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Abstract       The estimation of carbon exchange between ecosystems and the atmosphere suffers unavoidable data gaps in
eddy-covariance technique, especially for short-living and fast-growing croplands. In this study we developed a modified
gap-filling scheme introducing a leaf area index factor as the vegetation status information based on the conventional light
response function for two East-Asian cropland sites (rice and potatoes). This scheme’s performance is comparable to the
conventional time window scheme, but has the advantage when the gaps are large compared to the total length of the time
series. To investigate how the time binning approach performs for fast-growing croplands, we tested different widths of the time
window, showing that a four-day window for the potato field and an eight-day time window for the rice field perform the best.
The insufficiency of the conventional temperature binning approach was explained as well as the influence of vapor pressure
deficit. We found that vapor pressure deficit plays a minor role in both the potato and the rice fields under Asian monsoon weather
conditions with the exception of the early pre-monsoon growing stage of the potatoes. Consequently, we recommend using the
conventional time-window scheme together with our new leaf-light response function to fill data gaps of net ecosystem exchange
in fast-growing croplands.
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1.         Introduction
Contemporary cultivated areas comprise 24% of the terres-
trial surface of the earth (Millennium EcosystemAssessment,
2005). The estimate for net ecosystem exchange (NEE) of
carbon dioxide (CO2) in croplands is therefore an important
issue for the study on global carbon budget. The eddy-covari-
ance technique is well-known for the ability to continuously
and directly quantify NEE between the earth surface and at-
mosphere (Baldocchi et al., 2001; Baldocchi, 2003). How-
ever, data gaps in the eddy-covariance technique are unavoid-
able and limit the carbon budget estimate. An average of 35%
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of flux observations are reported as missing or rejected (Falge
et al., 2001). Data gaps are due to system breakdown, calibra-
tion, and maintenance, or caused by farming or human activi-
ties, or by weather conditions when the assumptions required
by the eddy-covariance technique are not fulfilled (Foken and
Wichura, 1996). The incompleteness of datasets requires
gap-filling and correcting strategies based on the understand-
ing of ecosystem-atmosphere exchange (Papale, 2012).
The gap-filling strategies for NEE data have drawn much

attention in the last decade. Many statistical and empirical
approaches have been developed and discussed considering
the major driving factors for NEE, i.e. the growing stages
of the vegetation of interest, the light response of the plant,
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air or soil temperature, vapor pressure deficit (VPD), and
soil water availability (Greco and Baldocchi, 1996; Falge
et al., 2001). Amongst all of these, mean diurnal variation,
look-up table, and non-linear regression are the most com-
monly used methods. New gap-filling methods have been
developed, including dual unscented Kalman filter (Gove
and Hollinger, 2006), artificial neural networks (Papale
and Valentini, 2003), multiple imputation method (Hui et
al., 2004), and other biosphere energy-transfer hydrology
models (Moffat et al., 2007). However, these methods are
evaluated for European and American sites rather than Asian
ones. Moreover, these studies are mainly related to forests
rather than fast-growing crops.
Compared to forest ecosystems, a cropland ecosystem has

the special features and requires different considerations to
estimate NEE and to deal with data gaps. Most of the avail-
able papers do not mention the leaf area index (LAI), or just
treat LAI as a constant in time, probably because the LAI
of forests is large and the change of LAI is too small to de-
tect with remote sensing techniques. However, the cropland
canopy changes rapidly during the growing season. Gaps in
these fast growing stages could introduce more uncertainty
than slow-growing stages (Richardson and Hollinger, 2007).
Some of the conventional gap-filling strategies (e.g. mean di-
urnal variation, look-up tables, and non-linear regression) are
normally based on monthly or even seasonal time windows.
To take into account a rapid LAI change, time windows as
short as a few days (Ammann et al., 2007) are needed to cap-
ture the rapid change in the CO2 exchange. This could en-
large the problem that the minimum number of data, which
are needed in each time window to apply the statistics, is
not reached. An additional problem is that many crops have
growing seasons as short as three or four months, resulting
in a database less sufficient than evergreen forests for some
gap-filling strategies such as artificial neural networks, which
need large data-sets for training. Moreover, croplands are
so intensively managed and manipulated by farmers’ deci-
sions (e.g. irrigation, different planting and harvesting dates)
across both regions and time (Li et al., 2011) that it is diffi-
cult to find a universal strategy encompassing the site-specific
year-to-year variation. Croplands are usually patchy with
a mixture of crop species, which results in mixed NEE in-
formation captured by the eddy-covariance technique. Foot-
print heterogeneity should be included to improve the perfor-
mance of parameterization routines (Falge et al., 2001). Sea-
sonal weather patterns increase the complexity of gap-filling
as well. For instance, the monsoon is a major factor strongly
controlling the carbon budget in Asia (Kwon et al., 2010).
Intensive rain, snow or storm events disturb the eddy-covari-
ance measurements resulting in large periods without reliable
observations. Furthermore, filling large gaps provides more
challenge than small gaps because the change of the canopy

