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Chapter 1

Introduction

Gstat is a program for the modelling, prediction and simulation of geosta-
tistical data in one, two or three dimensions. Geostatistical data are data
(measurements) collected at known locations in space, from a function (pro-
cess) that has a value at every location in a certain (1, 2 or 3-D) domain.
These data (or some transform of them) are modelled as the sum of a con-
stant or varying trend and a spatially correlated residual. Given a model for
the trend, and under some stationarity assumptions, geostatistical modelling
involves the estimation of the spatial correlation. Geostatistical prediction
(‘kriging’) is finding the best linear unbiased prediction (the expected value)
with its prediction error for a variable at a location, given observations and
a model for their spatial variation. Simulation of a spatial variable is the
creation of randomly drawn realizations of a field given a model for the data,
possibly conditioned on observations.

In gstat, geostatistical modelling comprises calculation of sample vari-
ograms and cross variograms (or covariograms) and fitting models to them.
Sample (co-) variograms are calculated from ordinary, weighted or generalised
least squares residuals. Nested models are fitted to sample (co-) variograms
using weighted least squares, and during a fit each single parameter can be
fixed. Restricted maximum likelyhood estimation of partial sills is also im-
plemented. In the interactive variogram modelling user interface of gstat,
variograms are plotted using the plotting program gnuplot.

Gstat provides prediction and estimation using a model that is the sum
of a trend modelled as a linear function of polynomials of the coordinates or
of user-defined base functions, and an independent or dependent, geostatis-
tically modelled residual. This allows simple, ordinary and universal kriging,
simple, ordinary and universal cokriging, standardised cokriging, kriging with
external drift, block kriging and “kriging the trend”, as well as uncorrelated,
ordinary or weighted least squares regression prediction. Simulation in gstat
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comprises uni- or multivariable conditional or unconditional multi-Gaussian
sequential simulation of point values or block averages, or (multi-) indicator
sequential simulation.

Besides many of the common options found in other geostatistical soft-
ware packages, gstat offers the unique combination of

• an interactive user interface for modelling variograms and generalised
covariances (residual variograms), that uses the device-independent
plotting program gnuplot for graphical display

• support for several ascii and binary data and grid map file formats for
input and output

• a concise, intuitive and flexible command language

• user customization of program defaults

• no built-in limits

• free, portable ansi-c source code

The theory of geostatistics is not explained in this manual. Good texts on
the subject are e.g. Journel and Huijbregts (1978) and Cressie (1993). The
practice of geostatistical computation is explained only very briefly. Texts
about practical and computational aspects are e.g. Isaaks and Strivastava
(1989) and Deutsch and Journel (1992). This manual explains how things
are done with gstat.

Chapter 2 explains the concepts behind gstat and its basic methods and
prediction or simulation modes. Chapter 3 treats the simple, multiple, multi-
variable and stratified modes, and change of support (block kriging). Chapter
4 is a complete reference of the command file syntax. Chapter 5 explains how
the program can be further controlled, for instance by using start-up files,
command line options or environment variables. Finally, Chapter 6 lists a
number of example command files that demonstrate most of the capabilities
of gstat (these files are part of the program distribution). Note that the
gstat home page provides the html versin of this manual, with command files
fully hyperlinked to all input and output results, at

http://www.geog.uu.nl/gstat/manual

The appendices contain more technical details: equations for modelling
and prediction (A) and error messages and help information (C). Suggestions
for improvement of gstat or this manual are welcome—send them to

gstat-info@geog.uu.nl

mailto:gstat-info@geog.uu.nl
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Further reading

In Computers and Geosciences a paper written on gstat appeared Pebesma
and Wesseling (1998). Beyond much of the information present in this man-
ual, it discusses

• implementation and efficiency issues in gstat (computational and algo-
rithmic aspects in geostatistics)

• managing large geostatistical projects

• technical issues (portability, numerical precision, implementation of the
command file parser and interactive user interface, program limits)

• a comparison with GSLIB Deutsch and Journel (1992) and GeoEAS.

gstat-announce mailing list

A mailing lists for announces (version releases etc.) regarding gstat, exists:
gstat-announce@geog.uu.nl

or visit the gstat home page, http://www.geog.uu.nl/gstat/.

http://www.geog.uu.nl/gstat/lists.html
http://www.geog.uu.nl/gstat/


10 CHAPTER 1. INTRODUCTION



Chapter 2

Getting started

2.1 Invoking gstat

Gstat is started either by typing
gstat command file

where command file is the name of a file with gstat commands, or by typing
gstat -i

In the latter case, the interactive variogram modelling user interface is started.
This interface can be used to specify data, calculate and plot sample vari-
ograms, fit variogram models and create variogram plot files. Within the
interface, help is obtained by pressing ‘H’ or ‘?’, and the program stops after
pressing ‘q’ or ‘x’. At the end of a variogram modelling session the program
settings concerning data and (fitted) variogram models can be written to a
gstat command file by pressing ‘c’. Such a command file will look like:

#

# gstat command file

#

data(zinc): ’zinc.eas’, x=1, y=2, v=3;

variogram(zinc): 0.0716914 Nug(0) + 0.563708 Sph(917.803);

The first three lines that start with a # are comment lines, the following
lines are gstat commands. The first command specifies where data were read
(the variable zinc was read from the file zinc.eas, having measured values
on column 3, x-coordinates on column 1 and y-coordinates on column 2), the
second command defines a variogram model for the variable zinc (the sum
of a nugget and a spherical model). Suppose that these commands are held
in a file called zinc.gst, then starting gstat with the command

gstat zinc.gst

11



12 CHAPTER 2. GETTING STARTED

will start the variogram modelling user interface after reading data and va-
riogram model, and work can be continued at the point where it was saved
before.

At a later stage, the data and variogram definitions in the command file
can be used for kriging. This is accomplished by adding commands to the
command file that specify where the kriging predictions should be made,
and where the results should be written to. Consider the command file
zinc_pr.gst:

#

# gstat command file

#

data(zinc): ’zinc.eas’, x=1, y=2, v=3;

variogram(zinc): 0.0717 Nug(0) + 0.564 Sph(917.8);

mask: ’mask.map’;

predictions(zinc): ’zinc_pr.map’;

variances(zinc): ’zinc_var.map’;

It says that prediction locations are the grid cell centres of the (non-
missing valued) cells in the grid map mask.map, that ordinary kriging pre-
dictions should be written to the grid map zinc pr.map, and ordinary kriging
prediction variances to zinc var.map, after starting gstat as:

gstat zinc_pr.gst

2.2 Data formats

Measurement data (measured values, their spatial coordinates, and option-
ally base function values) are read from ascii table or (simplified) GeoEAS
table files, from grid map files (see Appendix D) or from Idrisi point (.vec)
files. Table (or column) files are ascii files without a header, with each line
holding one record, and fields on a line separated by blanks, commas or tabs.
The simplified GeoEAS format is a table file with a header. The GeoEAS
file header has text information on the first line; m, the number of variables
in the file on the second line, and m variable names on lines 3 to m+ 2.

Grid map files may have one of the following formats: Arc-Info grid (grid-
float or gridascii), Idrisi image (ascii, real binary, byte), PCRaster (all for-
mats, Van Deursen and Wesseling (1992)), ER-Mapper, GMT, Surfer ascii.
Output grid maps are written in the same format as the input (mask) map.
Files in formats that use two files and assume fixed extensions (idrisi, grid-
float) should be denoted by the file base name only (omit the extension for
gstat). A grid map conversion is built in gstat, see section 5.5 Technical
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information on data and grid map formats supported is found in appendix
D. Gstat has a built-in map format conversion utility (convert, Section 5.5).

2.3 Default program action

Based on the information read in the command file, gstat decides what to
do: variogram modelling, prediction or simulation, and, in case of prediction,
which prediction method to use. The decision tree for the default program
action is shown in Fig. 2.1.

Prediction locations specified?

Variograms specified?

Variogram modelling

OLS/WLS prediction

Yes

Command file specification: Action:

Base functions specified?

No No

No

Yes

Yes

Yes

Ordinary kriging

Universal kriging

Simple kriging (constant mean)

Base functions specified? Inverse distance weighted interpolation

No
Base functions specified?

No

Yes
Residual variogram modelling

Simple kriging mean or
regression coefficients specified?

No

Yes

Base functions specified?

Yes

No

Simple kriging (varying mean)

Figure 2.1: Decision tree for default program action

When observations, variogram, and prediction locations are specified, the
default action is ordinary kriging on mask map locations. When, in the final
example in section 2.1, the line

variogram(zinc):...;
is left out, inverse distance weighted interpolation is the default action (krig-
ing demands specification of the variogram). When the command

mask: ... ;
is left out, the default action is variogram modelling because prediction de-
mands specification of prediction locations.

Sometimes it is necessary to override the default program action (e.g. to
calculate variograms non-interactively, or to do simulation instead of predic-
tion). Information about overriding the default program action is found in
sections 2.4, 2.6 and 4.5.
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2.4 Modelling spatial dependence

When no prediction locations are defined in the command file, gstat starts
the interactive variogram modelling user interface (example [6.1], example
[6.2]). Multiple variables are analyzed when they are specified with data(id )

commands, each having a unique id. From this interface sample variograms,
covariograms, cross variograms and cross covariograms can be calculated,
viewed, and modelled (see Appendix A.1); variogram plots can be saved (e.g.
as PostScript file, Fig. 2.2) and printed; and modified settings of data and
fitted variograms can be saved as a gstat command file. The interface has
several selection items and single-key options. Summary help is obtained by
pressing ‘H’ (shift-h).
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Figure 2.2: Variogram plot from gnuplot

Help on a specific user interface item is obtained by selecting the item
with the cursor keys and pressing ‘?’. What follows is a brief description of
the visible items in the user interface:

enter/modify data enter a new variable or modify (reload) a variable
(allows only a few input options)

choose variable choose a variable, or, if the next field is on a cross (co-)
variogram, a pair of variables

calculate what choose what to calculate (variogram, cross variogram, co-
variogram or cross covariogram)
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cutoff, width prompts for the cutoff (the maximum distance at which
pairs of data points will be considered for inclusion in sample variogram
estimates) and the lag width (the step size of distance intervals for
sample variogram estimates). Non-even interval boundaries can be
obtained by specifying bounds in the command file (section 4.1)

direction enter directional parameters (direction angle and direction tol-
erance: the maximum deviation from this direction tolerated for a pair
of data points to be included in the sample variogram estimate)

variogram model enter a variogram model or change variogram model pa-
rameters (section 4.3)

fit method choose a variogram fit method (or no fit)

show plot show variogram and model (if present, and after optional fit-
ting)

Variogram models can be fitted to the sample variogram using iterative
reweighted least squares estimation Cressie (1985), or can be fitted directly
to the sample data using REML estimation Kitanidis (1985). Appendix A.1
gives details on the calculation of sample (co-) variograms and model fitting.
Non-linear least squares fitting is only guaranteed to work when good initial
values are provided. Therefore, and more in general, visual examination of
model fit is recommended.

Variogram plots can be saved as encapsulated PostScript file (Fig. 2.2)
from gnuplot by pressing ‘P’ or as gif file by pressing ‘G’ (gif only when the gd
library was linked to gnuplot). Plots can be customised (e.g. labels, legend,
title) by first saving sample variogram estimates to a file (‘e’), then saving
the gnuplot commands to a file (‘g’), then modifying this file and finally using
gnuplot to create the PostScript (or other graphics) file.

By default, direct and cross variograms and covariograms are calculated
from ordinary least squares residuals by using a linear model (as default only
an intercept, section 2.7). Generalised least squares residuals are used when
the command

set gls=1;

is added to the command file (sections 2.7, 4.4).

Non-interactive variogram modelling

Variograms can also be calculated non-interactively, by adding the command
method: semivariogram;

png/fit.png
http://www.boutell.com/gd/
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or
method: covariogram;

to the command file (section 4.5).
Sample variograms can be saved to a file, using for instance:
variogram(zinc): ’zinc.est’;

For large data sets, it may be best to calculate sample variograms non-
interactively and do the modelling afterwards. This is accomplished by first
saving the sample variograms to file as described above, and then to load
only the sample variograms in the user interface (not the data), which is
done by defining dummy data:

data(zinc); # dummy data
and a valid sample variogram, as

variogram(zinc): ’zinc.est’;

or, when a variogram model should be defined ahead of fitting:
variogram(zinc): ’zinc.est’, 1 Nug() + 1 Sph(800);

Variogram maps

If in addition to one of these method commands a mask map is specified, then
gstat calculates the variogram map Isaaks and Strivastava (1989) for the field
specified by the mask, and writes this map to the output map zincv.map

variogram(zinc): ’zinc.map’;

optionally, in addition the corresponding number of data pairs can be written
to the output map zincn.map when specified as

variogram(zinc): ’zince.map’, ’zincn.map’;

(typically a variogram map is centred around (0,0) and has map dimension
and cell size similar to cutoff and interval width values).

2.5 Prediction

If prediction locations are defined in the command file, gstat chooses a pre-
diction method depending on the model defined by the complete set of com-
mands in a command file.

When no variograms are specified, inverse distance weighted interpolation
is the default action (Fig. 2.1, example [6.3]).

When variograms are specified the default prediction method is ordinary
kriging Journel and Huijbregts (1978); Cressie (1993) (example [6.4] and
example [6.8]).

Simple kriging is the default action when in addition for each variable the
simple kriging mean (sk mean or b) is set (section 4.2; example [6.5], universal
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kriging or uncorrelated linear model prediction is used when a model for the
trend is defined ,section 2.7). Multiple prediction, multivariable prediction,
and stratified prediction are described in section 3.1-3.4. Prediction of block
averages is described in section 3.5.

If the prediction locations are specified as a mask map with the command

mask: ’file’;

then predictions and prediction variances are written to output maps only
when these maps are specified explicitly (section 4.1; example [6.5]).

As an alternative to prediction on grid map locations, prediction on non-
gridded locations is the default action when these locations are specified with
the

data(): ... ;

command (note the absence of an identifier between the parentheses). In
this case, output is written in ascii table or simplified GeoEAS format to the
file defined by the command set output=’file’; (example [6.4], or defined
with the command line option -o, section 5.2).

radius = 10 max = 8 radius = 10, max = 8

radius = 10, max = 8, min = 4, force radius = 10, omax = 2 radius = 10, max = 4, vdist

Figure 2.3: Local neighbourhood selections. Lines indicate selected points
(+). Lower right: variable with anisotropic variogram having a strong north-
south correlation
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Local Neighbourhoods

By default, gstat uses global prediction, meaning that for each prediction
all data values are used. However, it is often desirable to use not all data
values, but only a subset in a (spatial) neighbourhood around the prediction
(simulation) location, for either computational reasons or the wish to assume
first-order stationarity only locally. Gstat allows local neighbourhood selec-
tions to be based on distance (radius), number of data points (max, min),
variogram distance (vdist), and number of data points per octant (3D) or
quadrant (2D) (omax). The options are explained below (see also Fig. 2.3,
section 4.2 examples in chapter 6).

