

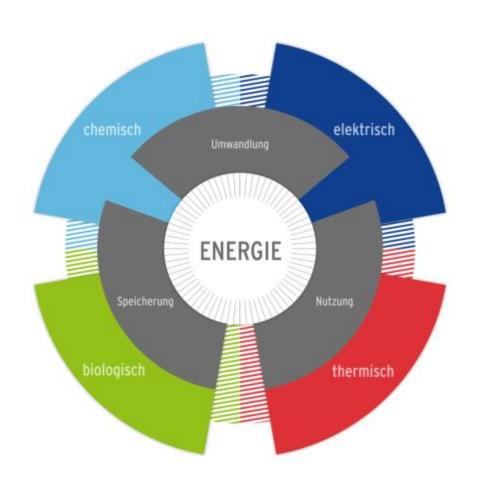
Vernetzte Energieforschung – Verwertung ungenutzter Energieströme

Markus Preißinger, Geschäftsführer Zentrum für Energietechnik Anne Vogl, Koordinatorin Profilfeld Energieforschung und Energietechnologie

Vernetzte Energieforschung

Motivation und Gliederung

Eine sichere, bezahlbare, umweltschonende Energieversorgung ist eine der größten Herausforderungen unserer Zeit.


- 1. Motivation
- Das Zentrum für Energietechnik
- 3. Vernetzte Energieforschung in den Bereichen der
 - a) thermischen,
 - b) elektrischen,
 - c) chemischen und
 - d) biologischen Energietechnik.
- 4. Das Profilfeld Energieforschung und Energietechnologie
- 5. Zusammenfassung und Ausblick

Zentrum für Energietechnik

Energieforschung als vernetzte Vielfalt

Mechatronik Prof. Dr.-Ing. Mark-M. Bakran

Technische Thermodynamik und Transportprozesse
Prof. Dr.-Ing. Dieter Brüggemann

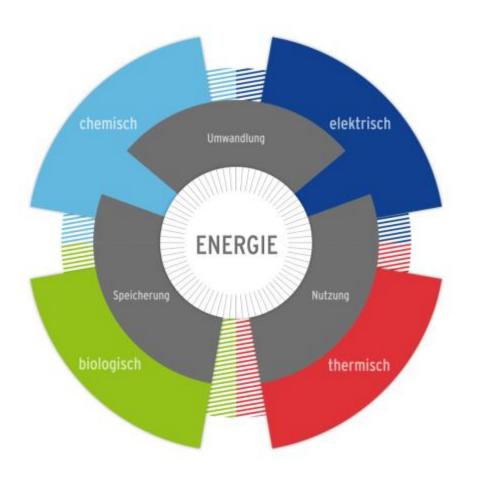
Mess- und Regeltechnik Prof. Dr.-Ing. Gerhard Fischerauer

Bioprozesstechnik Prof. Dr. Ruth Freitag

Chemische Verfahrenstechnik Prof. Dr.-Ing. Andreas Jess

Funktionsmaterialien Prof. Dr.-Ing. Ralf Moos

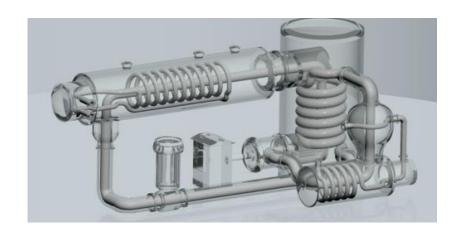
Konstruktionslehre und CAD Prof. Dr.-Ing. Frank Rieg


Werkstoffverarbeitung Prof. Dr. Monika Willert-Porada

ZET – das Zentrum für Energietechnik der Universität Bayreuth

Unsere Arbeitsweise

- **Unser Angebot:**
 - Projekte der anwendungsnahen Grundlagenforschung
 - Konkrete Studien und Bewertungen
 - Entwicklung energietechnisch relevanter Produkte und Verfahren für Anwender
- Wir sind die zentrale Anlaufstelle für die Energie-Fragen von Unternehmen, Kommunen und anderen Interessenten