and the underlying surface properties with time must be con-
sidered (Falge et al., 2001; Moffat et al., 2007; Richardson
and Hollinger, 2007). Further investigations on croplands
have been requested, and other factors such as physiological
factors are required to validate and improve the gap-filling
methods (Falge et al., 2001; Moffat et al., 2007; Xing et al.,
2007).
The information about NEE of croplands is limited (Falge

et al., 2002) due to the lack of researches focused on this topic
especially in Asia. Recently, Lei and Yang (2010) have re-
ported seasonal and inter-annual variations in NEE at a win-
ter wheat/summer maize rotation cropping site in the North
China Plain. Du and Liu (2013) have reported seasonal and
inter-annual variation of NEE in a maize cropland in a semi-
arid area of China. Eddy-covariance technique was used in
both studies. Lindner et al. (2015) have studied seasonal pat-
terns of NEE in five croplands (potato, rice, radish, cabbage,
and bean) in Korea, using a closed chamber system. None of
these studies has focused on the development of gap-filling
methods for NEE data.
This study was intended to improve the gap-filling meth-

ods for NEE data collected in fast-growing croplands. We
presented a modified parameterization approach, including a
LAI factor as the information about the growing stages of
fast-developing croplands in a simple and comparable way.
An improved criterion for applying the data-binning methods
with a statistical based approach was investigated for the first
time. The sensitivity of the conventional methods to different
parameterization approaches was discussed as well.

2.         Materials and methods

2.1         Data collection

We carried out the observation in the field campaign of
the TERRECO (Complex TERRain and ECOlogical Het-
erogeneity) project at Haean Punchbow, Yanggu-gun,
Kangwon-do, South Korea, in 2010. Haean Punchbow is
an intensively-managed agricultural area surrounded by
mountains and influenced by the Asian monsoon. We chose
a potato field site (38°16′38″N, 128°7′28″E, 455 m a.s.l.)
and a rice field site (38°17′28″N, 128°7′52″E, 457 m a.s.l.)
for study. The growing seasons in 2010 lasted from the
planting day of DOY 116 to the harvesting day of DOY 273
for potato (26 April to 30 September 2010), and DOY 144
(transplanting day) to DOY 290 (harvesting day) for rice (24
May to 17 October 2010). Normally potatoes are harvested
at the end of August. However, intensive rain events during
summer 2010 postponed the harvesting day to one month
later than usual.
An eddy-covariance system was alternately running in the

potato field or the nearby rice field for, in total, three periods at
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each site. The first period at the potato site lasted from DOY
152 to 175, the second from DOY 187 to 203, and the last
from DOY 225 to 240. In between, the eddy-covariance sys-
tem was moved to the rice field site (from DOY 177 to 186,
203 to 223 and 242 to 274). The turbulence fluxes of CO2

were measured on a mast 2.5 m above ground at the potato
field and 2.8 m at the rice field, using an ultrasonic anemome-
ter (USA-1, MeteorologischeMesstechnik GmbH, Germany)
and a fast-response open-path H2O/CO2 analyzer (LI-7500,
LI-COR Inc., USA). The software package TK3 (Mauder and
Foken, 2011) post-processed high frequency (20 Hz) raw data
to calculate 30-min aggregated fluxes of NEE and generate
the observed database (Database-observation). This flux cal-
culating and correcting strategy is well documented, inter-
compared by the international micrometeorology community
(Mauder et al., 2008), and successfully applied during known
major field experiments such as EBEX-2000 (Mauder et al.,
2007; Oncley et al., 2007), LITFASS-2003 (Mauder et al.,
2006), and COPS-2007 (Eigenmann et al., 2011). Automatic
weather stations (AWS,WS-GP1, Delta-T Devices Ltd., UK)
were used at both sites for the measurement of meteorological
variables (5-min values), including air temperature, humidity,
wind speed and direction, precipitation, and global radiation.
Biomass samples were collected and measured half-monthly
at both sites. On each occasion, five to ten whole plants were
randomly sampled and leaves were immediately separated
and analyzed by a leaf area meter (LI-3000A, LI-COR Inc.,
USA) to calculate the LAI. A linear interpolation between the
measured LAI values was used to produce a complete time
series. For further information about the field campaign, see
Zhao et al. (2011).

2.2         Generation of high-quality database

In order to examine time series of fluxes and generate a high-
quality database, we applied the data-quality selection cri-
teria by Lüers et al. (2014). Briefly speaking, TK3 elimi-
nated spikes in 20-Hz records, and filtered direct measure-
ments (e.g. horizontal wind speed, vertical wind speed af-
ter rotation, sonic temperature, absolute humidity, and car-
bon dioxide concentration) and subsequently derived vari-
ables (e.g. covariance, wind direction, atmospheric stability,
and all fluxes) by applying reasonable physical consistency
limits. An overall quality classification strategy (Foken and
Wichura, 1996; Foken et al., 2004) combining steady-state
test and the integral turbulence characteristics test marked
the derived 30-min fluxes with overall quality flags of 7–9
as low-quality data, and marked the flux data with flags of
1–6 as high-quality data for further analysis. The diagnos-
tic signals (i.e. AGC, the status of the chopper motor and
the chopper temperature controller, the detector cooler, and
the sync between the LI-7500 embedded software and the
chopper motor) from LI-7500 digital outputs were used to