The quadtree-based algorithm used to obtain data points in a local search
neighbourhood is described in Hjaltason and Samet (1995), and is found at
http://www.cs.umd.edu/ brabec/quadtree/index.html (Bucket PR Quadtree
demo).

radius = 10 select all data points within 10 (euclidian) distance units
from the prediction location

max = 8 select the 8 data points that are closest (in euclidian distance)
to the prediction location (or take all data points if less than 8 are
available)

Some options should be combined, and permitted combinations are explained
below. (Combinations not mentioned might result in unexpected or undesired
results.)

radius = 10, max = 8 after selecting all data points at (euclidian) dis-
tances from the prediction location less or equal to 10, choose the 8
closest when more than 8 are found

radius = 10, max = 8, min = 4 in addition to the previous selection,
generate a missing value if less than 4 points are found within the
search radius 10

radius = 10, max = 8, min = 4, force in addition to the previous se-
lection, if less than 4 data points are found in the search radius, instead
of generating a missing value, select (force) the 4 nearest (in euclidian
distance) data points, regardless their distance

radius = 10, omax = 2 after selecting all data points at distances less
or equal to 10, choose the 2 closest data points in each octant (3D),
quadrant (2D) or secant (1D)

http://www.cs.umd.edu/~brabec/quadtree/index.html
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radius = 10, vdist, ... after the radius selection, decide what the near-
est data points are on the base of point-to-point semivariance of the
data variable instead of euclidian distances (“semivariance distance”:
in case of anisotropy this allows the prevalence of more correlated points
over the, in the euclidian sense, nearest points)

Indicator kriging
Basically, indicator kriging is equivalent to simple or ordinary kriging of
indicator-transformed data. However, resulting estimates of indicator values
are not guaranteed to satisfy order relations. During indicator kriging, gstat
will do order relation violation correction for independent, cumulative or
categorical (disjunct) indicators only if the order is to one of the values in
Table 2.1 in section 2.6, order in section 4.4 and Deutsch and Journel (1992);
Goovaerts (1997).

2.6 Simulation

Simulation Davis (1987); Gómez-Hernández and Journel (1993); Myers (1989)
is done by setting up a command file for simple kriging (section 2.5) and
changing the default action to Gaussian simulation by adding the command

method: gs;

(example [6.6] and example [6.7]), or to indicator simulation by adding the
command

method: is;

If valid data are present (i.e., data are available in the neighbourhoods de-
fined), conditional simulation is done. Unconditional simulation is done when
only dummy variables (dummy, section 4.2) or data outside every possible
neighbourhood are defined.

The sequential simulation algorithm Gómez-Hernández and Journel (1993)
is used for the simulation. This algorithm visits each simulation location,
following a random path. After simulating a value (or set of values in the
multivariable case) at the location, it is added to the conditioning data.

A few notes on the practice of (indicator or Gaussian) simulation with
gstat are:

• Even for simulating small fields (e.g. 500 cells) it is strongly recom-
mended to limit the kriging neighbourhood in order to get local kriging
(section 2.5). Because every simulated point or block is added to the
data, ‘global’ simulation would soon amount to large kriging systems,
thus slowing down the simulation quickly.
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CA B

Figure 2.4: Recursively refining visiting sequence during simulation

• Gstat can create many simulations simultaneously in an efficient way:
a single random path is followed and for each simulation location, the
neighbourhood selection and the solution to the kriging system are
reused for all subsequent simulations. When many simulations are
required (e.g. for a Monte Carlo study) the time saving will be sig-
nificant (see set nsim). (Note that the use of local approximations
(local kriging) results in slightly dependent realizations when obtained
by following a single random path.)

• When simulation is done on a regular grid (using a mask map), in
order to reproduce the statistical properties up to reasonably large dis-
tances, a recursively refining random path (“multiple-steps simulation”,
Gómez-Hernández and Journel (1993)) is followed, shown in Fig. 2.4.

A random path is started on a (randomly located) coarse grid (A: the
coarsest (2 × 2) grid with a grid spacing that is a power of 2). The
simulation grid is refined recursively: 4 × 4 (B), 8 × 8 (C, black dots)
halving the grid spacing each step) until all grid locations are visited
(C, grey dots). Neighbourhood definitions (see section 4.2, and also
the force flag) may ensure that necessary conditioning data are used
for reproducing the statistical properties sufficiently.

• Simple kriging results in a correct conditional distribution, and in Gaus-
sian simulations that honour the specified variogram. Universal or
ordinary kriging can be used if enough conditioning data are avail-
able, and leads to ‘rougher’ simulations, less honouring the variogram
but better adjusted to a non-stationary mean (“major heterogeneities”,
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Indicator order violation correction set order

independent p̂i < 0 p̃i = 0 1-4

independent p̂i > 1 p̃i = 1 1-4

categorical, open
∑n
i=1 p̂i > 1 p̃i = p̂i/

∑n
i=1 p̂i 2

categorical, closed
∑n
i=1 p̂i 6= 1 p̃i = p̂i/

∑n
i=1 p̂i 3

cumulative p̂i < p̂i−1 p̃i − p̃i−1 = 0 4

Table 2.1: Order relation corrections

Deutsch and Journel (1992)), when present in the conditioning data.
The parameter nXuk (section 4.4) controls the choice between simple
or universal (ordinary) kriging. Another way to obtain non-stationary
simulations is to add a varying mean to a stationary (simple kriging)
simulation afterwards.

Gaussian block simulation

Gstat simulates block averages when a non-zero block size is specified (section
3.5). The implementation of this is a rather inefficient one. Simulation will
be faster when nblockdiscr is set to a low value (to 3 or 2, section 4.4), at
the expense of the accuracy of point-to-block and block-to-block covariance
calculations (see Appendix A.3).

Indicator simulation

From data definitions alone, gstat cannot decide whether it is working with
indicator variables or not. In case of prediction this is not crucial—procedure-
wise, indicator kriging is identical to simple or ordinary kriging. When indica-
tor simulation is done for multiple variables, a number of different situations
may occur, and for correct results, it should be specified explicitly if the set
of indicator variables is (i) independent, (ii) cumulative or (iii) disjunct:

• if the set is independent, simulated indicator variable can take a value
1 or 0 independently from the other indicator variables

• if the ordered set of indicator variables I0(s), ..., In−1(s) is cumulative,
then Ij(s) = 1 implies that I0(s), ...Ij−1(s) are all 1 (in gstat, the order
of a set of indicator variables equals the order in which the variables
appear in the command file)

• if a set of indicators is disjunct, then Ij(s) = 1 implies that Ii(s) = 0
for all i 6= j.
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Independent indicators may represent independent variables. A set of
cumulative indicators may represent the cumulative distribution function of
a single continuous variable and a set of disjunct indicators can represent
the categories of a categorical variable (see also the data command options
and Category). Table 2.1 shows the corrections done for the different types
of indicator variables and the value order should be set to to obtain the
corrections (estimated probality p̂i, corrected estimate p̃i). Cumulative in-
dicators are corrected using the “upward-downward” approach, see Deutsch
and Journel (1992, p. 80) or Goovaerts (1997, p. 324).

For multiple indicator simulation (no indicator cross variograms are spec-
ified), by default independent indicator simulation is done. The subsequent
indicator variables are taken as cumulative indicators if the command

set order=4;

is added to the command file (Table 2.1). They will be treated as disjunct if
order is set to 2 or 3 (see section 4.4).

2.7 Linear models in gstat

Defining a model

In ordinary and simple kriging each observation z(si) (the value of variable
z at location si) is represented by the model

Z(si) = m+ e(si) (2.1)

with, in case of ordinary kriging Z(s) intrinsically stationary and m an
unknown (locally) constant trend, or, in case of simple kriging, Z(s) a second
order stationary and m a known, constant trend.

A wider class of models is obtained when the observation z(si) is modelled
as the sum of a spatially non-constant (i.e. non-stationary) trend m(si) and
an intrinsically stationary error e(si):

Z(si) = m(si) + e(si) (2.2)

In the universal kriging model such a trend is modelled as a linear func-
tion in p known base functions fj(s) = (fj(s1), ..., fj(sn))′ and p unknown
constants βi, which yields, for the observation at si

Z(si) =
p∑
j=1

fj(si)βj + e(si)
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and for all observations

Z(s) =
p∑
j=1

fj(s)βj + e(s)

which can be written in matrix notation as

Z(s) = Fβ + e(s) (2.3)

with F = (f1(s), ..., fp(s)) and β = (β1, ..., βp)
′. Ordinary kriging (2.1) is the

special case where this model has only an intercept (p = 1, f1(s) = 1,∀x and
β1 = m).

Gstat calculates prediction under the multivariable universal kriging model
Ver Hoef and Cressie (1993) when base functions fi(s) and variogram(s) for
e(s) are specified (see appendix A.2 for the prediction equations). An inter-
cept (the constant value as in the ordinary kriging model) in (2.1) is assumed
for each variable by default, and only non-intercept base functions need to
be specified. Base functions can be polynomials of the coordinates (e.g. x,
x2, xy etc.) or user-defined.

Coordinate polynomial base functions

For a data variable in two dimensions, a first order linear trend in the coor-
dinates is defined by

data(x): ’file’, x=1, y=2, v=3, X=x&y;

or, as a shorthand for this, the coordinate polynomial trend order degree can
be specified:

data(x): ’file’, x=1, y=2, v=3, d=1;

(Note that d=1 is equivalent to X=x for one-dimensional, X=x&y to for two-
dimensional and to X=x&y&z for three-dimensional data.) Values of coordi-
nate polynomial base functions at observation and prediction locations are
obtained from the (standardised) location coordinates si (see also example
[6.18]).

User-defined base functions

Non-coordinate polynomial, user-defined functions can also be specified as
base functions. Because they are not known, they should be defined as
column numbers in a data file (example [6.13]), like

data(x): ’file’, x=1, y=2, v=3, X=4&5;

User-defined and coordinate polynomial base functions may be intermixed.
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When binary (e.g., 0/1) variables are used as base functions, and the
sum of these functions coincides with an intercept (i.e., summed row-wise,
the columns equal a column with a constant), the default intercept has to be
overridden. This is done by specifying -1 as the first column number of the
base functions (example [6.14]).

Specification of the user-defined base function values at prediction loca-
tions is necessary, since they are needed in the prediction. For the prediction
locations they are needed too, and for map prediction locations they are de-
fined as a list of mask maps containing the base functions. For the data()

prediction locations they are defined as the X column numbers in the corre-
sponding file. In both cases the number of base functions thus specified and
the order in which they appear should match the order in which the (non-
intercept and non-coordinate polynomial) X columns appear in subsequent
data(id ) commands.

If more than one variable is defined and only direct variograms are spec-
ified, multiple universal kriging is done. If in addition to direct variograms
cross variograms are specified, multivariable universal kriging is done Ver Hoef
and Cressie (1993) (universal cokriging, section 3.3).

Ordinary and weighted least squares trend prediction

If base functions are specified but no variograms are specified, the default
prediction method is the (multiple) regression prediction, (ordinary least
squares, OLS) assuming that the e(s) are independently identically dis-
tributed (IID). In this case the prediction variance is the classical regres-
sion prediction variance for a single observation (example [6.16] and example
[6.18]), or for the mean value when the block size is non-zero (section 3.5).

If the errors are assumed to be independent with different variances, viσ
2

then specifying the constants vi will result in weighted least squares (WLS)
prediction. The values vi are not variances but merely relate an individual
residuals variance to σ2. For instance, if an observation is an average of ni
measurements, then, assuming the variance of individual measurements is
constant, vi can be set to n−1

i . In the unweighted case, all vi are 1, and for
prediction variances to make sense, the vi should be related to this unity
value (σ2 should be “the” residual variance).

Generalised least squares trend prediction

If at prediction locations s0, for some reason not the kriging prediction but the
generalised least squares estimate (or BLUE, best linear unbiased estimate) of
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the trend f(s0)β̂ and its estimation variance are needed, then this is obtained
by overriding the default method (ordinary or universal kriging) using

method: trend;

Setting fi(s0) to 1 and all other f(s0) to 0 yields the generalised least squares
estimate (BLUE) of β̂i. See appendix A.2 for details on weighted or combined
weighted and generalised least squares prediction.

Residual variograms

If base functions are specified but no prediction locations are specified, then
the sample direct or cross variogram and covariogram is calculated from
ordinary least squares (OLS) residuals, as obtained from the linear model
with IID errors. If generalised least squares residuals are preferred to OLS
residuals, the (initial) variograms should be set, and gls should be set to 1
(section 4.4).
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Chapter 3

Prediction modes and change
of support

3.1 Modes

When a command file holds more than one variable, each specified with
a unique id, then different prediction (or simulation) modes are possible,
depending on the complete model specification: predictions can be made in-
dependently (‘multiple’ prediction), dependently (‘multivariable’ prediction),
or variables may correspond to certain portions (categories) in the mask map
or prediction location data (‘stratified’ prediction). The modes hold equally
for prediction and simulation. When only one variable is defined, predic-
tions (or simulations) are made for this variable at every prediction location
(‘simple’ mode).

The decision tree gstat uses to determine the mode is shown in Fig. 3.1.
The choice for a certain mode is always implicit, and is made after gstat read
the command file and examined the data.

3.2 Multiple mode

When multiple variables are defined, and no variograms or only direct vari-
ograms are defined (no cross variograms), then multiple prediction (simula-
tion) is the default action. See for instance example [6.10]. In the multiple
mode, predictions or simulations are made for each variable independently.
The advantage of using the multiple mode over using a command files for
each variable, is that, besides being concise, if the variables have identical
locations, each neighbourhood search is done only for the first variable (ex-
ample [6.17]).

27
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Multiple variables present?
No

Simple

Yes

All crossvariograms defined? Multivariable
Yes

No

Number of strata > 1? Multiple
No

Yes
Stratified

Mode:Condition:

Figure 3.1: Prediction modes

3.3 Multivariable mode

If in addition to direct variograms the cross variograms are defined for all
variable pairs, then the prediction mode becomes multivariable (i.e., cokrig-
ing or co-simulations). In case of multivariable prediction, prediction error
covariances from multivariable prediction Ver Hoef and Cressie (1993) on a
map can be specified per identifier pair with covariances(id1,id2 ) (ex-
ample [6.11]). In gstat, multivariable prediction comprises simple cokriging,
ordinary cokriging or universal cokriging (as well as standardised cokriging,
multivariable indicator or Gaussian simulation).

When, for multiple variables a linear model is specified with indepen-
dent errors (no variograms are defined), and one or more of the variables’
regression parameters are defined as common parameters (with the command
merge, section 4.1) then the prediction mode becomes multivariable as well
(cf. analysis-of-covariance models refXXchristensen96).

3.4 Stratified mode

Stratified kriging or simulation (each variable with it’s direct variogram ap-
plies to a specific area in the mask map) is the default action if the following
conditions hold (example [6.12]):

• more than one data variable is defined

• only for the first data variable output maps (predictions, variances)
are defined
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• the (first) mask map defined has more than one category

Data variables are numbered in the order they appear in the command
file, starting at 0. Let the minimum grid value of the (first) mask map be
m, If at a specific grid cell the mask map has value j, then for that cell
the stratified prediction map (and variance map) will have predictions for
variable j −m (rounded to the nearest integer). Thus, predictions at mask
map cells having value m will get predictions for the first variable.

In case of universal kriging or least squares prediction with user-defined
base functions, the maps with base function values should follow the category
map: in the stratified mode the first mask map is the map with the categories.

3.5 Change of support (block prediction)

Average values for square, rectangular or arbitrarily shaped blocks can be
predicted in gstat for all kriging variants, for OLS or WLS prediction or
for inverse distance weighted interpolation, or they can be simulated using
multi-Gaussian simulation.