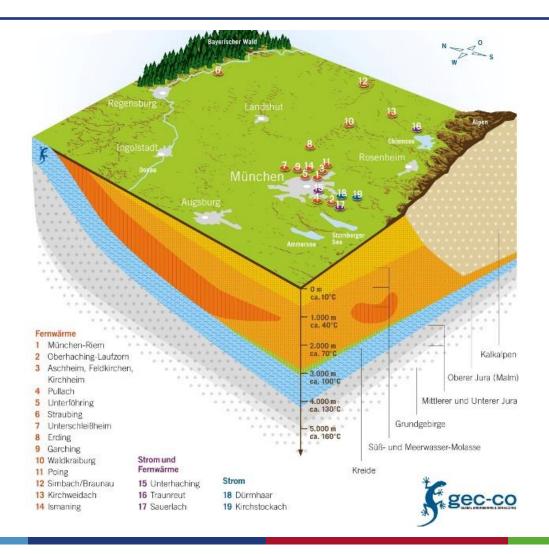
Zentrum für Energietechnik

Forschungsschwerpunkt thermische Energietechnik

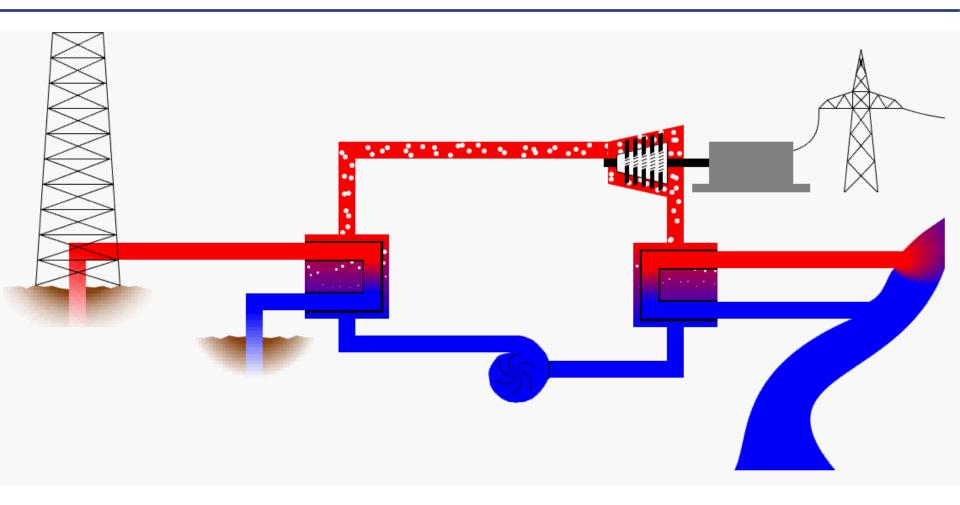
Thermische Energietechnik am ZET

- Dezentrale Stromerzeugungsanlagen mit Schwerpunkt Organic Rankine Cycle
- Stationäre und mobile latente thermische Energiespeicher
- Bilanzierung und Analyse von Energiesystemen
- Erarbeitung von Konzepten für die Anpassung des Zeitverlaufs des Energiebedarfs an die Energieversorgung auf Basis erneuerbarer Energien

Geothermische Stromerzeugung


Techno-ökologisches Potenzial für D. (UBA-Studie): 63,75 TWh/a

Seite 6


Geothermische Stromerzeugung

Seite 7

Geothermische Stromerzeugung

Wissenschaftliche Begleitung der Geothermie-Kraftwerke Kirchstockach und Dürrnhaar (2013-2014)

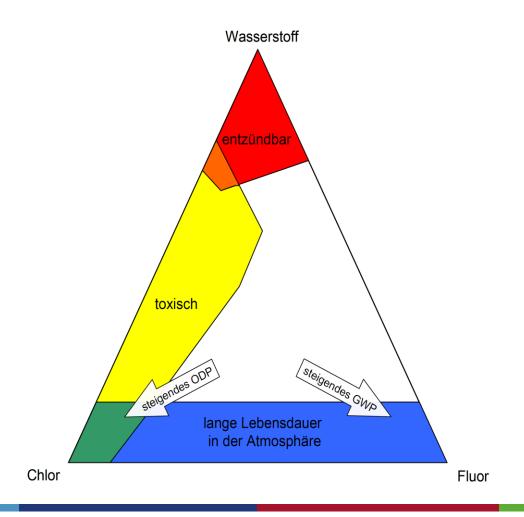
- Simulation des zweistufigen ORC-Kraftwerks
- Analyse der Messdaten während der Inbetriebnahme
- Ableitung von Empfehlungen hinsichtlich einer Betriebsoptimierung
- Systematische Analyse und Bewertung von Betriebsdaten im Jahresverlauf
- Untersuchung möglicher Konzepte für die Kraft-Wärme-Kopplung