mark those values during rain and fog events as outliers as
well. Furthermore, the internal boundary layer and footprint
information was used to estimate the contribution by the tar-
get surface. Turbulent flux data were marked as irrelevant
records when flux contribution from the target land-use type
was less than 70% and the aerodynamic measurement height
was larger than 0.5x0.5 (Eigenmann et al., 2011), where x is the
fetch. Finally, a statistical algorithm check, including an ab-
solute deviations filter and a standard deviation filter, was per-
formed on the basis of the comparison between each 30-min
value and the values before and after. Database-observation
excluding low quality data and outliers by the steps abovewas
used as the high-quality database (Database-high-quality).
The final data coverage of Database-high-quality is 71% for

the potato field and 59% for the rice field during the measure-
ment periods. For the potato field, the data gaps cover 1%
because of the power failure, 21% by the AGC-check, 3% by
eliminating low-quality classified data, and 4% by applying
the statistical outlier check. For the rice field, this distribu-
tion is only slightly different (7%, 30%, 2%, and 2%, respec-
tively).

2.3         Gap-filling methods

2.3.1   Database for gap-filling
NEE of Database-high-quality was partitioned into ecosys-
tem respiration (Reco) and gross primary productivity (GPP):

RNEE GPP .eco= + (1)

The signs follow the conventional meteorological definitions
that carbon uptake by the ecosystem is negative and carbon
release is positive.
Assuming no photosynthesis during nighttime (Reichstein

et al., 2005), the measured nighttime NEE is equal to Reco.
Thus, the night-time NEE was used for the parameterization
Reco (Section 2.3.2). The fitted parameters and daytime tem-
perature were used to calculate the daytime Reco. GPP was
obtained by subtracting Reco from NEE and then used for
evaluation of the gap-filling schemes. The separation of data
into daytime data and nighttime was performed by the eval-
uation of global radiation with a threshold of 20 W m−2 and
cross-checked against sunrise and sunset time derived from
the local time and standard sun-geometrical routines (Reich-
stein et al., 2005; Papale et al., 2006; Lasslop et al., 2010).

2.3.2   Reco estimate
The Lloyd-Taylor function (Lloyd and Taylor, 1994; Falge et
al., 2001; Ruppert et al., 2006) was used for parameterizing
the temperature dependence of Reco:

R R e ,
E T T T T

1 1
eco ref

0
ref 0 0= (2)

where Rref (µmol m−2 s−1) is the ecosystem respiration rate at
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a reference temperature (Tref, set as 283.15 K), E0 (K) is the
temperature sensitivity, T (K) is the air temperature, and T0
(K) is a constant value of 227.13 K as in Lloyd and Taylor
(1994).

2.3.3   Parameterization for the light response function
(1) Conventional schemes (temperature or time-window bin-
ning scheme). Light response functions describe the solar ra-
diation dependency of NEE. As the rectangular hyperbolic
function shows the best overall performance among many
light response functions used for daytime NEE gap-filling
(Falge et al., 2001), the gap-filling methods in this study are
on the basis of theMichaelis-Menten function (Michaelis and
Menten, 1913)

R
R

RNEE ,g

g
eco=

+
+ (3)

where Rg (W m−2) is the global radiation, α (µmol s−1 W−1)
is the initial slope of the curve, and β (µmol m−2 s−1) is the
saturated CO2 uptake rate when Rg is close to infinity.
It has been reported that the parameterization for eq. (3)

can be improved by a temperature binning scheme (binning
observations into temperature classes) to capture the tempera-
ture dependence of the carbon assimilation (Falge et al., 2001;
Ruppert et al., 2006), or by a time-window scheme (binning
observations into time intervals) to distinguish different sea-
sonal response within different periods (Falge et al., 2001;
Moffat et al., 2007). Different opinions, however, exist in the
community about the utilization of these schemes. The tem-
perature binning scheme is based on the fact that the assim-
ilation of CO2 has an optimal temperature, below or above
which the photosynthesis ability will decrease (Saxe et al.,
2001). Nevertheless, it was found that air temperature has
weak influence on photosynthesis during summer in forests
(Bassow and Bazzaz, 1998). The time-window scheme is
based on the seasonal changes in leaf area, soil moisture and
photosynthetic capacity, which leads to the requirement of
continual updating and adjusting of the regression scheme
(Baldocchi, 2003). The selection of time windows was em-
pirical and varying from one month to a full year for forest
sites (Falge et al., 2001; Stoy et al., 2006; Moffat et al., 2007).
For grassland, the use of a 5-d moving window to capture
the rapid change of the surfaces was reported (Ammann et
al., 2007). A short time window of 4 to 15 d was often used
to account for seasonal parameter variability (Lasslop et al.,
2010). Generally, the widths of time windows for regression
depend on (1) how rapidly the vegetation develops, and (2)
how large the gaps are because the time-window scheme can-
not fill gaps larger than the selected time window (Falge et al.,
2001; Stoy et al., 2006), which could be a problem for sites
influenced by power failure or bad weather. It was reported,
however, that additional temporal sub-binning of data did not
significantly improve the simulation of temperature binning

scheme for forest sites (Ruppert et al., 2006). In this study,
Database-high-quality was binned into 14, 8, 4, or 2 K tem-
perature classes, or sorted into 16, 8, 4, or 2 d time windows,
to test the temperature and seasonal dependencies of the pa-
rameterization of eq. (3). Individual fittings of α and β were
determined for each temperature class or time window.
A VPD factor was introduced to account for the stomatal

response to dry air conditions. Eq. (3) was modified by in-
troducing an exponential function (Lasslop et al., 2010)