The mean value of a block, the size of a grid cell, is obtained by adding
the command

blocksize;

to the command file. Alternatively, block mean values for rectangular blocks
with arbitrary size, centred at prediction locations are obtained when the
block size is specified, in one dimension:

blocksize: dx = 1;

for a line element with length 1, in two dimensions
blocksize: dx = 1, dy = 2;

for a rectangular element with size 1 × 2 or in three dimensions
blocksize: dx = 1, dy = 2, dz = 3;

for a block with dimensions 1 × 2 × 3, see example [6.4] and example [6.8].
Block averages are approximated by discretizing (“representing”) the

block with a limited number of points Journel and Huijbregts (1978); Carr
and Palmer (1993). Blocks with arbitrary shapes may be defined by specify-
ing the points discretizing the block (see appendix A.3).
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Chapter 4

Command file syntax

4.1 Commands

General conventions for gstat command files are:

• command files are ascii text files

• each command ends with a ;

• command files start with one or more data(id) commands to define
the data, where id, the identifier, is an unique one-word reminder for
the variable defined

• regular file names are written between single or double quotes, as
’file.dat’ or "file.dat", special file names include pipes, shell com-
mand output substitution or append-to files (section 5.4)

• white space (spaces, tabs, newlines) is ignored, except in file names

• comment is supported as follows: a # may appear anywhere in a line
and gstat will ignore the rest of the line. It will not have this effect
inside quoted strings (e.g. file names).

The commands that can appear in command files are listed below. Here,
id, id1 and id2 refer to three distinct identifiers, and file is a valid file
name. (Commands may be abbreviated to the first few characters that make
them unique.)

4.1.1 General options

data(id): body; here, body defines the data to be read for variable id

(section 4.2)

31
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variogram(id): body; here, body defines the variogram model of variable
id (section 4.3)

variogram(id1,id2): body; here, body defines the cross variogram of vari-
ables id1 and id2 (section 4.3)

method: body; here, body specifies the method (section 4.5)

set parameter=value; assign value to parameter (section 4.4)

4.1.2 Variogram modelling options

bounds: body; body is either a list with (white-space or comma-separated)
strictly increasing interval boundary values, or it is a file name, pointing
to a file that contains such a list

4.1.3 Prediction or simulation options

mask: body; here, body defines the input mask map(s), with the locations
where predictions will be made (the non-missing valued cells), and the
values of the user-defined base functions at map prediction locations
(for universal kriging or linear models) or the category number (for
stratified prediction or simulation); for multiple mask maps body is a
comma-separated list of file names.

predictions(id): ’file’; here, file defines the output map with the
predictions on variable id

estimates(id): ’file’; synonymous to the predictions command

variances(id): ’file’; here, file defines the output map that will
hold the prediction error variances on id

covariances(id1,id2): ’file’; here, file defines the output map that
will hold the prediction error covariances on variables id1 and id2

data(): body; here, body defines the non-gridded prediction locations

blocksize: body; here, body defines the block size (default 0, see section
3.5)

edges: body; here, body is a comma-separated list with files containing
open or closed polygons. Edges (boundaries) may be used in interpo-
lation to further constrain a neighbourhood definition: only when a
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point is on the same side of an edge as the prediction location, it will
be included for prediction (or simulation). See Appendix B for details
and polygon file formats.

area: body; here, body defines the ‘block’ discretization points (section
3.5, Appendix A.3)

merge id1(i ) with id2(j ); In multivariable ordinary or universal krig-
ing (or simulation), by default each variable has it’s own set of pa-
rameters βk. The merge command allows to define a common pa-
rameter for two or more variables. Suppose, Z1(x) = m + e1(x) and
Z2(x) = m + e2(x), where m is the unknown common mean for both
variables. Note: the variable numbers i and j start at 0; merge id1

with id2 is the abbreviation of merge id1(0) with id2(0) (see also
Appendix A.2).

4.2 ‘data’

The general form of the data command is
data(identifier): ’file’, options ;

The file name should refer to an existing file in ascii table form, simplified
GeoEAS format or one of the supported grid map formats. Options can
be single keywords like log or expressions like x=2. Column 0 means not
defined (non-existent). The full list of options is [default values between
square brackets]:

4.2.1 General options

v=5 column 5 contains the data (measurement) variable [0, or obtained
from grid map]

x=1 column 1 contains the x-coordinate [0, or obtained from grid map]

y=2 column 2 contains the y-coordinate [0, or obtained from grid map]

z=3 column 3 contains the z-coordinate [0, or obtained from grid map]

d=1 use a first order (polynomial) linear model in the coordinates as the
trend; allowed order values are 0, 1, 2 and 3; see also X, sk mean and b

[0: only an intercept as trend]

mv=-1 define missing value as the value -1 [the string NA, see also set mv]
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average average values with identical locations (i.e., their separation dis-
tance is less than zero) [noaverage]

log log transform the variable (natural logarithm) [no transform]

I=5 transform the observation variable v to

I(v, 5) =

{
1 if v ≤ 5,
0 otherwise

[no transform]

v=6, Category=’sand’ transform the observation variable v to 1 if the
string in column 6 equals the Category string sand, and to 0 in any
other case. [no transform]

ns=’filename.out’ transform the observations to their normal score, and
write the normal score table to filename.out. In this file, ach line
contains the (sorted) original value and its normal score. Normal scores
are computed as

nj(xi) = Φ−1((j + 0.5)/n)

with j the rank (1...n) of z(xi) and Φ(·) the Gaussian cumulative density
function. In case of ties (when multiple z(xi) have the same value),
ranks are averaged for the tied data before normal scores are calculated,
to avoid assignment of arbitrary values. Gstat does (currently) not
provide any means for backtransformation.

standard standardise variable (to mean 0, variance 1) [do not standardise]

X=8&9&x&y apart from a default intercept, the values of the base functions
at the data locations are the variables that are in columns 8, 9 and the
x- and y-coordinate. (Polynomial coordinate base functions allowed
are: x3 for x3, y3 for y3, z3 for z3, x2 for x2, y2 for y2, z2 for z2, x for
x, y for y, z for z, x2y for x2y, xy2 for xy2, x2z for x2z, xz2 for xz2, y2z
for y2z, yz2 for yz2, xy for xy, xz for xz and yz for yz, provided that
the corresponding coordinate is defined) [use only an intercept (mean)
as trend]

X=-1&8&9 the values of the base functions at the data locations are on
columns 8, 9 and 10, with no intercept [use only an intercept (mean)
as trend]
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b=[2.4, 1.7, -3.9] define the (known) regression coefficients, correspond-
ing to the X entries given. See also sk mean; b generalises the concept
of a known constant mean to a known mean function. [undefined; re-
gression coefficients are unkonwn]

V=6 column 6 contains the proportionality factor vi to the residual vari-
ance viσ

2 of the v-variable (i.e. the diagonal entries of matrix D, see
Ordinary and weighted least squares trend prediction in section 2.7, and
Appendix A.2). This will have an effect on the least squares residuals
(thus affecting the sample covariogram and pseudo cross variogram), as
well as on uncorrelated least squares prediction, kriging prediction, and
trend prediction. [0: assuming identical variances or variances strictly
derived from the variograms]

every=10 For regular (systematic) sampling records from a data file, every
is set to the step size. A value of 10 only samples data records 1, 11, 21, ...
[1: don’t sample but select all data]

offset=1 Controls the starting sample element for regular sampling. Effec-
tive in combination with every only. When every=10 and offset=2,
then elements 2, 12, 22, ... are selected; if every=20 and offset=5, ele-
ments 5, 25, 45, ... are selected. [1: start sampling at first data point].

prob=0.1 Inclusion probability for random sampling data records from the
file [1: all records are read].

4.2.2 Variogram modelling options

noresidual do not calculate OLS (or GLS, see gls) residuals for sample
variogram or covariogram estimation (Appendix A.1). For sample vari-
ogram estimation in absence of base functions, setting noresidual will
yield identical results, but will result in a modest gain in speed and
memory saving. In other cases, it will result in the estimation of non-
centred covariograms or pseudo-cross variograms [calculate residuals
before variogram or covariogram estimation]

dX=0.1 include a pair of data points {z(xi), z(xj)} for sample variogram
calculation only when ||f(xi)−f(xj)|| ≤ 0.1 with f(xi) = (f1(xi), ..., fp(xi))
and ||u|| =

√
u′u. This allows pooled estimation of within-strata vari-

ograms, or variograms of (near-)replicates in a linear model (for point
pairs having similar values for regressors like depth, time, or a category
variable) [do not evaluate]
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4.2.3 Prediction or simulation options

radius=4.5 select observations in a local neighbourhood when they are
within a distance of 4.5 [large: select all] (see section 2.5)

max=30 maximum number of observations in a local neighbourhood selec-
tion is 30 [large: no maximum] (see section 2.5)

min=10 minimum number of observations in a local neighbourhood selec-
tion is 10 [0] (see section 2.5)

omax=2 maximum number of observations per octant (3D), quadrant (2D)
or secant (1D) is 2 (this only works in addition to a radius set) [0:
don’t evaluate] (see section 2.5, and also method: nr;, section 4.5)

square select points in a square (or block) neighbourhood, with square
(block) sizes equal to 2 × radius [circular (spherical) neighbourhood]

vdist use variogram value as the distance criterium for min/max/omax
neighbourhood selection (but define radius as euclidian distance) [use
Euclidean distance] (see section 2.5)

force force neighbourhood selection to the minimum number of observa-
tions, disregarding the distance [unless simple kriging is used, generate
a missing value if less than the required minimum number of obser-
vations are found within a distance defined by radius] (see section
2.5)

s=7 define variable with the strata for data() locations [0, no strata]

sk mean=2.4 define the simple kriging mean to be 2.4 [not defined: an
unknown mean (intercept) is assumed for each variable]. NOTE: the
code sk mean=2.4 is equivalent to b=[2.4]

dummy define a dummy variable [require valid data to be read]

4.3 ‘variogram’

Variogram models are coded as the sum of one or more simple models (and
optionally an anisotropy structure). A simple variogram model is denoted
by

cMod(a)
with c the vertical (variance) scaling factor, Mod the model type, and a the
range (horizontal, distance scaling factor) of this simple model. If Mod is a
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transitive model (i.e. after some distance, or asymptotically as h → ∞ the
simple model reaches a certain maximum) then c is the partial sill of that
model and the simple covariogram that corresponds to this variogram model
is:

c(1−Mod(a))
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Figure 4.1: Example variogram 8 Nug() + 12 Sph(10). Semivariance rep-
resentation (a) and covariance representation (b)

Fig. 4.1 gives an example of the variogram model 8 Nug() + 12 Sph(10) as
semivariance and covariance representation. Unit models available in gstat
are listed in table 4.1.

All unit basic variogram models are shown in Fig. 4.2. Note that the
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model syntax γ(h) h range

Nugget 1 Nug(0) 0 h = 0
1 h > 0

Spherical 1 Sph(a) 3h
2a
− 1

2
(h
a
)3 0 ≤ h ≤ a

1 h > a

Exponential 1 Exp(a) 1− exp(−h
a

) h ≥ 0
Linear 1 Lin(0) h h ≥ 0

Linear-with-sill1 1 Lin(a) h
a

0 ≤ h ≤ a
1 h > a

Circular 1 Cir(a) 2h
πa

√
1− (h

a
)2 + 2

π
arcsin h

a
0 ≤ h ≤ a

1 h > a

Pentaspherical 1 Pen(a) 15h
8a
− 5

4
(h
a
)3 + 3

8
(h
a
)5 0 ≤ h ≤ a

1 h > a

Gaussian 1 Gau(a) γ(h) = 1− exp(−(h
a
)2) h ≥ 0

Bessel2 1 Bes(a) 1− h
a
K1(h

a
) h ≥ 0

Logarithmic 1 Log(a) 0 h = 0
log(h+ a) h > 0

Power 1 Pow(a) ha h ≥ 0, 0 < a ≤ 2

Periodic 1 Per(a) 1− cos(2πh
a

) h ≥ 0

Table 4.1: Simple variogram models in gstat: the building blocks for a vari-
ogram model

Exp(), Gau() and Bes() models reach their sill asymptotically (as h→∞).
The ‘effective range’, is the distance where the variogram reaches 95% of its
maximum, and this is 3a for Exp(a),

√
3a for Gau(a) and 4a for Bes(a). The

logarithmic and power model are unbounded (and are therefore not suitable
for covariance modelling or simple kriging).

Pseudo cross variograms may have a non-zero value for h = 0. An inter-
cept can be defined as a constant added to the variogram model, e.g.

1.5 + 0.5 Nug() + 2.2 Sph(20)

or, equivalently

1.5 Int() + 0.5 Nug() + 2.2 Sph(20)

and can be fitted only when a sample variogram estimate is available at zero
distance.

png/nug.png
png/sph.png
png/exp.png
png/lin0.png
png/lina.png
png/cir.png
png/pen.png
png/gau.png
png/bes.png
png/log.png
png/pow.png
png/per.png
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Figure 4.2: The unit basic variogram models

Geometric anisotropy

Geometric anisotropy can be modelled for each individual simple model by
addition of two or five anisotropy parameters after the range, e.g.

cMod(a, p, s)

for 2-d anisotropy, or, for 3-d anisotropy:

cMod(a, p, q, r, s, t)

Using anisotropy, the variogram model range parameter (a) is the maximum
range, that of the major direction of continuity (direction of spatial correla-
tion at longest distances). The range in the direction perpendicular to the
major direction is the minor range. The anisotropy ratio is the ratio between
the minor range and the major range (a value between 0 and 1).

A two-dimensional range ellipse is defined by (a, p, s), a three-dimensional
ellipsoid is defined by (a, p, q, r, s, t). In the two-dimensional case p is the
angle for the principal direction of continuity (measured in degrees, clockwise
from positive Y, north), and s is the anisotropy ratio. So, the range in the
major direction (p) is a, and the range in the minor direction (p+ 90) is as.

In three dimensions p is the angle for the principal direction of continuity
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Figure 4.3: anisotropy ellipse

(measured in degrees, clockwise from Y), q is the dip angle for the principal
direction of continuity (measured in positive degrees up from horizontal),
r is the third rotation angle to rotate the two minor directions around the
principal direction defined by p and q. A positive angle acts clockwise while
looking in the principal direction. Anisotropy ratios s and t are the ratios
between the major range and each of the two minor ranges. (Note that
cMod(a, p, s) is equivalent to cMod(a, p, 0, 0, s, 1).)

Zonal anisotropy

Zonal anisotropy (anisotropy in the sill) can be obtained by defining geomet-
ric anisotropy with large anisotropy ratios. For instance, when the spatial
working domain is not too large (the largest distance in the area considered
does not exceed, let’s say, 100), then the model

1 Sph(2e5, 90, 1e-5)

will have nearly zero values (and thus be practically absent) in direction 90
(east-west), whereas it will reach the sill (1) at distance 2 in direction 0
(north-south).