Geothermische Stromerzeugung

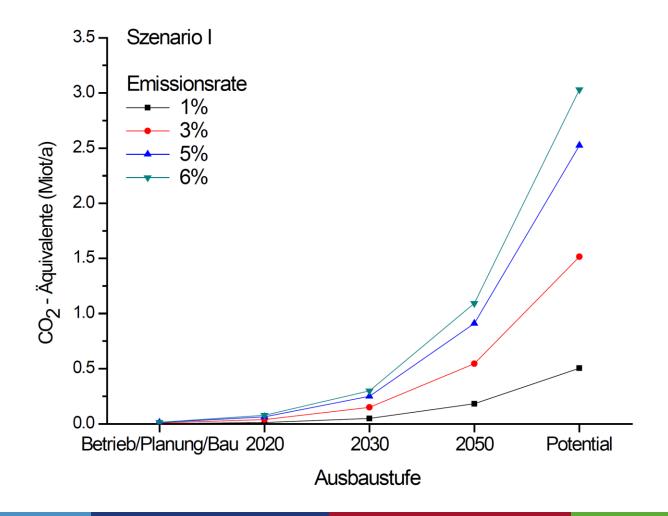
UBA-Studie (Climate Change 16/2012): Mögliche Emissionen bei der Strom- und Wärmeerzeugung aus Geothermie durch den Einsatz von F-Gasen im Energiewandlungsprozess mittels ORC

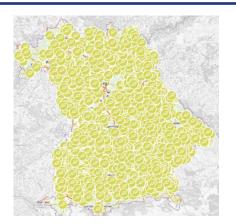
Mögliche Bewertungskriterien (nicht-thermodynamisch) für ORC-Fluide: für die Kraft-Wärme-Kopplung

- Global Warming Potential (GWP)
- Ozon Depletion Potential (ODP)
- Sicherheitsgruppe nach DIN EN 378-1
- Entzündbarkeit
- Selbstentzündungstemperatur
- Wassergefährdungsklasse (WGK)
- ATEL/ODL-Wert



Stoffname	Chemische Formel	Rxxx	T _{krit} (°C) [10]	p _{krit} (MPa) [10]	Sicher- heits- gruppe	Brenn- barkeit [13]	ODP	GWP (100 Jahre) [11,12]	T zünd (°C) [13]	ATEL/ ODL (kg/m³)	WGK [13]
1,1,1,2- Tetrafluorethan	$C_2H_2F_4$	R134a	101,1	4,06	A1	-	0	1300	k.A.	0,21	1
1,1- Difluorethan	$C_2H_4F_2$	R152a	113,3	4,52	A2	F+	0	120	455	0,14	1
1,1,1,2,3,3,3- Heptafluorpropan	C ₃ HF ₇	R227ea	102,8	3	A1	-	0	3500	532	0,59	1
n-Butan	C_4H_{10}	R600	152	3,8	А3	F+	0	4	365	0,002	-
Isobutan	C_4H_{10}	R600a	134,7	3,63	А3	F+	0	3	460	0,06	-
n-Pentan	C ₅ H ₁₂	R601	196,6	3,37	k.A.	F+	0	3	260	0,003	2
Isopentan	C_5H_{13}	R601a	187,2	3,38	А3	F+	0	3	420	0,003	2






Von der Idee zur Umsetzung

Abwärme von Biogas-BHKWs

Biogasanlagen in Deutschland:

- 25 %: fremde Verwertung der Abwärme
- 10 %: kein Wärmenutzungskonzept
- Rest: Wärmenutzungskonzept unzureichend

Quelle: Biogas-Messprogramm II der Fachagentur für Nachwachsende Rohstoffe e.V. (2009)

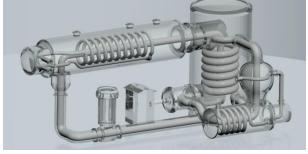
Industrielle Abwärme

Potential in Deutschland:

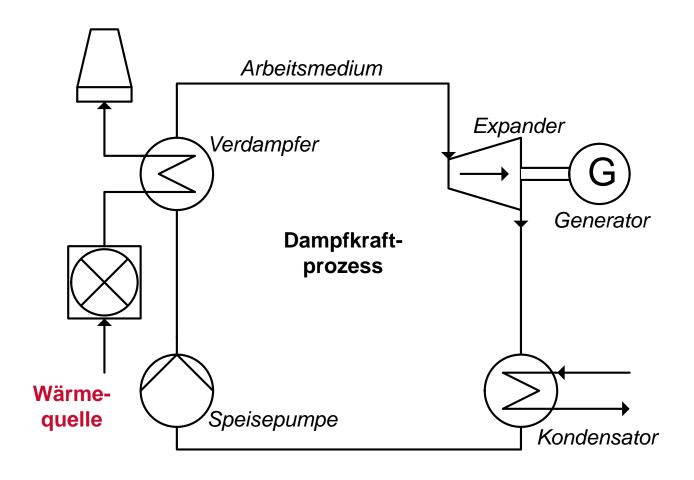
Quelle:

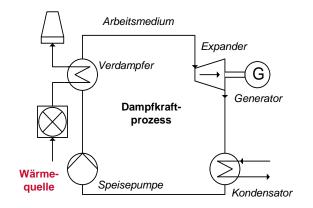
Potentialstudie "Wärme-Kraft-Prozesse" des Instituts Fraunhofer Umsicht (2004)

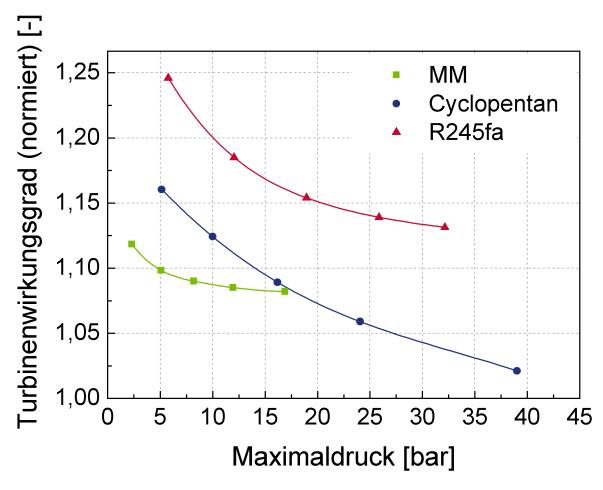
Vom Projekt zum Demonstrator



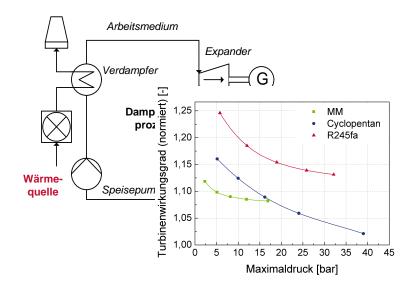
Entwicklung eines ORC-Minikraftwerkes (15 kW_{el}) zur Abwärmenutzung