( )e ,   VPD VPD ,
,                    VPD VPD ,

VPD VPDk
0

0
0

0 0

= > (4)

where β0 was a parameterized constant, and the threshold
VPD0 (hPa) was set to 10 hPa (Lasslop et al., 2010).
(2) Modified scheme (LAI factor scheme). As carbon

exchange between agro-ecosystems and the atmosphere is
strongly correlated to crop development (Béziat et al., 2009),
and LAI plays a key role in the allocation of carbon to leaves
(González-Sanpedro et al., 2008), our modified scheme for
seasonal response introduces a LAI factor to account for
seasonal variability.
Firstly, GPP is expressed as

R
R

GPP .g

g

=
+

(5)

Suppose that each unit area of leaves which are active in
photosynthesis has equal ability of carbon uptake. A leaf-
light response function by introducing a LAI factor into eq.
(5) is proposed as

R
R

GPP
LAI

,
act

g

g

=
+

(6)

or

R
R

GPP LAI ,act
g

g

=
+

(7)

where LAIact is the mean LAI which is active in photosynthe-
sis, approximately taken as measured LAI in this study. The
parameters α' and β' can be defined as specific light use effi-
ciency and specific saturated GPP. We suppose that α' and β'
are constant for a given crop species and do not change with
the vegetation development. Therefore, the whole dataset of
Rg, GPP, and LAIact within the growing season can be used
to parameterize eq. (7). Consequently, large gaps in GPP are
expected to be filled with the derived parameters α' and β', be-
cause the non-linear development of LAI is already included.
The leaf-light response function (eq. (7)) is a combination

of both leaf and light responses of GPP. The validation of eq.
(7) was performed in three steps: firstly, the light response
function (eq. (5)) is a special case of eq. (7) when the vegeta-
tion condition is constant. Thus, for a given value of LAIact,
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the coefficient α and β in eq. (5) must hold constant. Sec-
ondly, for a given value of solar radiation, α 'Rgβ'/α′Rg+β′
must be constant, thus a LAI response function can be ex-
pressed as

aGPP LAI ,LAI act= (8)

where aLAI is a constant slope. Finally, the whole dataset must
follow eq. (7).

2.3.4   Evaluations of the methods
To assess the agreement between the observation and the
simulation by the fitted parameters, a random walk was
performed along Database-high-quality to mark 10% of
them as artificial gaps (Database-artificial-gaps) (Moffat et
al., 2007). The remaining 90% of Database-high-quality
were used to fit the equations of the models in question
(Database-parameterization). The gap-filling methods were
evaluated by examining the comparison between the sim-
ulation (Database-simulation) and Database-artificial-gaps.
We evaluated the overall performance of these methods by
ranking Nash-Sutcliffe model efficiency coefficient (NSeff;
Legates and McCabe, 1999) and index of agreement (d)
between Database-simulation and Database-artificial-gaps.
Additionally, mean average error (MAE), standard deviation
(SD), root mean square error (RMSE), and normalized root

mean square error (NRMSE) were also calculated to indicate
the magnitude and distribution of the individual errors.
We used Taylor diagrams (Taylor, 2001) to plot SD, R, and

NRMSE of the agreement between Database-simulation and
Database-artificial-gaps in one figure in order to test the sen-
sitivity of a gap-filling scheme. In a Taylor diagram, each
single point specifies the performance of one scheme, with
the radial distance as SD, the polar angle as R, and distance
to observation point as NRMSE. A farther distance between
two simulations indicates a bigger sensitivity.

3.         Results and discussion

3.1         Meteorological conditions and biomass development

The meteorological conditions and biomass development
during the growing seasons are shown in Figure 1. As the
research sites were located only 1.5 km away from each other
without big obstacles in between, the daily meteorological
conditions were quite similar. Therefore, only those at the
potato field are shown. Daily mean temperatures at both
sites varied from 8 to 27°C during the growing seasons. The
warmest month was August with a monthly mean of 22°C.
The daily mean relative humidity was often high, above 80%