4.4 ‘set’

The general form of the set command is
set parameter = value ;

1only valid for one-dimensional data
2K1(·) is the first order modified Bessel function of the second kind
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The list of variables that can be ‘set’ [default value between brackets]:

4.4.1 General options

set debug=2; set debug level to 2 [1; options are listed in Appendix C.4]

set cn max=1.0e8; check the condition number of matrices. If it is larger
than cn max, then generate a missing value and report a (near) sin-
gularity warning. Matrices checked are V and F ′V −1F (or F ′D−1F ).
A suitable value for cn max seems 1/

√
DBL EPSILON, which is about

108. Condition numbers are estimated using LU factorization Stewart
and Leyk (1994), and may be an order of magnitude wrong. Condition
numbers are reported if debug is set to report covariance matrices. [not
set: check for singularity only during variogram model fitting]

set logfile=’gstat.log’; set the file name where debug information is
written to (see set debug and Appendix C.4) [stdout, debug informa-
tion is written to the screen]

set mv=’MisVal’; define the default missing value string as MisVal [the
string NA] (Note that numerical missing values can be defined with mv

in a data command)

set output=’file’; write ascii output to file (e.g., variogram estimates,
predictions and variance at non-gridded locations)

set plotfile=’file’; file defines the file name for gnuplot commands
(not set, use temporary files). When set during ordinary or univer-
sal kriging, kriging weights are written as plot files for gnuplot (see
plotweights). Affects file name usage for variogram plotting through
gnuplot.

set zero=1.0e-10; specify the highest value absolote differences in dis-
tance and prediction variances may have to be considered equal to zero
[10 × DBL_EPSILON, about 2−15].

set marginals=list; List of values or maps with the mean and variance
of the first variable, the second variable, ... See also section A.4.

4.4.2 Variogram modelling options

set alpha=45.0; directional sample (co-) variogram: set direction in <
x, y > plane, in positive degrees clockwise from positive y (North) [0.0]
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set beta=30.0; directional sample (co-) variogram: set direction in z, in
positive degrees up from the < x, y > plane [0.0]

set Cressie=1; (for sample variogram calculation) use Cressie’s square-
root variogram estimator [0]

set cutoff=0.5; set cutoff (max. dist. for sample variogram) at 0.5 [a
fixed fraction of the maximum distance, see set fraction]

set dots=1000; change the number of plotting points at which gstat will
let gnuplot switch from plotting points (+) with numbers of points of
pairs, to plotting dots without numbers [500]

set fit=1; fit the variogram model to the experimental variogram, using
weighted least squares fit. Values for fit are shown in table 4.2 [0, do
not fit]

fit fit by weight
0 - - (no fit)
1 gstat Nj

2 gstat Nj/{γ(hj)}2

3 gnuplot Nj

4 gnuplot Nj/{γ(hj)}2

5 gstat REML
6 gstat no weights (OLS)
7 gstat Nj/h

2
j

Table 4.2: values for fit

set fit limit=1.0e-10; set fit limit to 1.0e-10 (Appendix A.1) [1.0e-6]

set format=’%.3g’; the format used for real values in variograms, e.g.
%.3g limits the number of significant digits shown to 3. A valid C-
language format string for a double should be used, misspecification
may result in unpredictable behaviour. [%g : use 6 significant digits]

set fraction=0.25; specify the default cutoff for sample variogram cal-
culation as fraction of the length of the diagonal in the square or block
spanning the data locations [0.333]

set gnuplot=’mygnuplot’; invoke the program mygnuplot as gnuplot
(variogram display) [gnuplot, or wgnuplot for Win32]
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set gnuplot35=’gpt35’; invoke the program gpt35 (gnuplot version 3.5)
for variogram display only [use gnuplot, or the value of set gnuplot]

set gpterm=’latex’; set the gnuplot terminal specification and options
(a string to follow the gnuplot “set term” command). This option will
overrule the ‘postscript’ or ‘gif’ settings from the variogram modelling
user interface, thus allowing plotting to other graphic file formats and
modification of options (see gnuplot documentation). [for gif: ’gif

transparent size 480, 360’, for PostScript: ’postscript eps

solid 17’

set intervals=20; specify the default number of intervals for sample va-
riogram calculation [15]

set iter=20; use not more than 20 iterations on iterative fit methods [50]

set pager=’less’; use ‘less’ as pager to be called from the variogram
modeling interface [the value of the environment variable PAGER (if
set), or else the program more]

set secure=1; prevent any calls to the functions system(), popen() or
remove(), terminate program whenever one of the first two appear
(once set, it cannot be set back) [0, not secure]

set sym=1; force directional sample cross covariance and pseudo cross
semivariance to be symmetric [0, asymmetric]

set tol hor=45.0; directional sample (co-)variogram: set horizontal tol-
erance angle in degrees [90.0]

set tol ver=20.0; directional sample (co-) variogram: set vertical toler-
ance angle in degrees [90.0]

set width=0.05; set lag width to 0.05 (distance interval width for sample
variogram) [cutoff/intervals]

set gls=1; use generalised least squares residuals instead of the default
ordinary least squares (OLS) residuals for sample variograms or covar-
iograms [0, use OLS or WLS residuals]

set zero dist=1; determine what happens with variogram estimates at
distance zero. Values are 1: include in first interval, 2: omit, 3: calcu-
late separately [1 for variograms, 3 for covariograms]
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4.4.3 Prediction or simulation options

set idp=3.5; set inverse distance power to 3.5 [2]

set nblockdiscr=10; use regular block discretization with 10 points in
each dimension at non-zero block size (note: 10 in 3 dimensions results
in 1000 discretizing points) [4, and use Gauss quadrature (see Appendix
A.3)]

set nsim=100; create 100 independent simulations when following a single
random path (output maps will get the simulation number attached to
their names, therefore short names should be chosen in environments
with file name restrictions) [1]

set n uk=40; (for conditional simulation only) use universal (or ordinary)
kriging instead of simple kriging when the number of data in a kriging
setting is greater than or equal to 40. For multivariable prediction
the neighbourhood size is summed over all variables, otherwise it is
evaluated per variable. Setting n uk to zero limits use of simple kriging
to empty neighbourhoods only [very large: always use simple kriging]

set order=2; define the action when order relation violations occur during
indicator simulation (section 2.6; table 2.1) or indicator kriging (section
2.5). Values are 0: no correction for indicator kriging, assure that
estimated probabilities are in [0,1] before simulation; 1: as 0, but also
for indicator kriging; 2: rescale the estimated probabilities if their sum
is larger than 1; 3: rescale the estimated probabilities so that they
sum up to 1; 4: do order relation correction for cumulative indicators
(using the upward-downward averaging steps of GSLIB Deutsch and
Journel (1992)). [0: do only basic order relation violation corrections
for indicator simulation]

set plotweights=10; When plotfile is set, kriging weights will be plot-
ted during ordinary or universal kriging. If plotweights is larger than
1, data point sizes are proportional to kriging weights using size inter-
vals of 1

plotweights . If not (default), kriging weights are plotted as

data point labels (i.e., as text).

set quantile=0.25; when method was set to med, report p-quantile of
local neighbourhood selection as prediction value, and (1− p)-value as
prediction variance [0.5: the median]

set rp=0; follow regular, non-random path during sequential simulation
[1, follow a random path]
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set seed=1023; set seed for random number generator [0: seed is read
from the internal clock. If possible, microseconds are used. To check
this, run gstat a few times with debug set to 2].

set useed=4053341103U; set seed for random number generator when
outside the range of a signed integer; note the ‘U’ at the end of the
number [see seed].

set sparse=10; Use sparse matrix routines for covariance matrix. The
number of sparse should be a reasonable estimate of the number of
non-zero columns in each row of the covariance matrix V . [only avail-
able when sparse matrix routines in meschach are linked in; 0: use
dense matrices]

set xvalid=1; turn cross validation on (if prediction is possible) [0, no
cross validation]

set zmap=10.0; set height of mask map(s) to 10 when observations are
3-D. [0.0]

set lhs=1; Apply Latin hypercube sampling to Gaussian simulations; see
also marginals

set nocheck=1; Ignore error in case of an non-permitted coregionalisation
(intrinsic correlation or linear model of coregionalisation)

4.5 ‘method’

Values for method that make gstat deviate from the default action are:

gs override the default kriging method to get Gaussian simulations (section
2.6)

is override the default kriging method to get indicator simulations (section
2.6)

semivariogram sample semivariance on output (see also fit, section 4.4)

covariogram sample covariogram on output

trend spatial trend estimation (x0β̂), using generalised least squares if var-
iograms are specified, or else using ordinary or weighted least squares
(see Appendix A.2)
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map report the value of m mask maps at the prediction location of data()
as the output values, provided that n (dummy) input variable are de-
fined, with n ≥ m/2 (example [6.9])

distance report distance to nearest observation as the predicted value,
and the distance to the most distant observation (in the neighbourhood
selection, if defined) as prediction variance

nr report number of observations in neighbourhood as predicted value,
and, if omax was set, the number of non-empty octants (or quadrants)
as prediction variance

div diversity (the number of distinct values) in a local neighbourhood is
reported as the predicted value, the range of the values (largest value
− smallest value) is reported as prediction variance

med local median or quantile estimation, see quantile in section 4.4

point-in-polygon Provided a set of (closed) polygons is given with the
edges command, the (first) polygon in which the prediction location is
located is given in the output. Predicted value carries the file number
of the polygon, prediction variance the polygon number in the file. See
also Appendix B
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Further control

5.1 Start-up

When gstat is started, it first looks for an initialization file to load. If the en-
vironment variable GSTATRC specifies a file name, gstat will read the contents
of this file, or else gstat will search for the file $HOME/.gstatrc and read
it when found. If present, the initialization file should contain valid gstat
commands. After reading the initialization file, command line options are
processed, and finally the command file is processed. The processing order
determines when previously set commands will be overridden.

Information on gnuplot customization is obtained by starting gnuplot
and typing “help” or “help environment”. (If the help file is not found,
the environment variable GNUHELP should be set to the gnuplot help file,
gnuplot.gih.)

5.2 Command line options

Some options in gstat can be specified on the command line. Command
line options appear between the gstat command and the command file name,
options start with a -, and option arguments follow the option letter, possible
separated by white space, e.g. the command line

gstat -l gstat.log -d 2 zinc.gst

has two options, ‘l’ having argument gstat.log and ‘d’ having argument 2.
The final argument, zinc.gst is not part of an option, it is the main argu-
ment (the command file). A short list of command line options is obtained
by typing

gstat -h

47
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option meaning keyword
-C print copyright notice
-W print no-warranty notice
-v print long version information
-i enter the interactive variogram modeling user in-

terface (only available when method was not set
previously)

-d n invoke debug level n, see table C.4 debug

-s silent mode: print only warnings and errors debug

-o file specify (ascii) output file output

-p file specify gnuplot plot file plotfile

-l file specify (ascii) log file for debug information (de-
fault to screen)

logfile

-r n use random number generator n (try −1; see sec-
tion 5.3)

-S secure mode secure

-e action execute action action (see section 5.5)

Table 5.1: command line options

Special file names (pipes, append files) are explained in section 5.4. The list
of options is given in table 5.1.

5.3 Random number generators

For the simulation of random fields, gstat can use one of several random
number generators (RNG). The default generator depends on the platform
on which gstat was compiled:

• when the GNU Scientific Library (GSL) was present, the default rng is
mt19937 in this library

• else, when drand48 is present on the platform, this random number
generator is used by default

• else, Marsaglia’s random number generator is used.

The default RNG can be controlled with the command line option -r (section
5.2), try

gstat -r -1.
for an overview of available RNG’s.
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The GSL provides 26 different generators, and the one used is controlled
by setting the environment variable GSL RNG TYPE to one of the following
values: ranlux389 ranlux cmrg mrg mt19937 tt800 taus ran0 ran1 ran2

ran3 ranf rand48 ranmar zuf slatec r250 random minstd uni uni32 vax

transputer rand random8 randu. See the GSL documentation for details.
The seed of the RNG can be set by the variable seed. Default, the

seed is read from the CPU clock (using microseconds, when the function
gettimeofday is present, or else seconds). For the GSL, the environment
variable GSL RNG SEED may be used to override the seed in gstat (set or
default).

5.4 Special file names

Certain special file names are allowed in gstat. They enable filtering, append-
ing to files, using standard input or output streams and command output
substitution. (They will not have this effect for PCRaster file names.)

’> file’ If file exists, then append the output to file (if it is an output
file) instead of starting with a fresh file

’| file’ Open file as a pipe, either for reading or for writing

’-’ Use, instead of a disk file, for a reading process the stream stdin, or
for a writing process the file stdout

‘cmd‘ execute the shell command cmd and substitute its output for the file
name

Using pipes is at the user’s responsibility. Blindly executing command
files that contain file names with pipes to harmful commands may result
in damage (loss of files for instance). This also applies to the setting of the
gnuplot command(s), see section 4.4. Potential damage from such situations
is considered as “consumers risk”, it is comparable to renaming harmful
programs to often-used commands.

For safety reasons, the variable secure can be set to 1, which prohibits
gstat from system calls, creating pipes or deleting temporary files. Unlike
other variables, once secure is set, it cannot be set back (indeed, for secu-
rity).

As an example of using a pipe as file name, the first variable in example
[6.12] containing the data selection from zinc map.eas with a zero in column
5, could have been defined directly in terms of zinc map.eas as
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data(zinc.at.0):

"| awk ’{if(NR<11||$5==0){print $0}}’ zinc_map.eas",

x=1, y=2, v=3, log, min = 20, max = 40, radius = 1000;

provided that the awk program is available.

5.5 Execute (-e) actions

Several simple “special actions” are available in (“linked into”) gstat. They
are invoked as

gstat -e action arguments
and are strictly controlled by command line options and arguments. A list
of available actions is obtained by calling

gstat -e

and usage for each action is printed after running
gstat -e action

without arguments. Following is a list of available actions:

cover out map in map1 in map2 ... cover several input maps into the out-
put map: substitute in out map the missing values of in map1 with the
first non-missing value found in subsequent input maps, on a cell-by-cell
basis

convert Converts grid map file from one format to another (minimal con-
verter)

nominal out map in map0 in map1 ... in mapn from multiple input grid
map files write in each grid cell of out map the number of the first map
with a non-zero value in that grid cell (a value in [0, ..., n])

map2fig convert point data or grid map data to fig (XFig/fig2dev) file.
XFig is a vector graphics editor for X-Windows that supports exporting
to numerous formats.

map2gif convert grid map file to gif file. The gif library used to generate
gif’s from maps is not distributed as part of the gstat distribution; see
http://www.boutell.com/gd/

map2png See map2gif. Modern versions of the gd library only support
PNG instead of GIF, because of the unisys license thing. If such a
version of gd is found, gstat only supports map2png to create PNG’s.

semivariogram calculate sample variogram, using command line interface

http://www.boutell.com/gd/
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covariogram calculate sample covariogram, using command line interface

semivariance print semivariance table for a variogram model

covariance print covariance table for a variogram model

statistics output summary statistics for values read from one or more
files (for each file: min, max, median, quantiles, mean, standard devi-
ation, n)

5.6 Compiling and installing gstat

In order to work with gstat, binary executables of gstat and gnuplot are
needed. Both programs can be obtained in source form from the internet
and they can be compiled to executables using an ansi-c compiler. On Unix
systems, typing in the gstat directory

./configure

followed by

make; make install

may be sufficient for compiling and installing gstat.

