the daytime
gapfilling error can be expressed as MAE and B between the non-gapfilled fluxes and25

the gapfilling model runs. The turbulent energy fluxes for all stations show maximum
MAEs of 36 Wm−2 for QH and 51 Wm−2 for QE; for details see Table 3.
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For the nighttime case no EBC corrected measurements exist, because the fluxes
are either too small or the Bowen ratio is negative. As a consequence, the gapfilling
model cannot be calibrated to nighttime conditions and is therefore de facto extrapo-
lated from daytime conditions. Nevertheless, a range can be estimated by comparing
model runs, non EBC corrected observations and the residual (see Table 4): the MAE5

between observations and model runs show only small values within the instrument
accuracy. As a consistency check, the sum of the bias B for the turbulent fluxes should
approximately equal to the residual Res, which is a reasonable expectation when com-
paring model runs and observations without EBC correction. This is the case at A4 and
A6, but almost no bias is visible on A5, although Res equals −26 Wm−2. Therefore,10

the possible nighttime error has to be in a range of approximately 25 Wm−2.
Daytime data accounts for 66 % and nighttime data for 3 % of the dataset, so the

overall gapfilling error can be given as a weighted average: 32 Wm−2 and 42 Wm−2

for QH and QE, respectively. In this case study an additional problem arose, that the
observation had to be gapfilled with the optimised model runs before comparing with15

the realistic modelled fluxes, introducing bias to the evaluation. This shortcoming,
however, does not severely compromise the results of the evaluation, because the
realistic and the optimised model runs’ deviation from each other is similar to their
difference from the observations: while the mean MAE for all stations and both turbulent
fluxes is 39 Wm−2 for the unfilled observations and the realistic model and 37 Wm−2 for20

the optimised model, both model runs show a mean Dmod for the same data subset of
30 Wm−2. Therefore it can be assumed, that the artificial similarity between modelled
data and observations by the use of gapfilling is negligible.

4.4.2 Model uncertainties

The uncertainty of model input is typically related to the measurement errors of the in-25

put variables, here precipitation, downward radiation flux components, air temperature,
humidity and wind speed. In the specific task of transferring the model to adjacent land-
use types, one has to keep in mind that also the input variables may exhibit additional
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bias from one land-use to another. The impact on model outcomes was assessed by a
Monte Carlo permutation procedure: 10 000 runs were conducted for each station with
the realistic parameters remaining fixed and the model input being varied: for each run
a random deviation from the original input was drawn – independently for each variable
– from a normal distribution, and this deviation was added as constant bias for the re-5

spective run. The standard deviations of the normal distribution are estimated with the
help of the existing forcing data sets from all three stations and set to 0.5 K for air tem-
perature, 3 % for relative humidity, 0.3 ms−1 for u and 10 Wm−2 for Rswd and Rlwd. As
the modulation of precipitation makes only sense for the time steps when precipitation
occurs, a constant multiplier is used instead of a constant offset, again from a normal10

distribution with a mean of 1 and a standard deviation of 0.2. The distribution of the
differences between the resulting model runs and the reference run (unaltered forcing
data) show a distinct diurnal cycle and a temporal variation, with larger deviations after
rain events. The mean diurnal deviations are displayed as median and specific quan-
tiles in Fig. 8 for A5. Beside the diurnal cycle one can see that the model behaviour is15

especially sensitive in the morning and evening hours in case of QE,EBC. Nevertheless,
on a 95 % confidence level, the mean differences to the reference run range from −16
to 20 Wm−2 for QH, from −10 to 6 Wm−2 for QE. This uncertainty may modulate the
model results among land-use types in both directions, either enhancing or smoothing
the flux differences between land-use types.20

The assessment of model parameter uncertainty has been attracting great interest
within the scientific community and many methods already exist, accounting for pa-
rameter uncertainty and other model-related uncertainties. A comparison between the
most popular methods can be found in e.g. Yang et al. (2008). However, these meth-
ods fail for the application in this study, because they rely on parameter optimisation,25

which is not the case when the parameters are fixed to physically reasonable values,
which are then transferred to the site specific conditions of other land-use types. On the
other hand, the uncertainty arising from this parameter estimation strategy is directly
reflected in the evaluation of model performance with respect to the PRE2, as is done
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in Sect. 4.3. It is therefore argued that the parameter uncertainty has to be within the
maximum MAE given in Table 2: 24 W m−2 for QH and 42 W m−2 for QE. As this estima-
tion is not fully conclusive, more effort has to be put into the evaluation of the parameter
estimation strategy in future studies. A necessary prerequisite for future application of
the scheme will be a sensitivity analysis of the used model, in order to assess whether5

the differences between the model runs are able to exceed the uncertainty for a given
range of the realistic parameter.