Figure 1            Meteorological conditions and biomass development at the research sites, including daily mean air temperature ((a), solid line), daily mean air
relative humidity ((a), dashed line), daily sum precipitation ((b), bar), daily mean solar radiation ((b), dashed line), and leaf area index (LAI, (c), solid line
representing potato and dashed line representing rice). Error bars are the standard deviations. The vertical dot lines from left to right indicate the planting
day of potato, the transplanting day of rice, the harvesting day of potato, and the harvesting day of rice, respectively. The shaded area indicates monsoon and
subsequent typhoon season.
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on most days from June to August, resulting in many fog
events. The annual precipitation was 1586 mm in 2010, close
to the annual mean of 1577mm over the last 11 yr. 75% of the
annual precipitation fell in the crop growing season from June
to September. However, the precipitation in June (70 mm)
and July (222 mm) was only half of the 11 yr monthly mean,
while the precipitation in September (427mm)wasmore than
twice the 11 yr monthly mean, indicating a time shift of the
summer monsoon. Large gaps (several days) in Database-
parameterization were found during these rain events because
of the poor instrument status.
LAI changed rapidly at both sites. In the rice field, the

plants had a LAI close to zero at the beginning of the ini-
tial stage. Leaves and stems grew rapidly in the develop-
ment stage, when a maximum increasing rate of LAI reached
0.24 m2 m−2 per day in late July. From the beginning of the
mid-season, the grains emerged and grew fast with the de-
crease of green leaves until the late-season. The potato started
a rapid growth in the development stage, with the LAI in-
creasing from 0.5 to 4 m2 m−2 within just one month. The
maximumgrowing rate of LAI reached 0.21m2m−2 per day in
June. In the following mid- and late-seasons, the new tubers
grew while green leaves declined. At the end of the growing
season, almost all green leaves disappeared. The harvest of
potatoes typically took place in late August or early Septem-
ber only if the field was dry enough. In 2010, however, the
intensive rainfall in August led to too wet and heavy soils un-
til the end of September. Therefore, the late potato season in
2010 was longer than in normal years.

3.2         Conventional time-window scheme

The performances of simulations applying the conventional
time-window scheme for daytime NEE simulation are shown
in Figure 2 and Table 1. The time-window scheme appar-
ently improves the agreement between the simulation and the
observation, with high indexes of agreements (d) up to 0.98
and NSeff up to 0.93. No difference in sensitivity between

the time windows of 8, 4, and 2 d is found either in Figure
2 and Table 1, or by d, or NSeff. If the width of the time
window increases above a certain length (more than 16 d in
this study) the performance decreases significantly. For the
potato field, the mean average error is 2.2 µmol m−2 s−1 (8 d),
1.9 µmol m−2 s−1 (4 d), and 1.9 µmol m−2 s−1 (2 d). There-
fore, a 4 d time window is as good as a 2 d and better than
an 8 d window. For the rice field, 8, 4 and 2 d time windows
perform similarly, with identical mean average errors of 1.6
µmol m−2 s−1. The 2 d time window performs even a little
worse than the 4 d time window at the rice field because of
the insufficient data coverage. Therefore, the best time win-
dow is 4 d for the potato field and 8 d for the rice field. If we
consider the mean change rate of LAI, we find that the change
in LAI (ΔLAI) within these optimal time windows is approx-
imately 0.5 m2 m−2. The simulations are not sensitive to the
widths of time windows when ΔLAI<0.5 m2 m−2. Therefore,
this value of ΔLAI could be used as an indicator to determine
the width of the best time windows for inter-site comparison
and even for other types of croplands.

3.3         Performance of LAI-factor scheme

We picked observations with several constant values of LAI
(1, 2, 4 m2 m−2 with a tolerance window of ±0.1 m2 m−2)
out of the high quality database as the first step to validate
the LAI-factor scheme. For each group with a constant
LAI, the non-linear-regression was applied to parameterize
the light-response function (eq. (5)). The model for each
constant LAI value had small standard error (SE) of 0.009
to 0.017 µmol s−1 W−1 for α, and 2 to 12 µmol m−2 s−1 for
β, which demonstrated that α and β hold nearly constant
for a give value of LAI. Moreover, the absolute value of α
increased from 0.041 to 0.101 µmol s−1 W−1 and β from 16
to 57 µmol m−2 s−1 with the increase of LAI from 1 to 4
m2 m−2, which indicated that the values of both α and β were
influenced by LAI values.
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Figure 2            Taylor diagrams for the performances of simulations applying the time-window scheme and the LAI-factor scheme at the potato field (a) and the
rice field (b). The polar radial distance is the normalized standard deviation (NSD). The polar angle is the correlation coefficient (R).

Zhao P, et al.   Sci China Earth Sci   August (2016)  Vol. 59  No. 8 1657



Table 1        Comparison between the simulation and observation of net ecosystem exchange of carbon dioxide