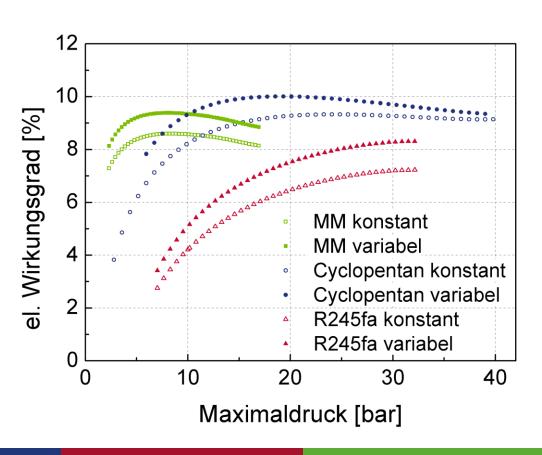





Vom Projekt zum Demonstrator

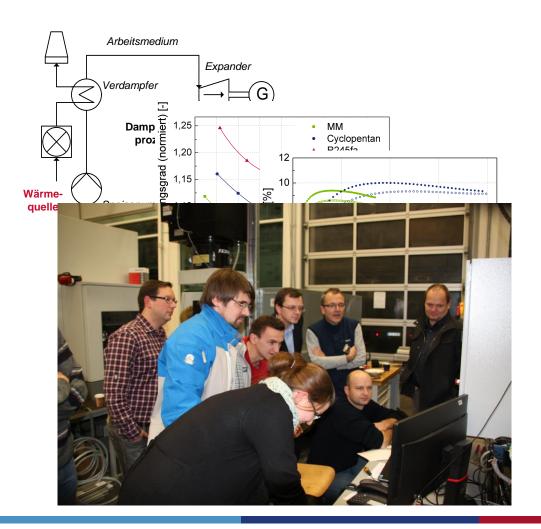
Vom Projekt zum Demonstrator



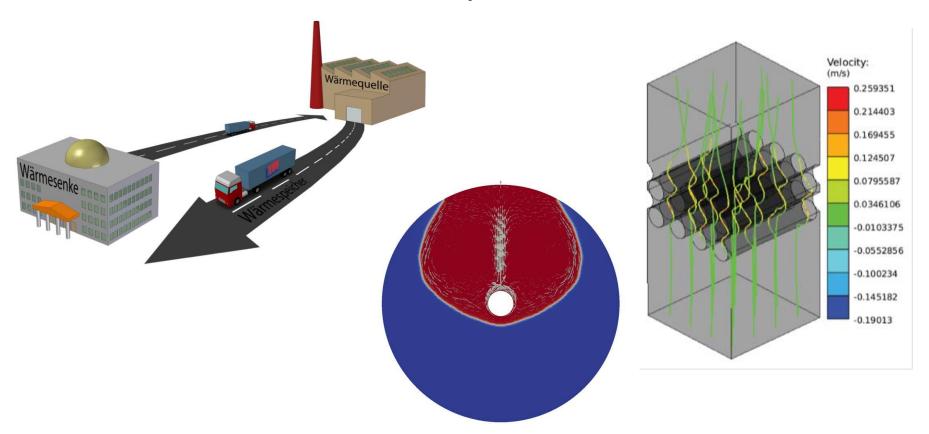


Seite 17

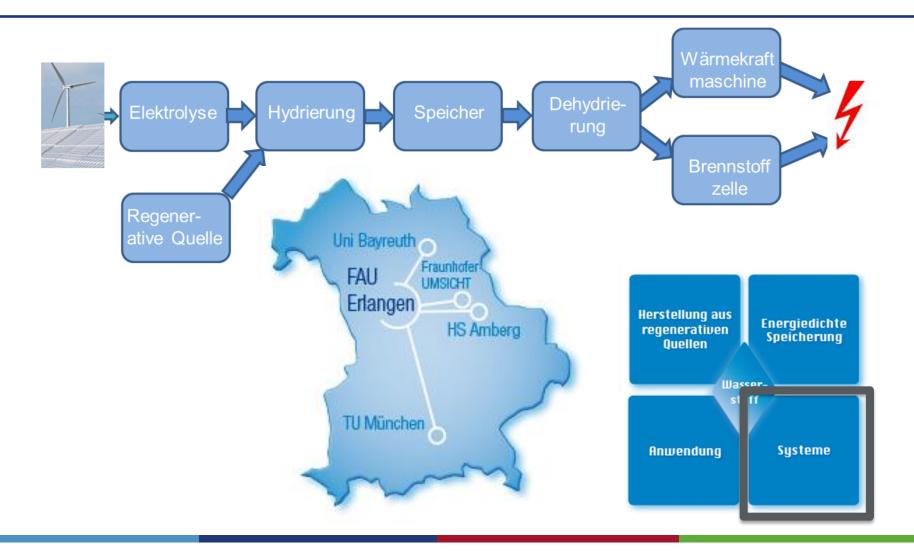
Vom Projekt zum Demonstrator

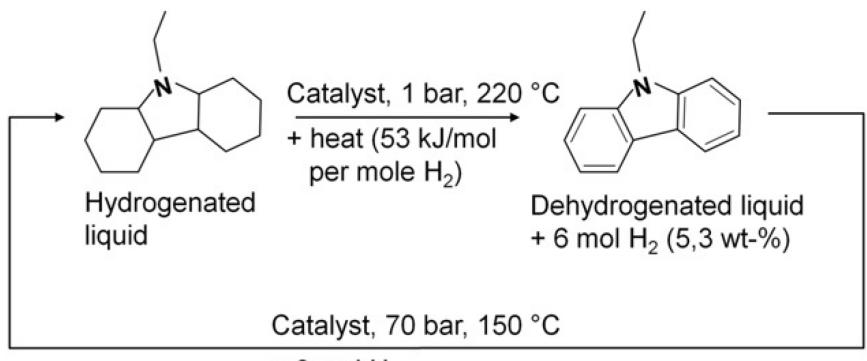



Vom Projekt zum Demonstrator

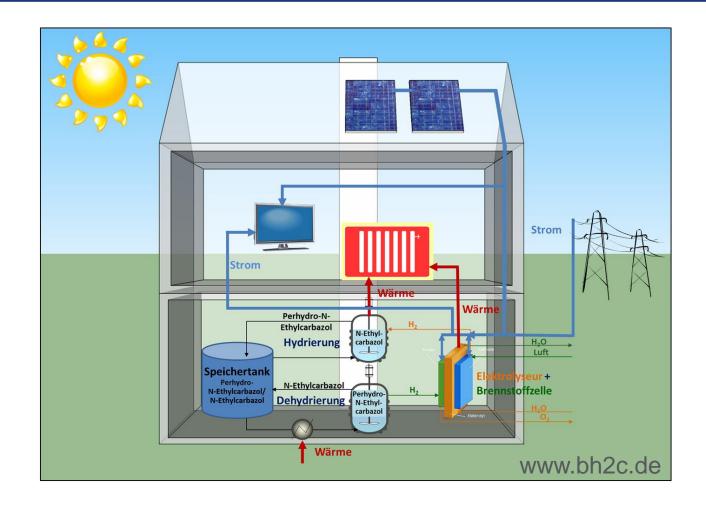


Wärme auf Rädern


Ausgangspunkt: Wärme wird nicht immer dort gebraucht, wo sie anfällt. Mobile Latentwärmespeicher können helfen.