A critical issue is the uncertainty in model structure. An incorrect model structure
may even lead to opposite tendencies when adjusting the site specific parameters to
the unknown land-use type, which cannot be controlled without measurements. Espe-10

cially in this case study, a serious drawback originates from the model failure for A5
when using the minimum stomatal resistance as estimated a priori. Here the knowl-
edge to set this parameter equal to the other sites was deduced from the data only.
Therefore the spatial integration procedure is only applicable to those land-use types
for which prior ecological knowledge from comparable studies is available in order to15

assess whether the model outcome is reasonable or not. A quantitative assessment of
structural uncertainty can only be given via model ensemble approaches, but such an
investigation is beyond the scope of this paper.

4.4.3 Summary uncertainty estimation

In Sect. 4.3, a threshold for a minimal Dmod was derived, with 24 W m−2 for QH and20

42 W m−2 for QE in this case study, for the application of the spatial integration. This
has to be refined with the findings from the uncertainty estimation. A summary of
the uncertainties considered is given in Table 5. These different error sources interact
in a complicated way, and the application of a linear error propagation model seems
useless. Nevertheless, one can derive the necessary condition, that the difference25

between modelled fluxes Dmod should exceed at least the largest uncertainty. From
Table 5 it follows that a meaningful estimate for X would be 35 W m−2 for QH and
50 W m−2 for QE.
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4.5 Influence of the footprint

The representativeness of measurements within a heterogeneous landscape has been
investigated in the previous sections so far without taking the footprint into account.
Thus Fobs was simply assumed to equal Ftar. As already mentioned in Sect. 3.2.2,
there are situations where other land-use types are situated so close to the device,5

that footprint analysis detects significant influence on the measured signal from these
areas. In the context of this study, the question arises of whether SVAT modelling
might be helpful for disentangling potentially mixed observed signals as suggested
with Eq. (20). Size and location of the footprint area change quickly in time, deter-
mined by wind direction and atmospheric stability. Although measurement height and10

roughness length define the footprint area as well, these variables are fixed or do not
vary very quickly, thus they have hardly any impact on the temporal variations. On the
other hand, flux magnitude is also connected to atmospheric stability. Large turbulent
fluxes occur typically during daytime under neutral or unstable conditions, while dur-
ing nighttime a stable boundary layer develops and the fluxes were generally low. In15

summary, flux magnitude and footprint size are related to each other, exhibiting high
fluxes from small footprints and low fluxes from large footprints. As a simple example,
flux observations are considered from A5, measured on a virtual tower at 5 m height,
and the surrounding land-use A4 appears at a distance of 50 m from the device. Un-
stable and neutral conditions occur for ca. 75 % of the used data points, while 25 %20

were sampled during stable stratification. Footprint analysis in this virtual setup shows
that for unstable and neutral conditions the properties of the target land-use are well
reflected, with contributions higher than 89 %. Significant influence of the surround-
ing land-use occurs only under stable stratification, with target land-use contributions
ranging from 40 % to 89 %. Along with flux magnitude, also the absolute difference25

between the observations of A4 and A5 depend on stratification, which is illustrated in
Fig. 9. The difference is plotted against the contribution of the target land-use (here
A5) and the individual data points were distinguished for different stratification regimes.
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Boxplots represent the data in classes of contribution (5 % width), with the number of
data points within a class below the boxes. This shows clearly that all fluxes deviate
considerably only during unstable and neutral conditions, while under stable stratifica-
tion the differences turn out to be quite small for QH and QE. Therefore, it is concluded
that under stable stratification, the representativeness of the observations for the tar-5

get land-use cannot be enhanced by footprint analysis according to Eq. (20), even if
significant contributions of other land-use types occur. Considering the error sources
of the measurements, footprint analysis and SVAT modelling, Ftar is reflected by Fobs
quite reasonably under such conditions. This approach is only useful when significant
influence from different land-use types is detected under neutral and unstable condi-10

tions, or if stratification regimes deviate substantially among land-use types. Such a
situation can be given with measurements directly at the edge of two land-use types or
with higher tower measurements within the surface layer.