Similarly, for compiling gnuplot, typing

./configure; make; make install

in the gnuplot directory may be sufficient to compile an install gnuplot. Type

./configure --help

to obtain the command line options for non-default configuring (e.g. of install
directories, libraries used). By default, for compatibility reasons the output
files from flex and bison are used for compiling gstat. If you want to use your
own lex or yacc version, remove the files lex.c, parse.c and parse.h from the
src directory. From bash or ksh, this is also accomplished by:

LEXYACC=1 ./configure

To my knowledge gstat has been successfully compiled on HP-UX, IBM
AIX, Dec OSF/Alpha, SunOS, SGI, Linux, MS-Windows (95, NT) and MS-
DOS/DPMI. When modifications to the makefiles or source files are necessary
to make the software run, please report them to gstat-info@geog.uu.nl

Gstat requires two external libraries: the Meschach matrix library Stew-
art and Leyk (1994) (available from netlib) and PCRaster grid map API (csf,
version 2). Both are distributed as part of the gstat source code distribution.
One other library is optional, and required for map2gif: the gd gif library
(copyright 1994, 1995, Quest Protein Database Center, Cold Spring Harbor
Labs, see http://www.boutell.com/gd/index.html).

mailto:gstat-info@geog.uu.nl
http://www.boutell.com/gd/index.html
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Binary executable files should be installed in a directory in the search
path for executables.
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Example command files

Following are the example command files, as distributed with gstat. The
data (zinc concentrations of the top soil, Fig. 6.1a) are collected in a flood
plain of the river Maas, not far from where the Maas entered the Netherlands
(Borgharen, Itteren, about 3 to 5 km North of Maastricht). All coordinates
are in metres, using the standard coordinates of Dutch topographical maps.
Moving from the river, zinc concentrations tend to decrease(Fig. 6.1b).

For the universal kriging examples, let the function D(x) be the function
that is for every location x the (normalised) square root distance to the river.
This function is physically stored for the observation locations in column 4 of
zinc map.eas (as obtained in example [6.9]), and for the prediction locations
in the map sqrtdist.map (Fig. 6.1c). The prediction area is split in two
separate sub-regions, A and B (Fig. 6.1d). Let the function IA(x) be 1 if
x ∈ A or else 0; and let the function IB(x) be 1 if x ∈ B or else 0.

The functions IA(x) and IB(x) are physically stored for the observation
locations in columns 5 and 6 of zinc map.eas, and for the prediction loca-
tions in the maps part a.map and part b.map. (Note that the partitioning
in A and B is arbitrary, it serves only illustrational purposes.)

The following command files, data and maps are distributed with gstat.
The online (html) version of this manual has example command files with
hyperlinks to all input data and (figures of) output maps.

These command files are purely for illustration and as such only suggest
possible forms of analysis. Remind that everything from a # to the end of
the line is comment.
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Figure 6.1: (a) map of zinc measurements in the top soil, (b) scatter plot of
zinc measurements and distance to the river Maas, (c) map with normalised
square root distance to the river Maas, (d) partitioning of the prediction area
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6.1 Example 1. Variogram modelling

#

# One variable definition:
# to start the variogram modelling user interface.
#

data(zinc): ’zinc.eas’, x=1, y=2, v=3;

6.2 Example 2. Variogram modelling of two

variables

#

# Two variables with (initial estimates of) variograms,
# start the variogram modelling user interface
#

data(zinc): ’zinc.eas’, x=1, y=2, v=3;

data(ln zinc): ’zinc.eas’, x=1, y=2, v=3, log;

variogram(zinc): 10000 Nug() + 140000 Sph(800);

variogram(ln zinc): 1 Nug() + 1 Sph(800);

6.3 Example 3. Inverse distance interpola-

tion

#

# Inverse distance interpolation on a mask map
#

data(zinc): ’zinc.eas’, x=1, y=2, v=3;

mask: ’mask map’; # the prediction locations
predictions(zinc): ’id pr’; # result map

6.4 Example 4. Ordinary block kriging

#

# Local ordinary block kriging at non-gridded locations

http://www.geog.uu.nl/gstat/manual/zinc.html
http://www.geog.uu.nl/gstat/manual/zinc.html
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#

data(zinc): ’zinc.eas’, x=1, y=2, v=3,

min=20, max=40, radius=1000; # local neighbourhood
variogram(zinc): 2.42e+04 Nug(0) + 1.34e+05 Sph(800);

data(): ’locs.eas’, x=1, y=2; # prediction locations
blocksize: dx=40, dy=40; # 40 × 40 block averages
set output = ’zincok.out’; # ascii output file

6.5 Example 5. Simple kriging on a mask

map

#

# Local simple point kriging on a mask map
#

data(ln zinc): ’zinc.eas’, x=1, y=2, v=3, log,

min=20, max=40, radius=1000, sk mean=5.9;

variogram(ln zinc): 0.0554 Nug(0) + 0.581 Sph(900);

mask: ’mask map’;

predictions(ln zinc): ’lzn skpr’;

variances(ln zinc): ’lzn skvr’;

6.6 Example 6. Unconditional simulation

#

# Unconditional Gaussian simulation on a mask
# (local neigbourhoods, simple kriging)
#

# defines empty variable:
data(ln zn dummy): dummy, sk mean=5.9, max=20;

variogram(ln zn dummy): 0.0554 Nug(0) + 0.581 Sph(900);

mask: ’mask map’;

method: gs; # Gaussian simulation instead of kriging
predictions(ln zn dummy): ’lzn uspr’;

http://www.geog.uu.nl/gstat/manual/zinc.html
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6.7 Example 7. Conditional simulation

#

# Gaussian simulation, conditional upon data
# (local neighbourhoods, simple and ordinary kriging)
#

data(ln zinc): ’zinc.eas’, x=1, y=2, v=3, log,

sk mean=5.9, max=20;

variogram(ln zinc): 0.0554 Nug(0) + 0.581 Sph(900);

mask: ’mask map’;

method: gs;

predictions(ln zinc): ’lzn cspr’;

set n uk = 20;

# use ordinary kriging when ≥ 20 data in neighbouhood
# set nsim=10;

6.8 Example 8. Ordinary block kriging on a

mask map

#

# Change of support: local ordinary block kriging on a mask
#

data(ln zinc): ’zinc.eas’, x=1, y=2, v=3, log,

min=20, max=40, radius=1000;

variogram(ln zinc): 0.0554 Nug(0) + 0.581 Sph(900);

mask: ’mask map’;

predictions(ln zinc): ’lzn okbp’;

variances(ln zinc): ’lzn okbv’;

blocksize: dx=40, dy=40; # define block dimensions

6.9 Example 9. Map values at point locations

#

# Obtain map values at data() locations
# (Point-map overlay)
#

data(a): dummy; # define n dummy data variable (n=n masks/2)

http://www.geog.uu.nl/gstat/manual/zinc.html
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data(b): dummy;

data(): ’zinc.eas’, x=1, y=2, v=3; # prediction locations
method: map; # mapvalues as ‘predictions’
masks: ’sqrtdist’, ’part a’, ’part b’; # the maps
set output = ’zincmap.eas’; # ascii output file.

6.10 Example 10. Multiple kriging

#

# Multiple kriging: prediction on more than one variable
# (ordinary kriging of two variables)
# (note that zinc map.eas wass obtained through ex09.gst)
#

data(ln zinc): ’zincmap.eas’, x=1, y=2, v=3, log,

min=20, max=40, radius=1000;

data(sq dist): ’zincmap.eas’, x=1, y=2, v=4,

min=20, max=40, radius=1000;

variogram(ln zinc): 0.0554 Nug(0) + 0.581 Sph(900);

variogram(sq dist): 0.0631 Sph(900);

mask: ’mask map’;

predictions(ln zinc): ’lzn okpr’;

variances(ln zinc): ’lzn okvr’;

predictions(sq dist): ’sqd okpr’;

variances(sq dist): ’sqd okvr’;

6.11 Example 11. Multivariable kriging (cok-

riging)

#

# Multivariable kriging: ordinary local cokriging of two variables
#

data(ln zinc): ’zincmap.eas’, x=1, y=2, v=3, log,

min=20, max=40, radius=1000;

data(sq dist): ’zincmap.eas’, x=1, y=2, v=4,

min=20, max=40, radius=1000;

variogram(ln zinc): 0.0554 Nug(0) + 0.581 Sph(900);

variogram(sq dist): 0.0001 Nug(0) + 0.0631 Sph(900);
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variogram(ln zinc, sq dist): 0 Nug(0)-0.156 Sph(900);

# NOTE: the 0 Nug(0)’s are added to make gstat recognize
# the Linear Model of Coregionalization
mask: ’mask map’;

predictions(ln zinc): ’lzn ckpr’;

variances(ln zinc): ’lzn ckvr’;

predictions(sq dist): ’sqd ckpr’;

variances(sq dist): ’sqd ckvr’;

# the next map holds the prediction error covariances:
covariances(sq dist,ln zinc): ’znsqdcov’;

6.12 Example 12. Stratified ordinary kriging

#

# Stratified ordinary kriging (within-categorie ordinary kriging)
#

data(zinc.at.0): ’zincat0.eas’, x=1, y=2, v=3, log,

min=20, max=40, radius=1000; # where part a = 0
data(zinc.at.1): ’zincat1.eas’, x=1, y=2, v=3, log,

min=20, max=40, radius=1000; # where part a = 1
variogram(zinc.at.0): 0.0654 Nug(0) + 0.548 Sph(900);

variogram(zinc.at.1): 0.716 Sph(900);

# the mask map is 0 for zinc.at.0 locations, 1 for zinc.at.1
mask: ’part a’;

# stratified mode: one map holds predictions for all vars:
predictions: ’lzn stpr’;

# another the prediction variances for all vars:
variances: ’lzn stvr’;

6.13 Example 13. Universal kriging (a)

using the model Z(x) = β 1 +D(x)β 2 + e(x):
#

# Local universal kriging, using one continuous variable
#

data(ln zinc): ’zincmap.eas’, x=1, y=2, v=3, log,

X=4, # sqrtdist values at data locations
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min=20, max=40, radius=1000; # apply model locally
# the variogram should be that of the residual:
variogram(ln zinc): 0.0674 Nug(0) + 0.149 Sph(700);

mask: ’sqrtdist’; # sqrtdist values at prediction locations
predictions(ln zinc): ’lzn ukpr’;

variances(ln zinc): ’lzn ukvr’;

6.14 Example 14. Universal kriging (b)

#

# Universal kriging, using one continuous and
# two binary variables.
#

data(ln zinc): ’zincmap.eas’, x=1, y=2, v=3, log,

X=-1&4&5&6;

# -1: no default intercept (col. 5 and 6 form an intercept)
# use global kriging: local kriging would lead to a singularity
# the variogram of e is:
variogram(ln zinc): 0.0698 Nug(0) + 0.147 Sph(709);

# mask maps holding the independent variable values
# at prediction locations, their order corresponding
# that of the X-columns:
mask: ’sqrtdist’, ’part a’, ’part b’;

predictions(ln zinc): ’lzn vkpr’;

variances(ln zinc): ’lzn vkvr’;

using the model Z(x) = D(x)β 1 + I A(x)β 2 + I B(x)β 3 + e(x):

6.15 Example 14a. Stratified universal krig-

ing

using the model Z i(x) = β i, 1 + D(x)β i, 2 + e i(x), i being the category
number:
#

# Stratified universal kriging (within-categorie universal kriging)
#

data(zinc.at.0): ’zincat0.eas’, x=1, y=2, v=3, X=4, log,

min=20, max=40, radius=1000; # where part a = 0
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data(zinc.at.1): ’zincat1.eas’, x=1, y=2, v=3, X=4, log,

min=20, max=40, radius=1000; # where part a = 1

# residual variograms:
variogram(zinc.at.0): 0.096572 Nug(0) + 0.226367 Sph(1069.33);

variogram(zinc.at.1): 0.115766 Sph(237.257);

mask: ’part a’, # 0 for zinc.at.0 locations, 1 for zinc.at.1 locs.
’sqrtdist’, # predictor values corresp. to col. 4 for zinc.at.0
’sqrtdist’; # predictor values corresp. to col. 4 for zinc.at.1
predictions: ’lzn stup’;

variances: ’lzn stuv’;

6.16 Example 15. Linear model prediction

(OLS)

using the model Z(x) = β 1 +D(x)β 2 + e(x):
#

# Local linear model, using one continuous variable
#

data(ln zinc): ’zincmap.eas’, x=1, y=2, v=3, X=4, log,

min=20, max=40, radius=1000; # apply linear model locally
# no variogram definition: assume residual to be IID.
mask: ’sqrtdist’;

predictions(ln zinc): ’lzn trpr’;

# prediction variance for point locations:
variances(ln zinc): ’lzn trvr’;

6.17 Example 16. Multivariable (cumulative)

indicator simulation

#

# Multivariable indicator cosimulation
#

data(i200): ’zinc.eas’, x=1, y=2, v=3, max=20, radius=1000,

I=200, sk mean = 0.28;
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data(i400): ’zinc.eas’, x=1, y=2, v=3, max=20, radius=1000,

I=400, sk mean = 0.56;

data(i800): ’zinc.eas’, x=1, y=2, v=3, max=20, radius=1000,

I=800, sk mean = 0.85;

# define an LMC:
variogram(i200): 0.0490637 Nug(0) + 0.182814 Exp(300);

variogram(i400): 0.0608225 Nug(0) + 0.21216 Exp(300);

variogram(i200, i400): 0 Nug() + 0.14806 Exp(300);

variogram(i800): 0.0550284 Nug(0) + 0.0842966 Exp(300);

variogram(i200, i800): 0 Nug() + 0.0525584 Exp(300);

variogram(i400, i800): 0 Nug() + 0.102852 Exp(300);

method: is;

mask: ’mask map’;

# apply order corrections for cumulative indicators:
set order = 4;

predictions(i200): ’i200pr’;

predictions(i400): ’i400pr’;

predictions(i800): ’i800pr’;

# uncomment next line to get 5 simulations:
# set nsim = 5;

6.18 Example 17. Trend surface prediction

#

# global coordinate polynomial trend surfaces
# trend orders 0-3.
#

data(zinc.0): ’zinc.eas’, x=1, y=2, v=3, d=0, log;

data(zinc.1): ’zinc.eas’, x=1, y=2, v=3, d=1, log;

data(zinc.2): ’zinc.eas’, x=1, y=2, v=3, d=2, log;

data(zinc.3): ’zinc.eas’, x=1, y=2, v=3, d=3, log;

mask: ’mask map’;

# predict block averages for very small blocks:
blocksize: dx=1, dy=1;

# variances apply to mean values,
# not for single observations
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predictions(zinc.0): ’lzn tr0’;

variances (zinc.0): ’lzn vr0’;

predictions(zinc.1): ’lzn tr1’;

variances (zinc.1): ’lzn vr1’;

predictions(zinc.2): ’lzn tr2’;

variances (zinc.2): ’lzn vr2’;

predictions(zinc.3): ’lzn tr3’;

variances (zinc.3): ’lzn vr3’;
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Appendix A

Equations

A.1 Spatial dependence

Sample variogram and covariogram

All variograms and covariograms are calculated from predicted residuals
ê(si) = z(si) − m̂(si), with m̂(si) the ordinary least square estimates of
m(si), fitted globally (all data of the variable are used in a linear model as-
suming IID errors), unless one of dX, noresidual or gls is set. The sample
variogram is calculated from residuals from a single realization z for regular
distance intervals [hj, hj + δ]. by:

γ̂(h̄j) =
1

2Nj

Nj∑
i=1

(ê(si)− ê(si + h))2, ∀(si, si + h) : h ∈ [hj, hj + δ]

with h̄j the average of all Nj h’s. A covariogram is modeled by fitting a

model to the sample covariogram Ĉ(h) calculated by:

Ĉ(h̄j) =
1

Nj

Nj∑
i=1

ê(si)ê(si + h), ∀(si, si + h) : h ∈ [hj, hj + δ]

The sample cross variogram γ̂kl(h) is calculated from sample data by:

γ̂kl(h̄j) =
1

2Nj

Nj∑
i=1

(êk(si)− êk(si + h))(êl(si)− êl(si + h)),

∀(si, si + h) : h ∈ [hj, hj + δ]

The sample pseudo cross variogram gkl(h) is calculated from sample data by

ĝkl(h̄j) =
1

2Nj

Nj∑
i=1

(êk(si)− êl(si + h))2, ∀(si, si + h) : h ∈ [hj, hj + δ].
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The sample cross covariogram Ĉkl(h) is calculated by the sample cross
covariance

Ĉkl(h̄j) =
1

Nj

Nj∑
i=1

êk(si)êl(si + h), ∀(si, si + h) : h ∈ [hj, hj + δ]

Gstat provides calculation of sample variogram, covariogram, cross vario-
gram, pseudo cross variogram and cross covariogram, where width δ, number
of intervals j and direction of h can be controlled. When some cross vario-
gram is requested, gstat decides which one should be calculated: the first,
‘classic’ cross variogram is calculated when the two variables have the same
number of observations and identical coordinates and order, in any other case
the pseudo cross variogram is calculated, this information is written to the
second line of the file with the sample variogram.