Wasserstoff als ein Energieträger der Zukunft

Wasserstoff als ein Energieträger der Zukunft


+ 6 mol H₂ -heat (53 kJ/mol per mole H₂)

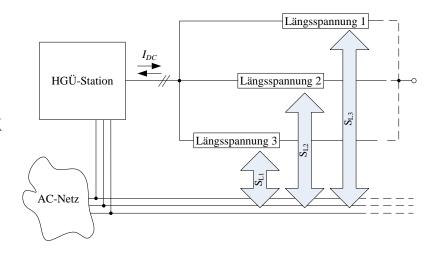
D. Teichmann, W. Arlt, P. Wasserscheid: Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy, International Journal of Hydrogen Energy, 37 (2012), 18118-18132

Wasserstoff als ein Energieträger der Zukunft

Wasserstoff als ein Energieträger der Zukunft

LOHC system	MSH/H18-MSH	MLH/H12-MLH	NEC/H12-NEC
structure of H₂-lean form	OGO	60	
structure of H ₂ -rich form	00	60	00
m.p. of H _z -lean form [°C]	−39 to −34	-30	68
normal b.p. of H₂-lean form [°C]	390	280	270
H ₂ capacity [wt%]	6.2	6.2	5.8
heat of (de)hydrogenation [kJmol _{H2} -1]	71	71	55
hazard symbols of H _z -lean form	N	Xi, N	Xi

Brückner et al.: Evaluation of Industrially Applied Heat-Transfer Fluids as Liquid Organic Hydrogen Carrier Systems, ChemSusChem 2014, 7, 229-235

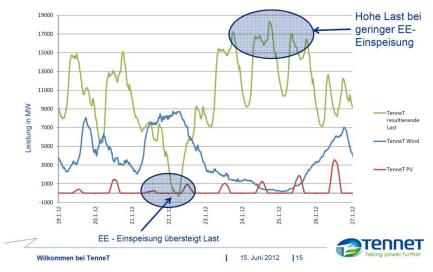


Zentrum für Energietechnik

Forschungsschwerpunkt elektrische Energietechnik

Elektrische Energietechnik am ZET

- Entwicklung kostengünstiger thermoelektrischer Generatoren für den großflächigen Einsatz
- Applikationsspezifische Beschreibung von Lithium-Ionen Zellen und Untersuchungen zur Systemauslegung
- Energy Harvesting
- Photokatalytische Wasserstoffherstellung und -nutzung
- Sekundärbatterien für den Ausgleich stark schwankender Wind- und Sonnenenergie



Ein Beitrag zur Netzstabilisierung in Fechheim

Ausgangspunkt: Die natürliche Fluktuation von Sonnen- und Windenergie kann teilweise durch Speicher ausgeglichen werden.

Entlastung von Niederspannungsnetzen mit hoher Stromeinspeisung (PV-Anlagen) durch Quartierspeicher (Pb-Batterie)

→ Entwicklung neuer Materialkonzepte bei Elektrodenherstellung zur Minimierung der Alterung

HOCHSCHULE COBURG

Zentrum für Energietechnik

Forschungsschwerpunkt chemische Energietechnik

Chemische Energietechnik am ZET

- Chemische-verfahrenstechnische Aspekte der Erzeugung von Energieträgern vom Labormaßstab bis hin zur Modellierung technischer Reaktoren
- Werkstoff- und Verfahrensentwicklung für die elektrochemische Energie-Speicherung und -Wandlung
- Entwicklung leitender Membrane für die direkte Wandlung chemischer in

elektrischer Energie



Fischer-Tropsch-Synthese

long term challenge (2050 and beyond): ecological footprint of 1 global earth

Andreas Jess, Herstellung flüssiger Kraftstoffe aus CO₂ und regenerativ erzeugtem Wasserstoff durch Fischer-Tropsch-Synthese, Tagung "Vernetzte Energieforschung: Verwertung ungenutzter Energieströme"

Seite 28

Fischer-Tropsch-Synthese

practically 100 % switch to renewable energy, probably driven by solar and wind

short/medium term challenges:

Fluctuation of electricity with time

Production of electricity far away from consumers

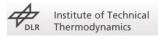
- (1) Use of CO₂ released from fossil fuels
- (2) Storage & transport of electrical energy

Way of storage	Volume to store 10 MWh¹ electr. energy				
Diesel oil	1 m ³				
CH_{4,g} (200 bar, 20°C)	4 m ³				
H _{2,g} (700 bar, 20°C)	6 m ³				
N-Ethyl-carbazol/H ₂	4 m ³				
Li-ion-battery	30 m ³				
compr. air (20 bar)	3,400 m ³				
pumped hydro ² (300 m)	14,000 m ³				