4.6 Quality flagging for represenativeness

According to the upscaling scheme presented in Sect. 3.2, the processed data will be15

classified with respect to spatial representativeness for the grid cell. For the target case
it can be assumed that most of the measurements reflect the target land-use, thus the
sensor location bias, including the individual footprints, is of little importance. Such a
flagging scheme will depend on the fraction of the target land-use within the grid a(g)

tar ,
the measurement error and on the relation of Dmod to the threshold X (Eq. (19)), defin-20

ing whether additional modelling should be applied for spatial integration. For a(g)
tar >0.8,

representativeness can be assumed within the given accuracy in any case, but with a
decreasing a(g)

tar , the differences in fluxes between the target land-use and other sur-
faces get more and more important. In order to derive a feasible quality scheme, the
mentioned variables were classified in advance as given in Table 6. The flags for the25

measurement error (MFlag) use the classification from Table 5, but the last threshold
is extended to also consider the error of gapfilling. Dmod is classified with only two
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limits, the latter equals the threshold established in Sect. 4.4 for applying the spatial
integration (HFlag). Thus HFlag=3 indicates that the measurements were completed
with the model runs for the enire grid cell. As this threshold was derived as the error
of the spatial integration, HFlag = 2 and 3 are assumed to exhibit the same error for
calculation of the total error for the grid representative flux. The respective overall flag5

ranges from 1 to 5, corresponding to grid flux errors of 20–45 Wm−2 and more for QH

and 30–60 Wm−2 and more for QE (Table 7). These errors were calculated by using

the limits from Table 6, weighted by the target land-use contribution a(g)
tar and the sur-

rounding land-use 1−a(g)
tar . Two problems restrict the calculation: (i) the EBC error is

unknown and therefore neglected, and (ii) Dmod is used as a surrogate for the unknown10

Dobs, which is systematically higher than Dmod as discussed in Sect. 4.3. Therefore, to
match at least the conditions of this case study, the error for heterogeneity is expanded
by a regression between Dobs and Dmod from the whole period (Table 2), i.e. Dmod is
multiplied by 1.2 and a offset of 12 Wm−2 was added. Considering the whole measure-
ment period as a basis, the spatial integration would be rejected in any combination of15

the sites due to small Dmod with respect to X .

5 Conclusions

In this study an upscaling scheme to enhance representativeness of EC flux measure-
ments for mesoscale modelling and evaluation of remote sensing data has been pro-
posed. In order to evaluate applicability and the work flow of the scheme, EC flux mea-20

surements (QH and QE) of the LITFASS-2003 experiment from three adjacent stations
have been compared with SVAT model runs of the model SEWAB. Model performance
was assessed with simple statistical measures and related to differences in observed
fluxes. Furthermore, the significant error sources were discussed individually in order
to estimate the feasibility of the upscaling scheme and to identify a reasonable thresh-25

old for applying the spatial integration. The influence of the footprint was discussed
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concerning the representativeness of the observations for the target land-use and fi-
nally, a classification for the quality of grid representative fluxes was proposed.

It has been shown that the upscaling scheme is able to enhance representative-
ness of fluxes on a grid scale in general, as the model runs yield a reduction in the
representation error for the turbulent energy fluxes ranging from 28 up to 56 %, when5

evaluating a maize field together with a rye field in a grid cell. The absolute reduction,
however, is quite low due to a general small difference between the fluxes of the two
LITFASS-2003 sites for the whole period. The evaluation on a daily basis showed that
the sites differ more in temporal dynamics than in mean fluxes and the reduction in
representation error was, to a large extent, achieved by an enhanced representation10

of this dynamics. The success of applying the spatial integration has been related to
mean absolute deviations between model runs Dmod of adjacent land-use types. Us-
ing Dmod as a surrogate measure to decide about model success in real application,
minimal thresholds have been established with 25 W m−2 for QH and 40 W m−2 for QE.
When restricting the model runs for the spatial integration to only few parameters to15