Estimation of variogram model parameters

Gstat provides several methods for estimating variogram model parameters.
Fitting of a variogram model to the sample variogram is done by iteratively
reweighted least squares (WLS, Cressie (1993)), minimizing

n∑
j=1

wj(γ̂(h̄j)− γ(h̄j))
2

with wj either equal to Nj or to γ(h̄j)
−2Nj.

Fixing parameters in a weighted least squares fit can be done by putting
an @ before the range or the sill parameter to fix: e.g. fitting the variogram
1 Sph(@ 0.2) will only fit the sill parameter (1), fitting @1 Sph(0.2) will
only fit the range parameter (0.2).

Within gstat, iterative fitting stops when the number of steps exceeds 50
(or the value set by iter) or when the fit has converged. A fit is considered
as ‘converged’ when the change in the weighted sum of squares of differences
between variogram model and sample variogram becomes less then 106× the
last value of this sum of squares (this number is controlled with fit limit).

Both gstat and gnuplot fix the fitting weights during iteration. For
this reason, when the fitted model strongly differs from the initial (start-
ing) model, another fitting round may converge to a (substantially) different
model, because the variogram model, and consequently the weights, changed.
Reiterated weighted fitting may very well result in never converging cycles.

Gstat uses Gauss-Newton fitting with (mostly) analytical derivative func-
tions; gnuplot uses Levenberg-Marquardt fitting with numerical derivatives.
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Finally, gstat provides REML (restricted maximum likelyhood) estima-
tion of partial sill parameters Kitanidis (1985); Christensen (1993) from sam-
ple data: this method is equivalent to a full weighted least squares fitting of
the variogram (sill parameters) to the pairwise products of the observations
(the covariogram cloud). REML estimation is shown to be equivalent to it-
erated MIVQUE (minimum variance quadratic unbiased estimation), and to
iterated MINQUE (minimum norm quadratic unbiased estimation) with an
Euclidean norm Christensen (1993). REML may be slow for moderate to
large data sets (more than 100 observations).

A.2 Prediction equations

This appendix assumes some familiarity with the matrix notation introduced
in Section 2.7. From the universal kriging equations, ordinary kriging can be
derived as the special case where p = 1 and F and f(s0) contain only ones.
Ordinary least squares prediction is a special case of uncorrelated weighted
least squares prediction and estimation (constant weights).

Using the matrix notation of Section 2.7, the observations z(s) are rep-
resented by the model

Z(s) = Fβ + e(s), E(e(s)) = 0, Cov(e(s)) = V (A.1)

with Z(s) = (Z(s1), ..., Z(sn))′, F = (f1(s), ..., fp(s)) with
fi(s) = (fi(s1), ..., fi(sn))′, and β = (β1, ..., βp)

′. Given this model (i.e., V is
known), the best linear unbiased prediction (kriging predictor) of Z(s0) is

Ẑ(s0) = f(s0)β̂ + v′0V
−1(z(s)− Fβ̂), (A.2)

with f(s0) = (f1(s0), ..., fp(s0)) and v0 = (Cov(e(s1), e(s0)), ...,Cov(e(sn), e(s0)))′,

and where β̂ is the best linear unbiased estimate of β:

β̂ = (F ′V −1F )−1F ′V −1z(s) (A.3)

The kriging prediction has prediction variance (kriging variance)

Var(Z(s0)− Ẑ(s0)) = σ2
Z(s0) − v′0V −1v0 + (A.4)

(f(s0)− v′0V −1F )(F ′V −1F )−1(f(s0)− v′0V −1F )′

with σ2
Z(s0) = Var(Z(s0)). When the trend contains an intercept (which

will be true in most cases), it is enough to know generalised covariances, de-
fined as c− γ(h), for arbitrary c and with γ(h) the variogram of Z(s). Gstat
chooses c as the sill of the variogram. When block predictions Ẑ(B0) are
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required, then for user-defined base functions the values for f(B0) should
be given as input to gstat (in the mask map(s) or in the X-columns of
the data() file), whereas point-to-block and block-to-block covariances (i.e.,
Cov(e(si), e(B0)) and σ2

Z(B0)) are derived from the point-to-point (gener-
alised) covariances, using Gaussian quadrature Carr and Palmer (1993) or,
when either nblockdiscr or area is specified, using simple integration (reg-
ular or user-specified discretization, equally weighted).

Simple kriging

When β is known, simple kriging prediction is obtained. It only involves the
prediction of e(s0):

Ẑ(s0) = f(s0)β + v0V
−1(z(s0)− f(s0)β)

having variance

Var(Z(s0)− Ẑ(s0)) = σ2
Z(s0) − v′0V −1v0

Multivariable prediction

When s variables Zk(s), k = 1, ...,m each follow a linear model Zk(s) =
Fkβk + ek(s), and the ek(s) are correlated, then it makes sense to extend the
weighted least squares model to allow multivariable prediction. Without loss
of generality, assume m = 2. When z(s) = (z1(s), z2(s))′ and B = (β1, β2)′

are substituted for z(s) and β, and when

f(s0) =

[
f 1(s0) 0

0 f 2(s0)

]
, F =

[
F1 0
0 F2

]
,

V =

[
V11 V12

V21 V22

]
, v0 =

[
v11 v12

v21 v22

]

with fk(s0) the f(s0) that corresponds to variable k, with

V21 = [Cov(e2(si), e1(sj))],

v21 = (Cov(e2(s1), e1(s0)), ...,Cov(e2(sn), e1(s0)))′,

and 0 a conforming zero matrix or vector, are substituted for f(s0), F , V and
v0, then the left-hand sides of both (A.2) and (A.4) yield the multivariable
predictions: the left-hand side of (A.2) then becomes the prediction vector
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ẑ(s0) = (ẑ1(s0), ẑ2(s0))′, and the left-hand side of (A.4) becomes the (2× 2)
matrix with prediction covariances.

The examples above assume that each variable Zk(s) has it’s own unique
parameter vector βk. It is however possible to define common parameters
for multiple variables (with merge, section 4.1). It is for instance possible to
define a common mean (intercept) (see “standardised ordinary cokriging” in
Deutsch and Journel (1992, p. 70), Isaaks and Strivastava (1989, p. 409–416),
or Goovaerts (1997, p. 323), or “collocated cokriging” Goovaerts (1997, p.
326)), or to define a common regressor across different variables (cf. Analysis
of covariance models, Christensen (1996, p. 193 and excercise 9.1)). In any
case, f(s0) and F loose their typical block structure. For instance, with
m = 2, and the trend of both Z1(s) and Z2(s) consist of one single intercept
(merging the intercept for both variables) leads to an F matrix with only one
column, filled with ones.

Uncorrelated least squares prediction

When the residuals are not correlated and have unequal variance, i.e. under
the model

Z(s) = Fβ + e(s), E(e(s)) = 0, Cov(e(s)) = σ2D

with D a known diagonal matrix, the uncorrelated least squares estimate for
β is obtained by

β̂∗ = (F ′D−1F )−1F ′D−1z(s)

having variance
Var(β − β̂∗) = (F ′D−1F )−1σ2

where σ2 is estimated by

s2 = z(s)′(I − FD−1(F ′D−1F )−1F ′D−1)z(s)/(n− p)

Least squares predictions at location s0 are obtained by

Ẑ(s0) = f(s0)β̂∗ (A.5)

having variance

Var(Z(s0)− Ẑ(s0)) = (1 + f(s0)(F ′D−1F )−1f(s0)′)σ2 (A.6)

or, when block prediction is involved

Var(Z(B0)− Ẑ(B0)) = f(s0)(F ′D−1F )−1f(s0)′σ2 (A.7)
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When variograms are specified, trend prediction (using method: trend;)
involves the calculation of f(s0)β̂, having variance f(s0)(F ′V −1F )−1f(s0)′.
When no variograms are specified, trend prediction involves the evaluation
of (A.5) and for variances either (A.6) or, for blocks, (A.7). D is by default
the identity matrix I, in which case ordinary least squares (OLS) is used, or
else it has elements specified by the V column of the data(id) file concerned.
Specifying V also results in weighted uncorrelated least squares estimation of
residuals in case of variogram modelling.

When common parameters are defined with merge, and no variograms are
specified, then estimation and prediction under the OLS and WLS models
will be done, in which case the constant variance is assumed for the joint
(multivariable) residual. In this case, known ratios in variances between dif-
ferent variables can still be set using the V field of each data variable.

Kriging data with known measurement errors

Known, constant measurement error can be defined in the variogram model.
Suppose the variable y has an apparent nugget effect of 1 and a spatially
correlated part of 1 exp(10), than the variogram model can be written as 1
Nug() + 1 Exp(10). This would yield the ‘standard’ kriging predictions, i.e.
exact interpolation. If it is known that 75% of the nugget variance constitues
of measurement error, and predictions are required for the measurement error
free part of the variable, then the variogram of y can be defined as:

variogram(y): 0.75 Err() + 0.25 Nug() + 1 Exp(10)

see for more information Cressie (1993).
Known, varying measurement errors can be defined (for data in column

files) by specifying the V field. When variograms are specified and the goal
is prediction or trend prediction, then the covariances Cov(e(si), e(si)) are
taken to be c − γ(h) + σ2

ε (si), with σ2
ε (si) the value of the V-field of record

i, thus interpreting the variance field (V) as a known, location-specific mea-
surement error Delhomme (1978); Pebesma (1996); Cressie (1993). Other-
wise formulated: in this case V +D is used as covariance matrix, instead of
V only. Putting a constant in the V field should yield the same results as
specifying this value in the Err term of the variogram.

A.3 Change of support: details

The average of a function f(·) over a block (or line or volume) B,

f(B) = |B|−1
∫
B
f(s)ds
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Figure A.1: Block discretization: locations si (+) and weights wi using (a)
4 × 4 Gaussian quadrature, (b) 4 × 4 regular

with |B| the block area (or lenght or volume) is approximated by:

f(B) ≈
N∑
i=1

wif(si)

with
∑N
i=1 wi = 1, and si the points that discretise the block B and where wi

are the weights for each point si.

Rectangular blocks

For rectangular blocks, gstat calculates block averages (for semivariances,
(generalised) covariances, coordinate polynomials or inverse distance weighted
interpolations) by using Gauss quadrature with 4 points in each block dimen-
sion (Fig. A.1, Carr and Palmer (1993)). Regular discretization (wi = N−1)
is obtained by setting nblockdiscr to the number of points in each direction
(section 4.4). Blocks are always centred at prediction locations.

Block-to-block covariances C(B1, B2) = |B1|−1|B2|−1
∫
B1

∫
B2
C(x)dudv are

calculated as

C(B1, B2) ≈
N1∑
i=1

N2∑
j=1

wiwjC(si, sj)

with si discretizing B1 and sj discretizing B2. For block kriging, block-
to-block (generalised) covariances C(B0, B0) are calculated only once per
variogram model. For Gaussian simulation of block averages though, this
double sum is recalculated for each pair of (simulated) block averages in a
kriging neighbourhood. This takes a while.
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Non-rectangular blocks

Mean values for arbitrary shaped, e.g. non-rectangular ‘blocks’ are obtained
when the area:’file’, ... ; command is set (using the data syntax, section
4.2) to specify the points that describe the shape. This area should, depend-
ing on the dimensions, be centred around the location (0), (0,0), or (0,0,0) in
order to obtain predictions centred around the prediction locations. Weights
wi of points discretizing the area are set to N−1, or, if the V field is defined
for the area, they are set to the values of that field.

If area is specified but no prediction locations are specified, then the area
average of the (points discretizing) area itself will be calculated, and written
to output. In this case, the area should not (necessarily) be centred around
zero, but should be the actual area for which area-average predictions are
required.

Base functions block averages

When base functions are used for the trend, gstat assumes that the user-
defined base function values at the prediction location are block average
values: gstat cannot average user-defined base functions over the prediction
block (it does so for coordinate polynomial base-functions).

A.4 Latin hypercube sampling

Suppose we want to simulate the outcome of a single continuous random
variable Z with known distribution FZ , to study how the outcome of a model
g(Z) depends on the distribution of Z. We could do this by using simple
random sampling, i.e. randomly drawing values from FZ . However, if g
is expensive to evaluate, other sampling strategies may be more efficient:
it is for instance well known that stratified sampling can characterise the
population equally well as simple random sampling with a smaller sample
size. Stratified sampling works as follows: (i) the distribution of Z is divided
into m segments, (ii) the distribution of n samples over these segments is
proportional to the probabilities of Z falling in the segments, and (iii) each
sample is drawn from its segment by simple random sampling. Maximal
stratification takes place when the number of segments (strata) m equals
the number of data n, and when Z has probability m−1 of falling in each
segment, and this is the most efficient.

When the model depends on two variables, like h(Z1, Z2), then values of
both Z1 and Z2 can be drawn by simple random sampling or by stratified
random sampling. The most efficient sample is maximally stratified for both
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Z1 and Z2 simultaneously. This means that a sample of size n of pairs (z1, z2)
is marginally n−stratified for both Z1 and Z2. Such a sample is called a Latin
hypercube sample McKay et al. (1979).

When, in a spatial context, multiple Gaussian simulations are created,
the simulations are independent in the sense that they are a random sample
from the ensemble of all realisations that were possible under the model spec-
ified: at a specific location x0 the subsequently realised values of the variable
Z(x0), (z1(x0), ..., zn(x0)) are a simple random sample from the distribution
of Z(x0). (The values of Zi(x) and Zj(x′), i 6= j, x 6= x′ may be spatially
dependent when both simulations were conditioned on a common data set.)
When we want a stratified sample of Z(x0), then this could simply be drawn
when FZ(x0) were known. However, this is less trivial when Zi(x) and Zi(x′),
x 6= x′ still have to obey the prespecified spatial correlation. A procedure
for obtaining a Latin hypercube sample in this context (multiple, spatially
correlated variables) is given in Stein (1987) and this procedure has been
implemented in gstat.