¹ 2 to 4 h full load of wind turbine; ² 0.04 TWh = 34 min of Germany's electr. prod

Fischer-Tropsch-Synthese

- Development of **HT-electrolysis**
- **RWGS & FTS** (R & D:



PTL-demonstration plant in Dresden (1 bbl liquid fuels/day)

- Feasibility study for energy storage in form of liquid HCs
- Tailoring of liquid product for use in microturbine
- RWGS, FTS & hydrocracking (R & D:

Zentrum für Energietechnik

Forschungsschwerpunkt biologische Energietechnik

Biologische Energietechnik am ZET

- Molekularbiologische und biochemische Grundlagen der Biogasproduktion
- Prozessentwicklung und -optimierung auf Basis von Stoff- und Energiebilanzen
- Bewertung unterschiedlicher Möglichkeiten der Biogas-Nutzung (Stromerzeugung, Aufbereitung und Einspeisung)
- Mikrobielle Brennstoffzellen

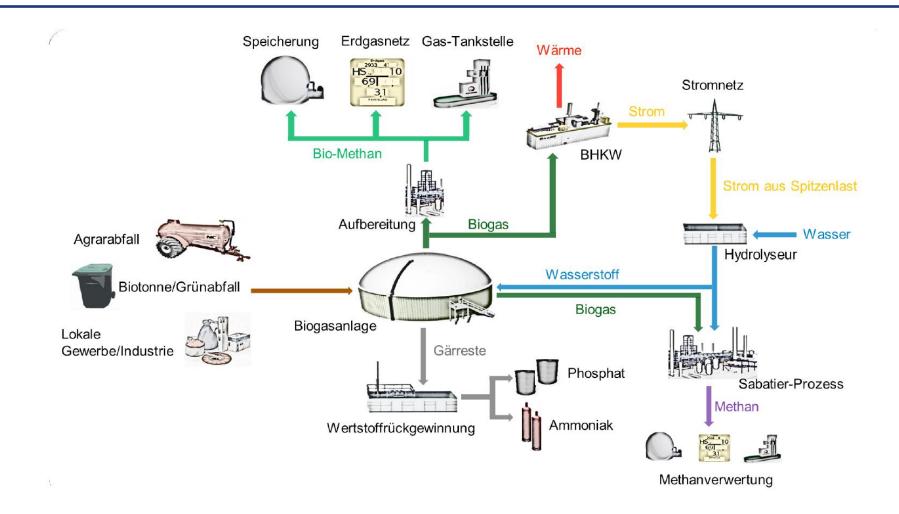
Technologietransfer in Beispielen (6)

Das Kompetenznetzwerk Biogas Nordbayern

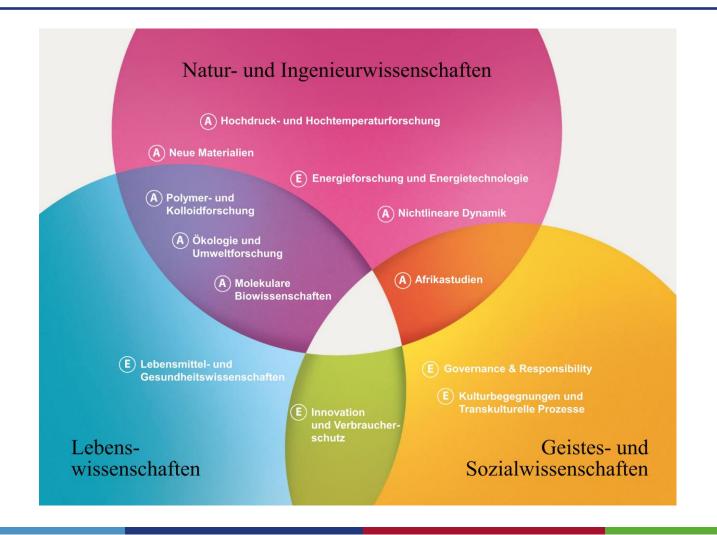
Ausgangspunkt: Bayern kann die regionalen Ressourcen