be transferred, these thresholds become more robust, but on the other hand the ability
of the model to capture the variance of the observations is strongly reduced. Other
important sources of uncertainty were examined separately. When using the largest
error as a minimum benchmark, the thresholds X have to be refined to 35 W m−2 for QH

and 50 W m−2 for QE. Under the assumption that similar model errors can be achieved20

elsewhere, these thresholds can be extrapolated to other study sites. Furthermore, it
is shown that the flux magnitude depends on stability to a large extent and is therefore
strongly connected with the size of the footprint, leading to large footprints, especially
when the fluxes are small. Although this is well known, it helps to assess the impact
of the adjacent land-use: most pronounced contributions of the surrounding land-use25

happen during stable stratification, when the fluxes from different land-use types show
only small deviations. The target representativeness of observations is therefore not
affected as long as no significant influence comes from adjacent land-use types under
neutral and unstable conditions. These considerations should be taken into account
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whenever target representativeness is assessed, e.g. with the sensor location bias
according to Schmid (1997). The proposed quality scheme for representativeness
combines measurement errors of the target area with the heterogeneity of the whole
grid cell and considers model uncertainties with respect to gapfilling and modelling
the adjacent land-use types. It provides the data user with a maximum error for grid5

representative turbulent fluxes regardless of the error sources, which can be utilized
to infer the uncertainty of mesoscale models and satellite data based on the ground
observations. Although designed for the case of a target land-use type within the grid,
the scheme could, in principle, be transferred to the mixed case (Sect. 3.2.2).

The validation of model performance for adjacent land-use types, where typically no10

flux measurements are available, remains a major issue. The Dmod from the target
land-use (where measurements exist) and another land-use has been proposed as a
surrogate measure for Dobs. But as the realistic model runs show substantially lower
differences between land-use types than the observations, the spatial integration for
the whole period would be rejected in any case for the given sites, even if the PRE215

showed a successful outcome. Therefore, more effort has to be put into developing a
“best practice” to utilize a SVAT model for this task. Some problems remain unsolved
within this study. One is how to tackle the structural uncertainty for the model, which is
a crucial point when using the model “blind”. From this study it can be concluded that
additional knowledge has to be acquired for the unknown land-use. This could be either20

some point flux measurements or a profound “expert knowledge” for the given surface,
that makes a user able to rank the model results with their expectation. On the other
hand, one can never be sure to get the right fluxes without any observations. Therefore
it is recommended to stick to the target case only, when minor influences from different
surfaces are apparent. Otherwise sensor installation on a surface edge, sampling over25

two surface types or occasionally moving the instruments should be preferred. As well,
the uncertainty due to the EBC correction remains unclear – a very critical issue – with
the potential error to be made being in the magnitude of the residual. But further steps
are therefore needed towards a reasonable closing of the observed energy balance
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gap. As the aim of this study was to show the applicability of the proposed upscaling
strategy in general, this task is beyond the scope of this paper; even so, achievements
in this issue would strengthen the impact of the work presented herein. Deriving a
closed energy balance is a necessity for upscaling turbulent fluxes, no matter whether
they were used for validation of MODIS data or in mesoscale model applications.5

Appendix A

List of abbreviations and symbols.

CoE Coefficient of efficiency
EBC Energy balance closure
EC Eddy covariance
LITFASS Lindenberg Inhomogeneous Terrain–Fluxes between

Atmosphere and Surface: a long term Study
SEWAB SVAT scheme: Surface Energy and Water Balance
SVAT Soil – Vegetation – Atmosphere – Transport scheme

a(f )
j Contribution of the land-use area j to the measured flux as a

fraction of the source area, determined by footprint calculation –

a(f )
tar Contribution of the target land-use to the measured flux as a

fraction of the source area, determined by footprint calculation –

a(g)
j Contribution of the land-use area j to the grid

representative flux as a fraction of the grid area –

a(g)
tar Contribution of the target land-use to the grid

representative flux as a fraction of the grid area –
ARE Absolute reduction in error ∗

B Bias between two series of fluxes ∗

Bo Bowen ratio –
CD Drag coefficient –
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CH Stanton number –
cp Specific heat capacity at constant pressure J kg−1 K−1