Potato Rice
Scheme

MAE RMSE rSD d R MAE RMSE rSD d R

Temperature binning 28 K 4.8 6.2 0.52 0.66 0.55 6.0 7.5 0.56 0.61 0.44

Temperature binning 14 K 4.8 6.2 0.52 0.66 0.55 4.9 6.4 0.64 0.75 0.63

Temperature binning 8 K 4.8 6.2 0.62 0.70 0.55 4.0 5.3 0.72 0.85 0.77

Temperature binning 4 K 4.7 6.1 0.64 0.72 0.58 3.7 5.0 0.73 0.87 0.80

Temperature binning 2 K 4.5 6.1 0.66 0.72 0.57 3.8 5.0 0.74 0.87 0.79

Time window 90 d 4.8 6.2 0.52 0.66 0.55 6.0 7.5 0.56 0.61 0.44

Time window 16 d 2.6 3.3 0.97 0.95 0.90 1.9 2.9 0.91 0.97 0.94

Time window 8 d 2.2 2.9 0.97 0.96 0.93 1.6 2.5 0.93 0.97 0.95

Time window 4 d 1.9 2.6 0.96 0.97 0.93 1.6 2.2 0.98 0.98 0.96

Time window 2 d 1.9 2.6 0.95 0.97 0.94 1.6 2.3 0.99 0.98 0.96

LAI-factor 3.0 4.3 1.23 0.93 0.88 5.2 6.6 1.42 0.88 0.85

The second step to validate the LAI-factor scheme was per-
formed in a similar way: observations with several constant
values of solar radiation (100, 200, 400, 600 W m−2 with a
tolerance window of ±20 Wm−2) were picked out of the high
quality database. For each group with a constant solar radia-
tion, the linear regression between GPP and LAI was applied
(eq. (7)). GPP showed good correlation (R2 ranging between
0.87 to 0.95, standard error of the slope aLAI ranging between
0.09 to 0.30 µmol m−2 s−1) for a given value of solar radiation,
which demonstrated that the LAI response function (eq. (8))
holds. Furthermore, the absolute value of the linear slope aLAI
increases from 2.08 to 6.52 µmol m−2 s−1 with the increase of
solar radiation from 100 to 600 W m−2, indicating the influ-
ence of solar radiation on aLAI.
The mixed influence of both LAI and solar radiation could

already be seen in the first and second steps, which resulted
consequently in the third step. The non-linear regression of
the leaf-light response function (eq. (6)) was applied to the
whole high quality dataset. The modeled values of α′ are
−0.039 µmol s−1W−1 for potato and −0.024 µmol s−1W−1 for
rice, while the values of β′ are −15.6 µmol m−2 s−1 for potato
and −11.5 µmol m−2 s−1 for rice. α′ is 63% larger, and β′ is
36% larger in the potato field than in the rice field, indicating
that potato has a more robust ability of carbon assimilation
than rice on the basis of unit LAI. The leaf-light response
of GPP can be seen in Figure 3. For a given LAI, eq. (6)
becomes the conventional light response function (eq. (5)).
For a given solar radiation, eq. (6) becomes the LAI response
function (eq. (7)).
A good agreement between the simulated GPP by the leaf-

light response function and the derived GPP from the ob-
served NEE and simulated respiration was found. The lin-
ear regression showed R2 of 0.85, slope of 1.00±0.01, and
intercept of 1.38±0.18 µmol m−2 s−1 for the potato field, and
R2 of 0.72, slope of 1.02±0.02, and intercept of 3.44±0.33
µmol m−2 s−1 for the rice field. The index of agreement (d)

confirmed the reliability of the simulation with 0.93 for the
potato field and 0.88 for the rice field as well. This good per-
formance of the leaf-light response function indicates that it
could be used to parameterize the light response of crops as
an alternative method to the time-window scheme to capture
the seasonal change of the vegetation and surface conditions.
The validation of the leaf-light response function provides

evidence to explain the relationship between the light use ef-
ficiency (α) and LAI reported in the literature. It was found
that the light use efficiency increases with development of a
crop (Suyker et al., 2005). Positive correlation between a and
LAI with R2 = 0.83–0.93 was reported for grass component of
a fen ecosystem (Otieno et al., 2009) and with R2 = 0.40–0.98
for a variety of crops (Lindner et al., 2015). In our study, com-
paring eqs. (5) and (7) can derive α=LAIactα′ and β=LAIactβ′,
indicating that the constant α′ (or β′) is the slope of the lin-

Figure 3            Leaf-light response of GPP in the potato field according to eq.
(6). GPP is given in µmol CO2 m−2 s−1, LAI given in m2 m−2, and Rg in
W m−2.
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ear relationship between α (or β) and active LAI, and that the
difference in the light use efficiency between crops is likely
due to the individual value of α′ for each crop. Lindner et al.
(2015) suggested that this relationship is possibly due to in-
creased chlorophyll in the growing leaves. Their conclusions,
that the solar radiation controls the diurnal patters in GPP and
NEE, while the changing α and LAI controls the seasonal pat-
terns, can be consistently explained by our leaf-light response
function.
The LAI-factor scheme has the following advantages, con-