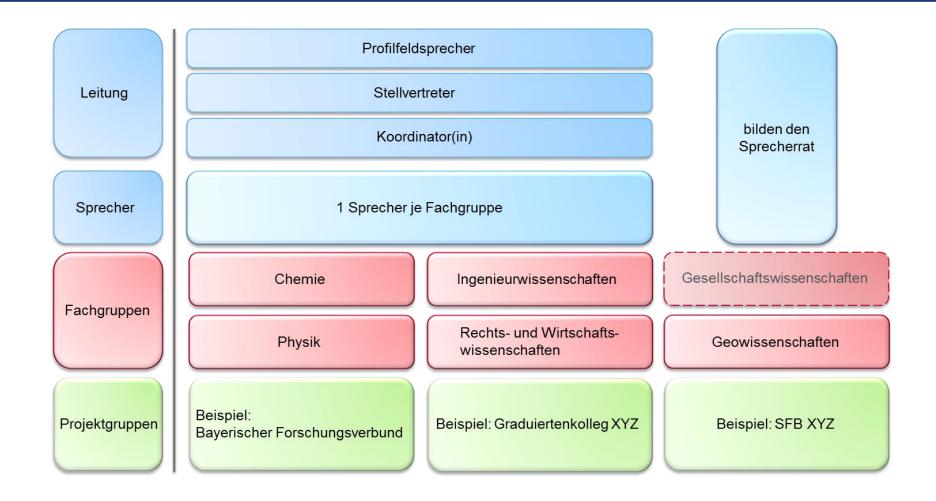
vollständiger und effizienter nutzen sowie

bestehende Energieerzeugungsanlagen optimieren.



Vernetzte Forschung in Beispielen


Bayerischer Forschungsverbund FOR10'000 (eingereicht 03/2015)


Profilfelder der Universität Bayreuth

Organisationsstruktur

Beispiel – UMWELTnanoTECH

Projektverbund bayerischer Hochschulen:

Umweltverträgliche Anwendungen der Nanotechnologie

Teilprojekt – Bessere Effizienz und Stabilität organischer Halbleiterschichten (Prof. Thelakkat):

Nanostrukturen für höhere Effizienz von organischen und Hybridsolarzellen unter dem Gesichtspunkt der umweltverträglichen Verarbeitung

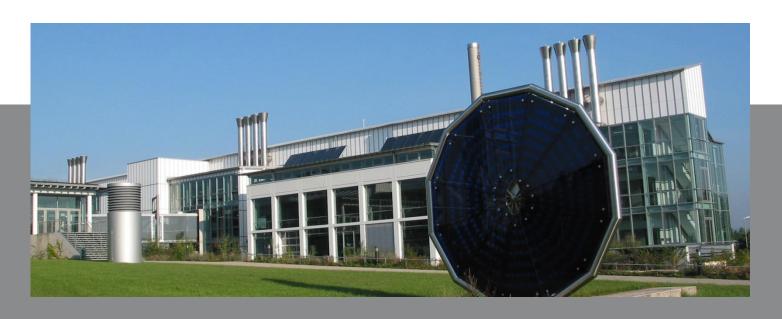
Quelle: Auftaktveranstaltung Profilfeld

Beispiel – Energiewende Nordostbayern

Interdisziplinäre Forschungsgruppe:

- Universität Bayreuth (Abteilung Stadt- und Regionalentwicklung Prof. Miosga)
- Hochschule Amberg-Weiden
- Energieagentur Nordbayern
- Entwicklungsimpulse für ländliche Regionen durch den Ausbau erneuerbarer Energien
- Konflikte um Raumnutzung ("Verspargelung", "Vermaisung")
- Kommunale Planung der Energiewende (strategische Planung durch Klimaschutzkonzepte und Energienutzungspläne)
- Einsatz alternativer Energiepflanzen in der Biogas-Produktion

Quelle: Auftaktveranstaltung Profilfeld


Energie – eine Herausforderung für alle

Ansätze zur Bewältigung

- Eine sichere, bezahlbare, umweltschonende Energieversorgung ist eine der größten Herausforderungen unserer Zeit.
- Die eine energietechnische Lösung ist nicht in Sicht. Wir brauchen Vielfalt, Kooperation und Wettbewerb.
- Universitäten, Hochschulen und außeruniversitäre Einrichtungen bilden Netzwerke. Ihre enge Kooperation mit Unternehmen ist ein Schlüssel für Mehrwert.
- Mit dem Zentrum für Energietechnik bündelt die Universität die energietechnischen Aktivitäten der Fakultät für Ingenieurwissenschaften und wird damit konkurrenzfähig zu anderen Forschungszentren.
- Mit dem Profilfeld Energieforschung und Energietechnologie hat die Universität eine Plattform geschaffen, über die fakultätsübergreifende Forschung vereinfacht, oder überhaupt erst identifiziert werden soll.
- Und nicht zuletzt: Die Herausforderung "Energie" ist zugleich eine große Chance für den Technologiestandort Deutschland und insbesondere Bayern.

Vielen Dank

www.zet.uni-bayreuth.de

Markus Preißinger, markus.preissinger@uni-bayreuth.de Anne Vogl, anne.vogl@uni-bayreuth.de

FAN C.0.14, 0921/55-7285