Dmod Mean absolute difference between two time series of predictions ∗

Dobs Mean absolute difference between two time series of observations ∗

F (g) Representative flux for the entire grid cell ∗

F (g)
mod Grid representative flux, composed from

the target flux and the modelled flux from the surrounding area ∗

F (g)
tar Grid representative flux, composed solely from the target flux ∗

Fj Flux from land-use j ∗

Fobs Measured flux ∗

Fsur,mod Modelled flux from the surrounding area ∗

Fsur Flux from the surrounding area (in case of a grid cell
containing only two types of land-use) ∗

Ftar Flux from the target area ∗

M Number of land-use types within a grid cell –
MAE Mean absolute error ∗

N Length of a time series –
NS Coefficient of efficiency, original Nash-Sutcliffe coefficient –
O Observations (flux or scalar) ∗

P Predictions (flux or scalar) ∗

PRE Proportional reduction in error –
QE,EBC Observed latent heat flux, energy balance corrected Wm−2

QE Latent heat flux, evapotranspiration Wm−2

QG Ground heat flux Wm−2

QH,EBC Observed sensible heat flux, energy balance corrected Wm−2

QH Sensible heat flux Wm−2

Q∗
R Net radiation Wm−2

Rlwd Downwelling long-wave radiation Wm−2

Rswd Downwelling short-wave radiation Wm−2

5201

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Res Observed residual of the experimental energy budget Wm−2

T Absolute temperature K
Tg Absolute temperature at the surface K
u Wind velocity (alongwind component) ms−1

u∗ Friction velocity ms−1

z Height m
zm Measurement height m

δmod Mean absolute error of approximating F (g) with F (g)
mod

∗

δtar Mean absolute error of approximating F (g) with Ftar
∗

ε Emissivity –
λ Heat of evaporation for water J kg−1

σ Stefan-Boltzmann constant W m−2 K−4

∗ The dimension is not defined, as the variable represents different quantities
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Ingwersen, J., Steffens, K., Högy, P., Warrach-Sagi, K., Zhunusbayeva, D., Poltoradnev, M.,
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Table 1. Most important parameter for the realistic model runs. Parameters, which differ among
sites, are: albedo a, roughness length z0, canopy height hc, fraction of vegetated area fveg, root-
ing depth zr and leaf area index LAI. The other parameters were equal for all sites: emissivity ε,
minimum stomatal resistance Rs,min, maximum stomatal resistance Rs,max, radiation limit value
for stomatal resistance RGL, saturated hydraulic conductivity Ksat, matrix potential at saturation
Ψsat, porosity ηsat, volumetric water content at field capacity ηFC, volumetric water content at
wilting point ηWP, exponent b for relationships after Clapp and Hornberger (1978).

Parameter Unit A4 A5 A6

a − 0.20 0.18 0.20
ε − 0.986
z0 m 0.065∗ 0.120∗ 0.045∗

hc m 0.65 1.20 0.45
fveg − 0.7 1.0 0.7
zr m 0.25 0.60 0.25
LAI − 2.14∗ 2.73 2.14∗

Rs,min sm−1 60 60∗ 60
Rs,max sm−1 2500
RGL Wm−2 90
Ksat ms−1 5.23×10−6

Ψsat m −0.1
ηsat m3m−3 0.44
ηFC m3m−3 0.342
ηWP m3m−3 0.15
b − 4.8

∗ Parameter differs from Kracher et al. (2009), see Sect. 2.4.2.
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Table 2. Mean fluxes and selected variables for the whole period, according to the evaluation
concept in Sect. 4.1. The absolute reduction of the representativeness error (ARE2) scales
with 1−a(g)

tar , and the presented values are valid for a fractional target area a(g)
tar =70 %. The

ARE2 and the PRE2 are calculated for each paired combination of the sites A4 to A6, and the
indices (tar=1) or (tar=2) indicate whether station (1) or station (2) of a specific pair is the
target land-use.

