

but th

Bayreuth Center of Ecology and Environmental Research

Bayceer

BayCEER workshop 2014 2 October

but th

Byceer Bayreuth Center of Ecology and Environmental Research

Bav

Outline

1 Motivation

2 Setup and data analysis

- The EVENT II experiment
- Horizontal mobile measurement system (HMMS)
- The HMMS within Event II

3 Results

- General results
- Specific situations
- 4 Influence on plant energy exchange: Convection vs. radiation
- 5 Conclusion

b M Th

Bayreuth Center of Ecology and Environmental Research

Bd

Assessing impact of climate change

Climate change

It is commonly expected that climate change will increase the probability of extreme weather events. The potential impact of such events on ecosystems can be explored in manipulation experiments in the field.

Rain-out shelters as a tool for simulating extreme droughts

Rain-out shelter not only exclude precipitation, but change other microclimatological parameter:

- 10% reduction of photosynthetic active radiation by the used film (but unknown reduction in the other parts of the spectrum)
- warming inside the shelter due to "greenhouse" effect

⇒ Micrometeorological measurements to quantify these effects

Oct. 201


but m

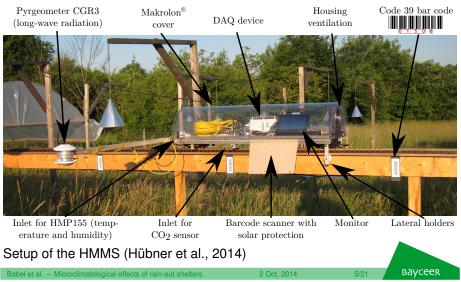
Bayreuth Center of Ecology and Environmental Research

Bayceer

The EVENT II experiment

2 Oct, 2014

Bayceer

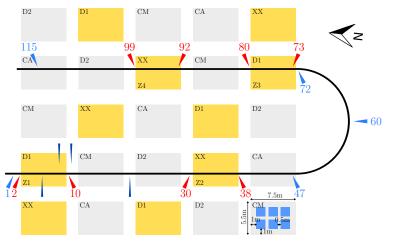


but th

Bayreuth Center of Ecology and Environmental Research

Bayceer

The horizontal mobile measurement system (HMMS)



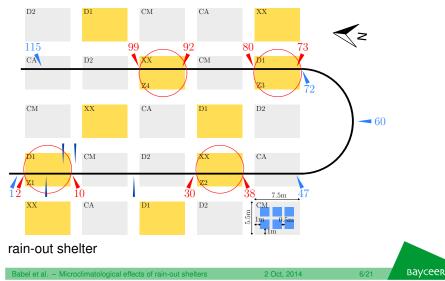
Dept. of Micrometeorology but m Bayceer

Bayreuth Center of Ecology and Environmental Research

Setup of the HMMS in 2012

Babel et al. - Microclimatological effects of rain-out shelters

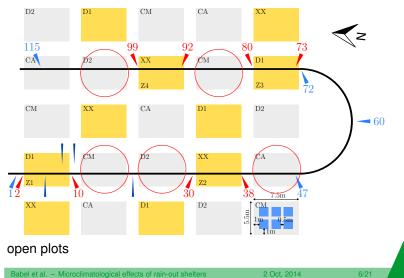
Oct, 2014


Bayceer

Dept. of Micrometeorology but m Bayceer

Bayreuth Center of Ecology and Environmental Research

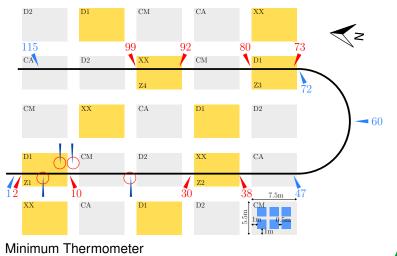
Setup of the HMMS in 2012



Dept. of Micrometeorology but m Bayceer

Bayreuth Center of Ecology and Environmental Research

Bayceer


Setup of the HMMS in 2012

Bayreuth Center of Ecology and Environmental Research

Setup of the HMMS in 2012

Babel et al. - Microclimatological effects of rain-out shelters

2 Oct, 2014

Bayceer

but In

Bayreuth Center of Ecology and Environmental Research

Ba

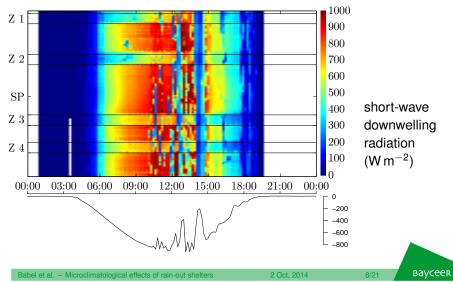
Analysis

Variables

- short-wave radiation (incoming and reflected)
- long-wave radiation ⇒ calculation of surface temperature
- air temperature and humidity, vapour pressure deficit