The procedure requires the marginal distribution of Z(x0). In case of
unconditional simulations, this distribution will be constant everywhere, and
when simple point kriging is used to obtain the Gaussian simulations, this
distribution is N (µsk, C(0)) with µsk the simple kriging mean (sk mean) and
C(0) the sill of the variogram used. If for instance 3 variables are defined in a
command file, and they have marginal distributions of respectively N (4, 3),
N (2, 5) andN (7, 2.5), then this is defined in a command file by the command

marginals: 4, 3, 2, 5, 7, 2.5;

If no such command is given, marginal distributions for variable i will be
taken as N (µsk,i, Ci(0)), a normal distribution with mean µsk,i and variance
Ci(0) (the sill of the variogram for variable i). If simulations are conditional
to known point data, then the marginal distributions are location specific,
and are obtained from simple kriging (prediction and prediction variance)
of the conditioning data. If, for 2 variables, such marginals reside in the
maps pr1, var1, pr2 and var2, denoting marginal distributions (as maps)
N (pr1,var1) and N (pr2, var2), then this is defined in a command file as

marginals: ’pr1’, ’var1’, ’pr2’, ’var2’;

In case of stratified simulation, only the two maps with the (stratified)
marginals have to be specified in the marginals command. Note that the
marginals construct limits the definition of location specific marginal distri-
butions (for conditional simulation with Latin hypercube sampling) to grid-
ded simulation.

A Latin hypercube sample is constructed from a simple random sample
if the command

set lhs=1;
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is set. The size of the (Latin hypercube) sample is set to 1000 by
set nsim=1000;

In order to obtain correct results, the sample size (the number of simulations)
must be large: in small samples the spatial correlation may be disturbed by
the Latin hypercube procedure Pebesma and Heuvelink (1999).



Appendix B

Using polylines with gstat

(This chapter was written by Konstantin Malakhanov. Names and addresses
of contributors to the code are found in the source code file polygon.c)

Often during interpolation one has to take into account boundaries (edges)
between data and/or interpolation points. These boundaries can be natu-
ral, like rivers or geological faults, or man-made, like legal boundaries. The
boundaries should be used at the selection of candidate data points, so only
appropriate ones will be used for estimation.

For open boundaries, selected data points and the estimation point have
to be at the same side of each boundary. For closed boundaries, data points
and the estimation point all have to be either inside or outside of each bound-
ary.

Figure B.1: Most often cases of open and closed boundaries (• estimation
point, ◦ data point). Selected data points are connected.

Certainly one can imagine cases of more complicated topology, with open
and closed boundaries mixed, or with connected boundaries etc. To see
an example how boundaries can be used in estimation process, see Joyce

75
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et al. (1997). For general computational geometry questions, see a book
of O’Rourke O’Rourke (1998) (with software available at http://cs.smith.
edu/~orourke/books/ftp.html) and Computational Geometry FAQ O’Rourke.

To handle the “interpolation with boundaries” in gstat, a new keyword
(edges) and a new method (point-in-polygon) are introduced. edges al-
lows to take boundaries into account during estimation. point-in-polygon
calculates which data points are inside of given polygons. The point-in-
polygon test is useful, if you want to exclude some data points outside of
given boundaries.

B.1 Implementation aspects

First we introduce the following definitions:

polyline - a line of multiple connected straight segments,

polygon - a closed polyline (first and last coordinate of the polyline are
equal).

For testing if two points are at the same side of a given boundary, we use
the line-of-sight test (fig. B.2).

2
1

4

3

Figure B.2: Line-of-sight test

An (imaginary) segment goes from the estimation point to each data
point in question. If the number of segment intersections is even, then both
points are supposed to be at the same side of the boundary, if the number of
intersections is odd, they are separated by the boundary.

In this example, the line •-1 has 0 intersections with the edge, the lines
•-2 and •-3 have only one intersection and the line •-4 has two intersections

http://cs.smith.edu/~orourke/books/ftp.html
http://cs.smith.edu/~orourke/books/ftp.html
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with the edge. So the data points 1 and 4 are assumed to be at the same
side of the edge as the estimation point.

There are some special cases in the test, like:

1. an estimation point or a data point lies on the edge

2. the segment goes exactly through a vertex of the edge (fig. B.3)

Figure B.3: Special case: the segment goes exactly through a vertex of the
edge

In the first case, the edge is completely ignored. In the second case, the
intersection of the segment does not count and testing will be continued.

The results of the test depend heavily on the topological connectivity of
edges (cf. fig. B.4).

Figure B.4: Different results of line-of-sight test

Here at the left subfigure (boundaries are slightly shifted for better overview)
both points are connected, whereas in the right subfigure, the points are dis-
connected by both line segments.

The line-of-sight test does not work for more complicated cases, for in-
stance in case of spiral boundaries (fig. B.5).
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1

2

Figure B.5: Line-of-sight test does not work in case of spiral edges

Here the line-of-sight test gives wrong results. Point 1 is actually at the
same side as the estimation point and point 2 is at another side.

Concerning the question of finding the shortest path between two points
(see section B.6), we are looking for the complete solution of this problem.
For now, the line-of-sight test should sufficiently work in most of the usual
cases.

For point-in-polygon test of points we have used the InPoly routine, which
is a part of the code in O’Rourke (1998).

InPoly test is written by Joseph O’Rourke, contributions by Min
Xu, June 1997.

For a given point it can define, if the point

• lies strictly inside or outside of a polygon,

• is a vertex of a polygon,

• lies exactly at the edge between vertexes.

B.2 Formats available for input

Boundaries can be read in two formats:

E00 format – this is supposed to be ASCII ARC/INFO coverage format.
As this format is not officially documented by ESRI, no warranty can
be given.

First and second lines of a file are:



B.3. NEW KEYWORDS 79

EXP    Name_of_coverage

ARC

Then every polyline (polygon) has the header

I_ok dummy_I dummy_I dummy_I dummy_I dummy_I I_np

x-y coordinates follow then, with either one coordinate (two numbers)
or two coordinates (four numbers) per line. I np is a number of coor-
dinates in that polyline. A polyline/polygon will be read in, if I ok

> 0.

“plot” format – only polylines/polygons data without header.

For every polyline/polygon, the first line gives a number of points. x-y
coordinates follow then, with either one coordinate (two numbers) or
two coordinates (four numbers) in each line.

Coverage format is automatically recognized by EXP as the first word of
a file.

B.3 New keywords

1. edges. To use like:

edges: "file1","file2",...;

Given boundary files will be read in and the boundaries will be used
during neighborhood search. You can give both polylines and polygons.

2. point-in-polygon. To use like:

method: point-in-polygon;

With given point locations (through data statement), gstat will search
which polygons the points are in. The output is a list of locations with
a file number in the prediction column and a polygon number in the
variance column of the output file. For points inside a polygon, this
will be numbers counting from 0. Locations which are not inside of any
polygon will have NA in both columns.
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B.4 Using point-in-polygon test

To use point-in-polygon test, give through data statement the locations of
points you want to test for being inside of given edges.

For this test, polylines do not have to be closed – they are treated as closed
anyway. Points on the polyline or coincident with vertices are assumed to be
inside of the polygon.

A data point gets the number of the first of given polygons it is in, or NA
otherwise. You can parse the output with tools you have at the hand (grep,
awk, Perl. . . ) and select points you are interested in.

B.5 Using polylines with interpolation

Edges are used for neighborhood selection after testing for radius/maximum
number of data points. The global selection will be changed as well.

Suppose we have an estimation point (to get an interpolated/simulated
value at) and a data point. First, all relevant edges in the search neighbor-
hood are found. This works by comparing the bounding boxes of all edges
with the box region of the estimation point (fig. B.6).
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Figure B.6: Test of edges’ extents

Then, depending on the type of the polyline (open/closed), the line-of-
sight test or the point-in-polygon test is performed for the estimation point
and all data points found so far.

During the testing, if the estimation point is found being on any edge,
this edge is skipped for further testing for this estimation point for all data
points. If a data point lies on any edge, this edge will not be tested for this
data point anymore.
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The edges test is repeated for all edges found. A data point will be used,
if it passes the test for all edges.

As you can see, all testing is done by brute-force testing. So if you have
a lot of edges, with all of them relevant for most of the data points, this
will slow down interpolation/simulation a lot. Smarter edges searching is for
sure possible, for example, using line quadtrees. Better testing can probably
be implemented in connection with finding the shortest path between two
points.

B.6 Distance calculation with boundaries

Both variogram calculation and interpolation depend on the calculation of
distance between two points. Without edges, this distance is simply an Eu-
clidean one. Taking edges into account, the situation will be more difficult
(fig. B.7).

Figure B.7: Indirect path between two points

Depending on the boundary topology, a shortest path could be not so
obvious at all.

There is a well-known solution for the problem of finding the shortest path
between points separated by some polygons (i.e. building the connection
graph and using Dijkstra’s algorithm). We were not able to find any ready
solution for the case of open polylines. So until the solution is found, the
distance between two points will be calculated without taking boundaries
into account. We suppose that the correct solution will also eliminate the
problems of the line-of-sight test.
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Appendix C

Trouble shooting

C.1 Error messages

C.1.1 From gstat

Errors can occur in the gstat code or during the matrix operations in the
meschach matrix library. The cause of and possible solutions to the latter
are explained in the second part of this section. Following is a list of the
gstat error messages (with exit values).

variable not set: ... (2) the named variable should have been set
in the command file.

variable outside valid range: ... (3) the named variable is out-
side its valid range (e.g. negative, where it should be positive).

value not allowed for: ... (4) the named variable got a value that
was not allowed (e.g. outside the valid range, or in contradiction to
other settings)

no file name set: ... (5) a file name was not set where it should.

write failed on file ‘...’ (6) could not write the named file (e.g.
no write permission, file system full,...).

read failed on file ‘...’ (7) could not read the named file (e.g. file
does not exist, no read permission,...).

cannot read real value from ‘...’ (8) could not transform the named
string into a real number.

83
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cannot read integer from ‘...’ (9) could not transform the named
string into an integer.

syntax error: ... (10) a syntax error occured in the file, at the po-
sition pointed to.

argument option error on ‘...’ (11) the named command line ar-
gument is erroneous.

domain (math) error on ‘...’ (12) math domain error

out of dynamic memory (13) Memory resources exhausted.
Reduce problem size or increase computer resources (e.g. platform,
memory, swap space).

i/o error: ... (14) interactive mode cannot be combined with redi-
rected input or output streams.

no command file (15) no command file was specified.

no user interface available (16)

error while writing to a pipe (17)

error while reading to a pipe (18)

operation not allowed in secure mode (19)

error in meschach matrix libary (20) followed by further notification
on what happened and hints on how this can be resolved

general error: ... (-1) and the next,

NULL argument in function ‘...’ (1) should not occur, please report
this type of error the author (use command line option -d2).

Other possible errors are:

error during variogram fit (no exit from user interface) If you
specify for instance a variogram model:

variogram(a): 1sph(2) + 1sph(2);

then the two models are linearly dependent—fitting their sill will lead
to a singularity. Also, if, at a nonlinear fit, the range of a model tends
to infinity, the true model may have to be a linear model (having one
parameter), but two parameters are being fit for it—they will then
be linearly dependent and lead to a singularity during fit. Solution:
simplify the variogram model.
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C.1.2 From meschach

The two most frequently encountered errors from the meschach matrix library
are:

Matrix not positive definite ...

or
Singular matrix in function ...

Apart from out-of-memory errors (see above) the meschach library terminates
program execution when it encounters a matrix singularity.

These two error messages may occur:

• during simulation, when an observation falls almost exactly at a simu-
lation location. Solution: increase the value of zero

• when two observations occur at identical location occur and noaverage

or average=0 was defined in a data definition. Solution: remove the
noaverage, or add average=1

• when a Gaussian variogram is used without a nugget effect. Solution:
add a nugget effect.

• when universal kriging is used (X and/or d defined), and at some stage,
usually in a local neighbourhood, one of the covariates (X-variables) is
constant (and therefore no longer independent from the intercept), or
dependent on another X-variable. Solution: increase the neighbourhood
size and make sure that X-variables are never dependent.

C.2 Strange results

Very strange values

When two (or more) of the observations are at very close distant but not
at the same location, the kriging system may become ill conditioned (i.e.
unstable). Ill conditioned kriging systems may lead to exceptional answers
(unrealistically high or low values) or to error messages. The solution to
this is to replace the close observations with one new observation (e.g. their
average) or to relocate them on the same location (so that gstat will, by
default, replace them by their average).

Checking the kriging matrices for their condition number can be done by
setting cn max to an appropriate value. If the estimated condition number
of a matrix exceeds this value, a warning message is printed and a missing
value is generated.
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Negative cokriging prediction variances

If arbitrary coregionalizations are defined (and the command set nocheck=1;

is set to allow this), than you will probably have encountered the warning:

Warning: No Intrinsic Correlation or Linear Model of

Coregionalization

or

Warning: Cauchy-Schwartz violation: ...

After the first warning, positive definiteness of the cokriging system cannot
be guaranteed anymore and thus cokriging variances may become anything—
positive or negative, even if the variograms pass the Cauchy-Schwartz check.

Unrecognised IC or LMC

IC (intrinsic correlation) or LMC (linear model of coregionalization) Journel
and Huijbregts (1978); Goovaerts (1997) are two models for a set of vari-
ograms and cross variograms that guarantee non-negative prediction vari-
ance. Gstat only recognises them when the order in which basic variogram
models appear in the variogram definition are identical. E.g.,

variogram(a): 1 nug() + 1 sph(2);

variogram(b): 2 nug() + 1 sph(2);

variogram(a,b): 0.5 nug() + 0.8 sph(2);

will be recognised as LMC, but

variogram(a): 1 nug() + 1 sph(2);

variogram(b): 1 sph(2)+ 2 nug(); # <- changed order

variogram(a,b): 0.5 nug() + 0.8sph(2);

will not be recognised by gstat as LMC, although it is one. Both definitions
will produce identical output.

Simulation speed

Simulation may be slow. Speeding up simulations can be done by (1) a faster
machine, or (2) tuning (reduce) the neighbourhood size, especially the radius,
or (3) choosing another simulation program, or (4) modifying the source (let
me know!).
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C.3 The value of zero

At several places in gstat, a result of a calculation that is very close to zero
should be treated as zero. Therefor, the value of zero is set to a small
positive value, and a quantity a is treated as zero when |a| < ε, with ε the
value of zero. This applies to the following cases:

1. when average is set, data points are averaged when their separation
distance is smaller than ε

2. when, in sequential simulation, the absolute value of the kriging vari-
ance is smaller than ε, it is treated as zero and ignored for simulation
(i.e., the kriging prediction is returned as the simulated value).

3. for the calculation of difference between two maps, (-e mapdiff) cell
values are said to be different if they differ more than ε.

4. for the calculation of point-block or block-block (generalized) covari-
ances, a block discretization point is shifted over distance ε when it is
closer than ε to another (discretizing) point.

5. for the filling of the point-point (generalized) covariance matrix during
REML fitting of covariance models, an off-diagonal point-point dis-
tances in x, y and z direction will be set to SIGN(a)ε when the sepa-
ration distance between point pairs is smaller then ε.