A4 (maize) A5 (rye) A6 (maize)
QH QE QH QE QH QE

[Wm−2] [Wm−2] [Wm−2] [Wm−2] [Wm−2] [Wm−2]

Observed mean 66.6 75.5 45.4 113.4 65.0 71.4
Modelled mean 71.5 58.7 57.9 85.0 64.0 65.7
MAE 24.0 41.7 18.6 30.1 18.8 26.3

A4 (1) ↔ A5 (2) A5 (1) ↔ A6 (2) A6 (1) ↔ A4 (2)
Dobs 42.2 57.6 34.6 48.8 19.0 28.0
Dmod 26.0 36.3 22.8 30.9 8.2 7.5

ARE2 (tar=1)|a(g)
tar=50% 11.6 13.8 7.9 11.2 −2.5 −6.9

ARE2 (tar=2)|a(g)
tar=50% 9.1 7.9 8.0 9.4 0.1 0.8

[−] [−] [−] [−] [−] [−]
PRE2 (tar=1) 0.56 0.48 0.46 0.46 −0.26 −0.49
PRE2 (tar=2) 0.43 0.28 0.46 0.38 0.01 0.06
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Table 3. MAE and bias B between the optimised model runs and the unfilled – but energy
balance closure corrected – observations during daytime and the daytime residual Res of the
energy balance; positive Res indicates missing turbulent energy compared to the available
energy.

Station QH,EBC QE,EBC Res
[Wm−2] [Wm−2] [Wm−2]

A4 B −11.1 4.1 90.0
A5 B 1.4 −6.9 91.1
A6 B 9.0 −9.7 74.8

A4 MAE 36.1 51.2
A5 MAE 23.3 24.4
A6 MAE 27.7 33.7
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Table 4. MAE and bias B between the optimised model runs and the unfilled, uncorrected ob-
servations during nighttime and the nighttime residual Res of the energy balance; negative Res
indicates an excess of turbulent energy compared to the available energy, i.e. values around
zero for the sum of turbulent energy fluxes compared to the (nearly always negative) available
energy.

Station QH QE Res
[Wm−2] [Wm−2] [Wm−2]

A4 B −2.5 −13.7 −11.8
A5 B −2.5 −1.9 −25.9
A6 B −1.0 −10.7 −10.7

A4 MAE 5.3 15.6
A5 MAE 6.2 6.4
A6 MAE 4.2 12.2
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Table 5. Summary of the uncertainty estimations from various error sources. The flux mea-
surement uncertainty is taken from Mauder et al. (2006), whereby type A corresponds to best
rated sonic anemometer, e.g. Gill Solent HS, Campbell CSAT3, and omnidirectional probes,
suited for general use flux measurements (type B) like Metek USA-1, following the recommen-
dations by Foken and Oncley (1995). High and moderate data quality refer to flags 1-3 and
4-6, respectively, after Foken et al. (2004). The uncertainty of flux measurements is given as
accuracy, the model input uncertainty as mean deviation from the reference run on a 95 %
confidence level, and the other uncertainties correspond to mean absolute errors.

Error source QH QE

Flux measurements
Type A instrument, high data quality 10 Wm−2 20 Wm−2

Type A instr., moderate data quality 20Wm−2 30 Wm−2

Type B instr., high data quality 20 Wm−2 30 Wm−2

Type B instr., moderate data quality 30 Wm−2 40 Wm−2

EBC range of the residual
Gapfilling/EBC 32 Wm−2 42 Wm−2

Model input 20 Wm−2 10 Wm−2

Model parameter 24 Wm−2 42 Wm−2
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Table 6. Flagging scheme for represenativeness within the upscaling concept: Detailed flags
for target area, measurement quality and heterogeneity; Dj,mod is the difference between the
modelled target flux and the modelled flux from land-use j,j ∈ [2,3,...,M].

Flag name Variable Condition QH Condition QE Value Description

Measurement Accuracy <10 Wm−2 <20 Wm−2 1 High instrument and data quality
flag (Table 5) <20 Wm−2 <30 Wm−2 2 High instrument, moderate data quality and vice versa

<35 Wm−2 <50 Wm−2 3 Moderate instrument and data quality, gapfilled values

Heterogeneity Dj,mod <20 Wm−2 <30 Wm−2 1 Small differences between land-use types
flag <35 Wm−2 <50 Wm−2 2 Moderate differences between land-use types

>35 Wm−2 >50 Wm−2 3 Large differences, spatial integration strategy applied

Target flag a(g)
tar 1.0>a(g)

tar >0.8 1 Predominant coverage by target land-use

0.8>a(g)
tar >0.5 2 Target land-use builts up largest fraction in the grid cell

0.5>a(g)
tar >0.2 3 Minor contribution of target land-use within the grid cell
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Table 7. Overall flagging scheme for represenativeness within the upscaling concept, combin-
ing the target contribution within the grid cell (TFlag), the measurement quality (MFlag) and the
heterogeneity between land-use types (HFlag).

