

A statistical approach applied to trace gas gradients with low signal to noise ratio

Lukas Siebicke (1), Martina Hunner (1), Thomas Foken (1)

(1) University of Bayreuth, Department of Micrometeorology, Bayreuth, Germany

Theory

The atmosphere in the subcanopy sample volume can be mixed by turbulence or non mixed.

Assumption:

- Regarding the **mixed** case, the distribution function of concentration differences of any two sample points has a **mode of zero** even though their mean can be different.
- Regarding the **non mixed** case, the distribution function of concentration differences of any two sample points has a mode possibly different from zero even though their mean can be different.

Test 1: Logic

If the air is well mixed, most often any two sample points sample the same concentration, less often they sample different concentrations.

Test 2: LES

The LES simulation was run by Gerald Steinfeld.

Concentration time series

Test result:
for turbulent conditions
represented by LES the
distributions of concentration differences have

their mode around zero.

Setup

Conclusions

Question:

Does the presented method remove true signal, i.e. the concentration difference which is used to calculate horizontal advection?

Answer:

- Yes, a small part, since shifting the time series by an offset acts as a high pass filter. Filter window length is given by distribution window length. This effect is assumed to be a small fraction of the signal given an appropriate window length.
- No, most of the true signal is retained. The skewness of the distributions allows a mode equal to zero and a mean not equal to zero. This allows gradients to survive during signal shifting.

Comparison mean and mode

The corrected signal should be taken as a "trustable minimum estimate". It might be slighly smaller than the true signal but is never larger.

References:

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society series B, 53, 683–690.