C.4 Debug information

Although the gstat error messages are intended to clarify what went wrong,
sometimes more information is needed to solve the problem. Extra informa-
tion on various subjects can be printed during program execution, by setting
the debug level to a specific value, e.g. to 9 by the command

set debug = 9;

or by setting the equivalent command line option -d 9 (section 5.2). All
debug information (“help information”) is written to the screen (stdout) but
can be redirected to a log file by the command

set logfile = ’gstat.log’;

or by the command line option -l gstat.log. Allowed values for the debug
level, and their effect are listed in table C.4.

To combine options, their values are summed. For instance, setting the
debug level to 3 invokes both levels 1 and 2; setting it to 1023 would invoke
them all. (Note that in certain circumstances, the log file size can become
huge.)
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debug output
0 suppres any output except warning and error messages
1 normal output (default): short data report, program action and

mode, program progress in %, total execution time
2 print the value of all global variables, all files read and written, and

include source file name and line number in error messages
4 print OLS and WLS fit diagnostics
8 print all data after reading them
16 print the neighbourhood selection for each prediction location
32 print (generalised) covariance matrices, design matrices, solutions,

kriging weights, etc.
64 print variogram fit diagnostics (number of iterations and variogram

model in each iteration step) and order relation violations (indicator
kriging values before and after order relation correction)

128 print warning on forced neighbourhoods (see force, section 4.4)
256 print, instead of program progress in %, for gridded prediction or

simulation the current row and column number, or else the current
record number

512 print block (or area) discretization data for each prediction location

Table C.1: values for debug and their output

Plotting kriging weights

When gstat is used for kriging prediction and the plot file name is defined,
with for instance the command:

set plotfile=’plot.gp’;

then kriging weights are printed to the plot file is such a way that they can,
for each prediction location, be plotted with gnuplot, using

gnuplot plot.gp

The variable plotweights can be set to express kriging weights using
different symbol sizes, its value expresses the range of sizes.

The steps of saving plot commands to file and starting gnuplot may be
combined on operating systems that support pipes, using:

set plotfile=’| gnuplot’;

assuming that the gnuplot executable is in the current search path.



Appendix D

Grid map and data formats

D.1 PCRaster maps

Input PCRaster maps should be readable as REAL4 maps. This implies
that any value scale, and all cell representations except REAL8, are allowed
as input maps. Output maps are written as REAL4 scalar maps, except
for maps resulting from indicator simulation (UINT1 scalar maps). Old
PCRaster (version 1) maps are supported when gstat is compiled with CSF_V1

defined, and linked to the version 1 csf library. (Support for version 1 may
not be maintained in the future.)

D.2 Idrisi data and maps

Idrisi file names should be given without extensions: gstat assumes the ex-
tensions (.dvc, .vec, .doc, .img) to be file-type specific. For instance, when a
mask is defined as

mask: ’maskmap’;

then gstat assumes the files maskmap.doc and maskmap.img to be present
and in the correct idrisi format.

Data can be read from idrisi point files (extensions .dvc and .vec). In
the .dvc file, the field id type should be real, file type should be ascii

and object type should be point.

Data or grid maps can be read from idrisi image files (extensions .doc

and .img). In the .doc file, the field data type should be real, byte or
integer, the field file type should be ascii or binary; the fields colums,
rows, min X, max Y and resolution should all be set (resolution must be
holding the cell size).
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http://www.geog.uu.nl/pcraster/pcraster.html
http://www.clarklabs.org/
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D.3 ArcInfo/Arcview grid maps

D.3.1 asciigrid

ArcInfo (or ArcView) Asciigrid maps are single ascii files, starting with a
number of header lines, followed by the grid cell values (row-wise, from left-
to-right). The header lines ave a field name and a value. Field names are
pretty much self-explanatory, they are: ncols, nrows, cellsize, xllcenter
or xllcorner, yllcenter or yllcorner, and (optional) nodata value.

D.3.2 floatgrid

A floatgrid map maskmap consist of two files: one ascii file with the name
maskmap.hdr that contains the grid map topology (as the asciigrid header),
and a binary file named either maskmap.flt or maskmap, containing the cell
values. Specify only the file name without the .hdr or .flt extension in gstat
commands. Field names in the header file are: ncols, nrows, cellsize,
xllcenter or xllcorner, yllcenter or yllcorner, byteorder, and (op-
tional) nodata value. The field byteorder should have value lsbfirst for
byte order of little endian processors (least significant byte first, like INTEL),
or else msbfirst (HP-PA and the like).

From version 2.1 on, gstat adds by default the .flt extension to the
binary grids file name to facilitate importing in ArcView (with 3D or spatial
analyst).

D.4 ER-Mapper maps

ER-Mapper support was contributed by Steve Joyce, who wrote the following
about it on Fri, 2 Jan 1998:

ER-Mapper provides a c-function library for programmers to read and
write datafiles in a standard way. Maybe you remember my first version
used this library, but linking gstat together with ER-Mapper.lib was just an
enormous pain in the ass. It turns out, ER-Mapper raster files are fairly
straightforward anyway, with a separate ASCII header and binary data file.
So the current version reads and writes the ER-Mapper files directly without
using ermapper.lib. This may cause it to fail for future versions of ER-
Mapper, but I can live with that.

ER-Mapper raster files can be multi-channel–I check the number of chan-
nels on input files and bail out if there is more than one. Maybe sometime we

http://www.esri.com/
http://www.ermapper.com/
mailto:steve.joyce@resgeom.slu.se
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can set up the data specification syntax to include a channel as you talked
about before.

ER-Mapper files can specify to skip a number of bytes in the binary file–I
don’t take care of this, but check the file size consistencey of the binary file.

ER-Mapper header binary files can have a different root name than the
header–I don’t take care of this, and force them to be the same.

ER-Mapper data types can be signed or unsigned chars, ints (16 or 32
bits), 4-byte real or 8-byte double. I read all formats and cast into 4-byte
real for sorage in the gstat gridmap. I always write 4-byte real.

Byte order can be specified in ER-Mapper raster files–I check for it and
reorder as necessary.

The ER-Mapper coordinate origin can be at an arbitrary fractional pixel
position–I correct it to be the upper left corner of the upper left pixel in the
grid.

ER-Mapper coordinates can be either Easting/Northing, Long/Lat, or
Raw(X-Y). I do a strict check for ’EN’ coordinates, because they match the
definition used in gridmaps. RAW coordinates have positive ’y’ going down
(same as cell coordinates) whereas EN coordinates have positive ’y’ going
up.

D.5 GMT grid maps

GMT grid maps are basically netcdf files. Gstat only includes GMT support
when it is linked with the netcdf library. This library is detected automat-
ically by the configure script (section 5.6), or it is added when configure is
invoked as

./configure --with-netcdf

GMT map support was contributed by Konstantin Malakhanov who wrote
about it:

“And last but not least: I write here all limitations of using GMT grids
with GSTAT :-

1. GMT grids can be centered at pixels or at nodes. GSTAT grids are
centered at pixels, so node-wise GSTAT grids will be converted to pixel-
centered. GMT grids from GSTAT are always pixel-centered. Con-
vertation could be made in two ways: either decrease the number of
rows and columns by one and set pixel values to mean (or median,
or what you like at most) value of 4 nodes (this changes values, but
preserves boundaries of grid) or extent grid limits to half cell size to
west/east/north/south and use nodes as centers of new pixels (this pre-
serves values, but slightly changes the limits of grids). I implemented

http://imina.soest.hawaii.edu/gmt/
ftp://unidata.ucar.edu/pub/netcdf/
mailto:kosta@iwwnt.iwwl.rwth-aachen.de
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the second way, so if you have GMT node-centered grid as mask, then
the extensions of result grid from gstat will be one cell size bigger in
X- and Y-directions!

2. GMT grids can have multiplication factor and an add offset for z-values.
As GSTAT grid definition does not allow for that, GMT grid values with
factor different from 1.0 and/or value offset different from 0.0 will be
accordingly transformed during the loading. (Comment: for reasons I
cannot understand GMT grids have sometimes factor 0.0 which makes
no sense. So factor==0.0 will be treated as 1.0). GSTAT grids in GMT
format always have factor== 1.0 and value offset==0.0.

3. GMT system allows for rectangular coordinate system or for geographi-
cal projections, but there is no way to detect it from grid itself (in GMT
commands , projection is almost always supplied as one of arguments
by user). So the way GMT grids are treated is defined by user and not
stored in a grid. That means that using GSTAT for grids which are
supposed to have longitude/lattitude coordinates WILL give results,
but these results are useless as spheroid of Earth is not taken into ac-
count and it means by no way that GSTAT can interpolate/simulate
over sphere in geographical projections (if one needs such things, take
a look at Spherekit at http://www.ncgia.ucsb.edu/pubs/spherekit). So
I didn’t follow this branch further.

4. GMT grid definition has fields for names of x-,y-,z-units. These fields
are ignored at reading and will be set to ” ” in the result grid.

5. GMT grids can have complex z-values. This is neither checked for nor
used!”

D.6 Surfer grid maps

Gstat now supports Surfer ascii (DSAA) grids. Missing values are stored as
a value outside the data range (given in the file header). In gstat command
files, grid map names should never have an extension (leave the .grd out).

http://www.goldensoftware.com/
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plotting kriging weights, 42

actions, 48
alpha, 39
anisotropy

geometric, 37
zonal, 38

arc-info, 10
area, 31
asciigrid, 10
average, 32
awk, 47

b, 33
base functions, 20, 21

arbitrary, 21
at mask map locations, 30
coordinate polynomials, 21

beta, 40
block discretization, 27
block discretization, nblockdiscr,

42
blocksize

specifying, 27
blocksize, 30
bounds, 30

Category, 32
category indicator transform, 32
change of support, 27
cn max, 39
command file

comment, 29
command file syntax, 29

command files, 9
command line options, 45
configure, 49
convert, 48
covariance, 49
covariances, 30
covariogram

sample, 43
equations, 63
non-interactive, 14

symmetric or asymmetric, 41
covariogram, 43
cover, 48
Cressie, 40
cross validation, xvalid, 43
cutoff, 40

d, 31
data

averaging coinciding points, 32
base functions

known coefficients, 33
omit intercept, 32

base functions, X, 32
category indicator transform, 32
data weights, V, 33
dummy, 34
empty variable, dummy, 34
indicator-transform, 32
known regression coefficients, 33
log-transform, 32
measurement error, V, 33
missing value, 31
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neigbourhood, see neighbour-
hood

normal score transform, 32
sampling, every, offset, prob,

33
standardise, 32
strata column, s, 34
trend order, d, 31
x-coordinate, 31
y-coordinate, 31
z-coordinate, 31

data, 31
data format, 10
debug, 39
default program action, 11
directional variogram, see alpha,

beta, tol hor, tol ver

distance, 44
distance to prediction locations, 44
div, 44
dots, 40
dummy, 34
dX, 33

edges, 30
estimates, 30
every, 33
example command files, 51
external drift, 20

fit, 40
fit limit, 40
floatgrid, 10
force, 34
format, 40
fraction, 40

Gaussian simulation, gs, 43
generalised least squares, 22
gls, 41
gnuplot, 13

output device, gpterm, 41

gnuplot, 40
gnuplot35, 41
gpterm, 41
grid map format, 10
gridded prediction locations, 30
gs, 43

height of mask map, 43

I, 32
identifiers, 29
idp, 42
idrisi, 10
indicator simulation, 19

categorical, 19
cumulative, 19
independent, 19
order relation violations, 20

indicator transform, 32
installing

gnuplot, 49
gstat, 49

interactive variogram modelling, 12
intervals, 41
inverse distance power, idp, 42
inverse distance weighted interpo-

lation, 14
invoking gstat, 9
is, 43
iter, 41

kriging, 14
at mask map locations, 30
block, 27
equations, 65
local, 16
simple kriging mean, sk mean,

34
universal, 20

kriging, ordinary, 14
kriging, simple, 14, 15
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Latin hypercube sampling, 43
lhs, 43
library

csf, 49
gd, 49
meschach, 49

linear model
independent residuals, 22

linear models, 20
local diversity, div, 44
local neighbourhood, 16
local quantile estimation, 42
log, 32
log-transform data, 32
logfile, 39

map, 44
map format, 10
map values at data locations, 44
map2fig, 48
map2gif, 48
map2png, 48
marginals, 39
mask, 30
max, 34
measurements, see data, 31
med, 44
merge, 31
meschach matrix library, 49
method, 43
min, 34
missing value

number, mv, 31
string, set mv, 39

multiple realisations, 42
mv, 31

nblockdiscr, 42
neighbourhood

force minimum size, 34
max nr observations, 34

min nr observations, 34
octant search, 34
quadrant search, 34
radius, 34
selection, 16
size as prediction value nr, 44
square, 34
variogram distance, vdist, 34

nocheck, 43
nominal, 48
noresidual, 33
normal score transform, 32
nr, 44
ns, 32
nsim, 42
n uk, 42

observations, see data, 31
offset, 33
omax, 34
order, 42
ordinary least squares, 22
output, 39
output file name, 39

pager, 41
pcraster, 10
pipes, 47
plotfile, 39
plotting kriging weights, 39
plotweights, 42
point-in-polygon, 44
prediction, 14

at mask map locations, 30
common parameters, 31
equations, 65
local, 16
method, 43
modes, 25
multiple, 25
multivariable, 26
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non-gridded, data(), 30
output maps, 30
stratified, 26

predictions, 30
prob, 33
program action, default, 11

quantile, 42
quantile estimation, 42

radius, 34
random number seed, useed, 43
random number generators, 46
random path, rp, 42
residuals, generalised least squares,

41
robust variogram estimator, Cressie,

40
rp, 42

s, 34
sample covariogram, 43
sample variogram, 43
sampling data, every, offset, prob,

33
save variogram plot, 13
secure, 41
seed, 43
semivariance, 49
semivariogram, 43
set, 38
set parameter = value, 38
simple kriging mean, sk mean, 34
simulation, 17

at mask map locations, 30
block, 27
block averages, 19
Gaussian, gs, 43
indicator, 19
indicator, is, 43
local neighbourhood, 17
multiple, 25

multiple realisations, 42
multivariable, 26
non-gridded, data(), 30
number of realizations, 17
random path, 18
sequential, 17
stratified, 26
variogram reproduction, 18
varying mean, 18

sk mean, 34
sparse, 43
special file names, 47
square, 34
standard, 32
standardise data variable, 32
start up files, 45
statistics, 49
support, change of, 27
sym, 41

temporary files, 47
tol hor, 41
tol ver, 41
trend, 20

arbitrary base functions, 21
constant, 20
coordinate polynomials, 21
estimation, 43
generalised least squares, 22
order, d, 31
ordinary least squares, 22
varying, 20
weighted least squares, 22

trend, 43

universal kriging, 20
useed, 43

V, 33
v, 31
variances, 30
variogram
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cressie’s robust estimator, 40
cutoff, max. distance, 40
directional, see directional
geometric anisotropy, 37
interval width, 41
maps, 14
max distance, intervals, 41
modelling, 12

fit method, 40
iterations in fitting, 41

models
figure, 37
table, 36

near replicates, dX, 33
number of intervals, intervals,

41
OLS/WLS/GLS residual, 23
pooled, dX, 33
residual, 33
sample, 43

equations, 63
irregular interval bounds, 30
non-interactive, 13

save plot as, 13
symmetric or asymmetric, 41
zonal anisotropy, 38

variogram, 34
variogram modelling, 12
vdist, 34

weighted least squares, 22
width, 41

X, 32
x, 31
xvalid, 43

y, 31

z, 31
zero, 39
zero dist, 41

zmap, 43
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