Situations

- time of the day (morning, noon, evening, nighttime)
- wind velocity and atmospheric stability (EC measurements)
- cloud cover

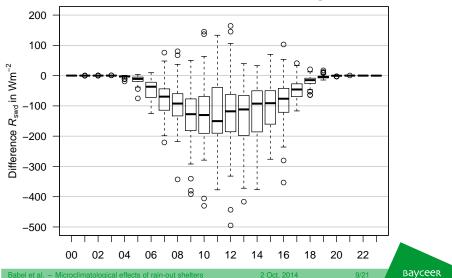


but th

Bayreuth Center of Ecology and Environmental Research

Bayceer

HMMS raw data

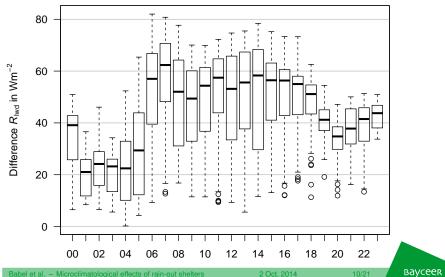


but th

Bayreuth Center of Ecology and Environmental Research

Bayceer

Shelter - outside conditions: Incoming short-wave R

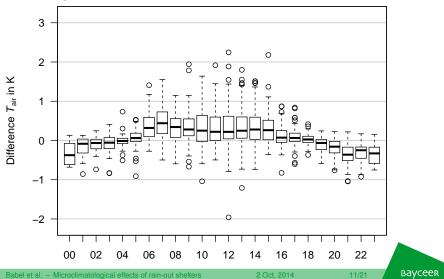


but th

Bayreuth Center of Ecology and Environmental Research

Bayceer

Downwelling long-wave Radiation

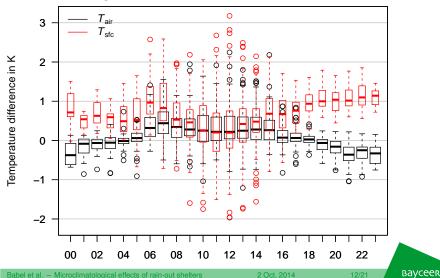


but m

Bayreuth Center of Ecology and Environmental Research

Bayceer

Air temperature

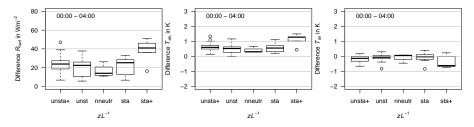


but m

Bayreuth Center of Ecology and Environmental Research

Bayceer

Surface temperature



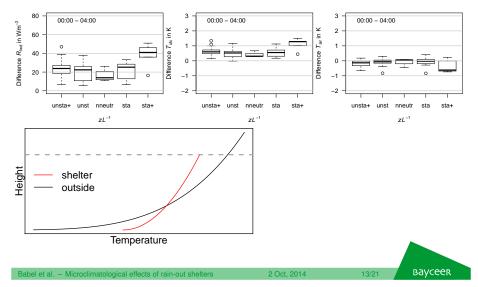
Bayreuth Center of Ecology and Environmental Research