ferred by using the whole Database-parameterization with-
out any grouping. Firstly, conventional gap-filling methods
suffer from a lack of data in each data class, if the width of
time windows or temperature classes (mean diurnal variance
method and non-linear regression method) or the width of
the cells (look-up table method) does not match the statis-
tical data distribution. The conflict exists in the requirement
for a time-window to be short enough to exclude the errors
contained in the nonlinear dependence of environmental vari-
ables (Falge et al., 2001) and to be long enough to contain
sufficient data for calculating a meaningful statistic needed
to apply the mean diurnal variance method, the look-up table
method, or the non-linear regression method. This statisti-
cal problem can be avoided by using the LAI-factor scheme.
Secondly, the time-window related schemes have difficulties
if large gaps exist, and fail when the period of the missing
data is longer than the time-window itself (Stoy et al., 2006).
These cases often occur due to the power failure at the lo-
cations of field campaigns or during longer rain or fog events
(e.g. in the monsoon and subsequent typhoon season in South
Korea). Conventionally, the time-window scheme could fill
these large gaps by interpolating the parameters or the fluxes
calculated before and after the gaps. Unfortunately, it could
introduce errors when the LAI develops non-linearly in time.
For instance, if a gap takes place during the period at the max-
imum of the LAI when the potential photosynthesis ability
reaches the maximal efficiency, this simple interpolation will
underestimate the GPP. The LAI-factor scheme can overcome
this problem if the LAI is available during these large gaps.
Errors in the estimation of LAI could have influence on

the performance of the LAI-factor scheme. Every measured
LAI-value in our case was estimated from several randomly
sampled plants in the footprint-area of the eddy-covariance
measurement of both field sites. Since individual plants de-
velop differently from each other, the limited number of sam-
ples could result in an error through the calculation of a rep-
resentative mean. Furthermore, the simple linear interpola-
tion to fill the time-steps between the distinct LAI measure-
ments couldmiss some development stages of the plants. LAI
normally remains constant at a potato field when the crop is
fully developed (González-Sanpedro et al., 2008). Unfortu-
nately, during our field campaign only one measurement at
the growing peak during the mid-season stage was available

(Figure 1). Thus, the linear interpolation could probably un-
derestimate the real LAI before and after the peak value. Fi-
nally, during the mid-seasons when LAI is large, the over-
lapping of green leaves results in less effective photosynthe-
sis than during the early and late seasons, which makes the
estimated mid-season LAI larger than the effective LAI (so
called foliar clumping effect). These potential errors men-
tioned above could explain why the time-window scheme
with small time windows sometimes performs better than the
LAI-factor scheme. It could be expected that a better estima-
tion of effective LAI would improve the performance of the
LAI-factor scheme. A large amount of manual biomass sam-
pling could possibly improve the parameterization of day-
time NEE, but this sampling method is destructive and thus
could change the footprint of the eddy-covariance measure-
ment. Satellite imaging (González-Sanpedro et al., 2008, res-
olution of 30 m; Jiang et al., 2010, resolution of 1 km), cam-
era retrieving (Migliavacca et al., 2011) or modeling (Li et
al., 2011) could be alternatives and expected to reduce these
errors and improve the simulation.

3.4         Temperature-binning scheme

The performances of temperature-binning approaches are
shown in Figure 4. All the temperature-binning approaches
(class widths between 28 and 2 K) for the potato field have
a poor performance, with low indexes of agreement (d <
0.72) and low NSeff < 0.32. The consequently reduced
class widthonly slightly improves the explained variance for
NEEfor the potato field, which proves a poor sensitivity of
the potatoes to temperature. However, for the rice field, d
increases from 0.61 to 0.85 and NSeff from 0.16 to 0.58,
decreasing the width of the temperature bins from 28 to 8 K,
which superficially indicates a better temperature sensitivity
of the rice.
For both sites, the smaller classes of 8, 4 and 2 K have a

similar performance, indicating that it is unnecessary to bin
the data into temperature classes smaller than 8 K. This range
is larger than the 4 K temperature class used by Falge et al.
(2001) for a variety of sites including croplands and the 2 K
temperature class used by Ruppert et al. (2006) for a forest
site. They also reported that additional time windows do not
significantly improve the temperature binning method, be-
cause the existing long-time seasonal temperature response
of the long-living and slow-growing coniferous forest is al-
ready covered by the time-independent allocation of the val-
ues into the temperature bins. However, this could fail for
short-living and fast-growing crops, thus we found that the
temperature-binning scheme and time-window scheme per-
form differently in our study. Either the LAI-factor scheme
or the time-window scheme, even with the 16 d time-window
approach, results in a much better agreement than the small-
est temperature binning (2 K) approach. This implies that, if
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Figure 4            Taylor diagrams for the performances of simulations applying the temperature binning scheme at the potato field (a) and the rice field (b). The polar
radial distance is the normalized standard deviation (NSD). The polar angle is the correlation coefficient (R).
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Figure 5            Temporal distribution of temperature measurements within temperature classes at the potato field and the rice field.