TFlag MFlag HFlag Error QH Error QE Value
[Wm−2] [Wm−2]

1 1 1 20 30 1

1 1–2 1–3 20–30 30–40 2
2 1 1

2 1–2 1–3 30–40 40–50 3
3 1–2 1

1–2 3 2–3 35–45 50–60 4

3 1–3 2–3 >45 >60 5
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Fig. 1. Two different perspectives on a grid cell containing several land-use types, and the
measurement tower situated on the target land-use. (a) Coloured areas contribute to a grid
representative flux F (g), which is governed by the land-use specific fluxes Fj and their respective

area a(g) within the entire grid cell. (b) Coloured shaded areas contribute to the observed
flux Fobs at the tower, the respective area a(f ) for each land-use specific flux is determined by
footprint analysis. The location and extent of this source area is changing rapidly in time.
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Flux data post processing
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Contribution of target land use

High quality flux data

Land
surface
model

Target source
contribution > 90%

Energy balance correction

Gapfilling
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Calibration
&

validation

Target area flux

adjustment of site
specific parameter

Adjacent LU fluxes

Quality flags for mesoscale representativeness

Grid representative and gapfilled flux data
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Difference in modelled fluxes

Spatial integration
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Fig. 2. Workflow for upscaling turbulent fluxes on a typical grid size of mesoscale models and
satellite products with moderate resolution. Displayed is the target case, i.e. a substantial part
of the measurements can be attributed to a single land-use type.
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Fig. 3. Energy balance corrected fluxes vs. optimized model runs, subjected to gapfilling for
each station; the upper panel shows the sensible heat flux, the lower panel the latent heat
flux, with the stations A4 to A6 from left to right; n is the number of available observations
(nmax =1392) and NS is the Nash-Sutcliffe coefficient.
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Fig. 4. Energy balance corrected fluxes vs. realistic model runs foreach station; the upper panel shows
the sensible heat flux, the lower panel the latent heat flux, with the stations A4 to A6 from left to right;n
is the number of available observations (nmax=1392) and NS is the Nash-Sutcliffe coefficient.

50

Fig. 4. Energy balance corrected fluxes vs. realistic model runs for each station; the upper
panel shows the sensible heat flux, the lower panel the latent heat flux, with the stations A4
to A6 from left to right; n is the number of available observations (nmax = 1392) and NS is the
Nash-Sutcliffe coefficient.
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Fig. 5. Variation of daily evaluated PRE2 for the energy balance corrected and gapfilled tur-
bulent fluxes at all paired combinations of stations; the colour scheme denotes the specific
combination of two stations, and for each combination the target land-use (Tar LU) is also
changed.
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Fig. 6. Daily PRE2 versus daily Dobs; the colours illustrate the pair of stations to be compared
and the symbols (o) and 4 differentiate which of the two stations is assigned as target land-use.
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Fig. 7. Daily PRE2 versus daily Dmod as a surrogate for Dobs (compare Fig. 6); the colours
illustrate the pair of stations to be compared and the symbols (o) and 4 differentiate which of
the two stations is assigned as target land-use.
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Fig. 8. Diurnal mean of differences between modelled fluxes from permuted forcing data and
the reference modelled fluxes for A5 station; the red solid line is the median deviation and the
coloured areas show the range of the percentiles containing 80 % (dark) and 95 % (light) of the
differences.
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Fig. 9. Absolute difference between observations of A4 and A5 versus contribution of the target
land-use according to footprint analysis in a virtual setup. Boxplots represent the data in classes
of contribution (5 % width), with the number of data points within a class below the boxes. The
symbols display the individual data points, with (+) for fluxes under stable conditions, (4) for
neutral stratification and (o) for unstable conditions.
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