the seasonal or daily weather conditions are in a normal cli-
mate range, the long-time seasonal and short time diurnal
temperature responses of the crops play a minor role com-
pared to the fast changing development of the crop plant. Fur-
thermore, we combined the LAI-factor scheme with the tem-
perature binning approach. We found that additional temper-
ature binning does not improve the simulation of the LAI-fac-
tor scheme (not shown), which demonstrates that the temper-
ature dependency can be ignored if the plant development is
well considered. The temporal distribution within tempera-
ture classes (Figure 5) could explain why a smaller temper-
ature binning could improve the simulation for both sites in
spite of the minor temperature dependency. Some tempera-
ture values were observed only during some special periods.
For instance, the 2 to 10°C temperature class at the potato

field falls exactly into the DOY 144 to 160 time window,
which makes the overall simulation of the 8 K temperature
binning approach better than the simulation of larger temper-
ature classifications. Since the 18–26°C temperature class is
distributed over almost the whole growing season, the tem-
perature binning scheme mixes these time windows together
and fails to perform a good simulation.
The application of temperature-binning scheme has been

less common than the time window scheme in the recent
years, but the reason has not been explained in the literature.
According to our study, temperature binning contains some,
but not all, relevant information of seasonal response for NEE
gap-filling for croplands, which is insufficient for the regres-
sion of the light response function. The air temperature has
both a diurnal and a seasonal cycle within a year. As the diur-
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nal cycle of temperature is partly a function of solar radiation,
which is included in the light response function, and the sea-
sonal cycle of temperature is contained in the time-window
scheme or the LAI-factor scheme, we suggest that tempera-
ture binning could be ignored if the plant development is well
simulated.

3.5         VPD factor

The asymmetric pattern in the diurnal cycle of NEE should
be considered in gap-filling because in the afternoon higher
temperature and higher VPD leads to a higher evaporation
rate and then to a stomatal closure (Lasslop et al., 2010). We
used the time-window scheme including a VPD-factor to test
this effect on the irrigated and non-irrigated croplands. The
VPD effect on the rice field can be ignored during the whole-
growing season (Figure 6b), because with the permanently

irrigated and flooded rice terraces, the observed VPD is be-
low the plant physiological threshold (VPD0 = 10 hPa) dur-
ing most of time of the growing season (Figure 7). At the
non-irrigated potato field, the VPD-effect can be ignored dur-
ing the active monsoon, but must be taken into account dur-
ing pre-monsoon season (e.g. DOY 152 to 175, Figure 7),
especially in the afternoon when the VPD exceeded 15 hPa
(Figure 6a), because of dry weather. These high VPD values
during this pre-monsoon period can have a significant impact
to the gap-filling of the whole growing season depending on
the length of the dry pre-monsoon period compared to the to-
tal growing season.

3.6         Step-by-step gap-filling scheme

Based on the results of the previous sections, we defined an

Figure 6            Mean diurnal cycles of vapor pressure deficit (VPD, △), solar radiation (×), observed NEE (●), simulated NEE by the time-window scheme without
VPD-factor (○) and with VPD-factor (+) for the potato field during the earlier growing season (a) and the rice field during the whole season (b).

Figure 7            Boxplot of vapor pressure deficit (VPD) during each measurement period at the potato field and the rice field. The boxplot is composed of the
median (solid line), the lower quartile and upper quartile (i.e. the 25th and 75th percentile, box), the lowest datum still within 1.5 times of interquartile range
(IQR) of the lower quartile, and the highest datum still within 1.5 IQR of the upper quartile (markers).
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Figure 8            Scheme of data-processing for the calculation of annual sums of NEE, partly based on the scheme by Ruppert et al. (2006). Rectangular boxes
represent datasets. Rounded boxes represent data processing steps. The compensation of vapor pressure deficit (VPD) can be inserted into the positions marked
with “*”. The abbreviations stand for eddy-covariance software package of the Department of Micrometeorology, University of Bayreuth (TK3), the Net
Ecosystem Exchange (NEE), Gross Primary Production (GPP), ecosystem Respiration (Reco), and Leaf Area Index (LAI).

overall step-by-step scheme for helping to determine NEE
of CO2 of fast-growing croplands, which is presented in
Figure 8.

4.         Conclusions
Based on the conventional light response function, the new
leaf-light response function suggested in this study can be

used as a new gap-filling scheme with a LAI-factor for crop-
lands. It features the inclusion of the vegetation status in-
formation rather than the simple linear interpolation of NEE,
and the use of the whole data-set for parameterization. These
features have advantages for short-living fast-growing crop-
lands, especially for those suffering from the lack of observa-
tion resulted from bad weather, power failure, patchy plant-
ing, and intensive farmland managements. Although the con-
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ventional time window approach is still the best data bin-
ning scheme for the non-linear regression method if suffi-
cient observation is available within each time window, a
seasonal or monthly time window could significantly decline
the performance of the simulation. We found the optimal
window width is four days for potatoes and eight days for
rice. Within these window widths the mean value of ΔLAI
is 0.5 m2 m−2, which could be a reference to determine the
time window width for other fast-changing vegetation sur-
faces. On the other hand, the seasonal response cannot be
captured by the conventional time-independent temperature
binning approach, which should be ignored. The VPD effect
above irrigated agriculture (e.g. rice) in East-Asia can be ig-
nored during the whole growing season. At the non-irrigated
cropland (e.g. potato, carrot or cabbage), the VPD-effect
can be ignored during the active monsoon but must be taken
into account during pre-monsoon season. Since the humidity
conditions of non-irrigated croplands are quite site-specific,
the VPD influence should be checked for different sites. In
general, we recommend using the conventional time-window
scheme together with our new LAI-factor scheme to fill gaps
in the NEE time series for fast-growing croplands. These two
schemes have the advantages of treating small and large gaps,
respectively.
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