Bayceer

Nighttime

but m

Bayceer

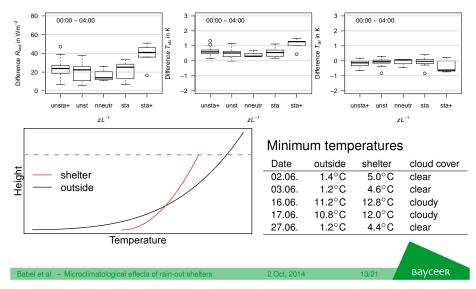


but m

Bayreuth Center of Ecology and Environmental Research

Bayceer

Nighttime



but th

Bayreuth Center of Ecology and Environmental Research

Bayceer

Nighttime

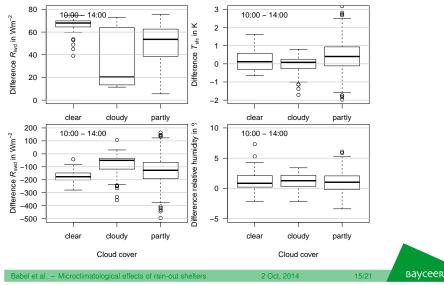


but th

Bayreuth Center of Ecology and Environmental Research

Bayceer

Morning transition

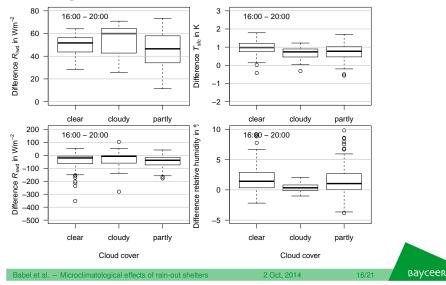


but m

Bayreuth Center of Ecology and Environmental Research

Bayceer

Noon

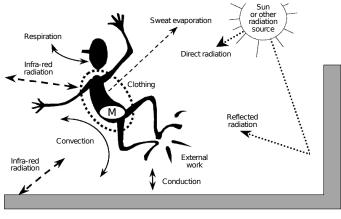


but m

Bayreuth Center of Ecology and Environmental Research

Bayceer

Evening transition



but m

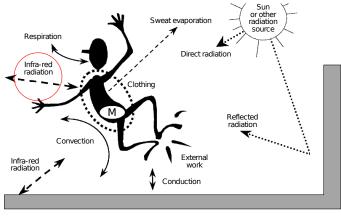
Bayreuth Center of Ecology and Environmental Research

Bayceer

Energy balance of any organism

(Havenith, 2003)

17/21



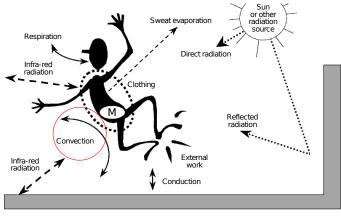
but m

Bayreuth Center of Ecology and Environmental Research

Bayceer

Energy balance of any organism

(Havenith, 2003)



but m

Bayreuth Center of Ecology and Environmental Research

Bayceer

Energy balance of any organism

(Havenith, 2003)

but In

Bayreuth Center of Ecology and Environmental Research

Ba

Relevance for plant energy balance

Result

rain-out shelter tremendously change the radiation regime

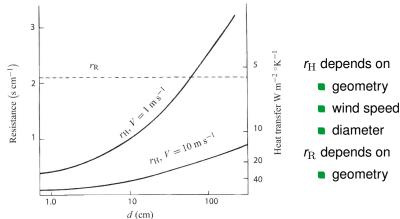
Heat exchange by convection

- driven by gradient between T_{sfc} and T_{air}
- exchange depends on heat transfer resistance r_H

Heat exchange by radiation

- driven by gradient between T_{sfc} and "T_{rad}"
- exchange depends on radiative transfer resistance $r_{
 m R}$

Bavceer

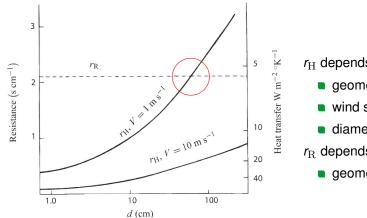


but th

Bayreuth Center of Ecology and Environmental Research

Bayceer

Influence of body diameter


(Monteith and Unsworth, 2008)

Bayreuth Center of Ecology and Environmental Research

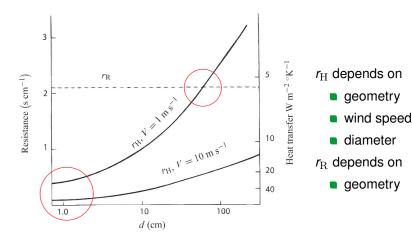
Bayceer

Influence of body diameter

 $r_{\rm H}$ depends on

but th

- geometry
- wind speed
- diameter
- $r_{\rm R}$ depends on
 - geometry



but th

Bayreuth Center of Ecology and Environmental Research

Bayceer

Influence of body diameter

Bayceer

(Monteith and Unsworth, 2008)

b M Th

Bayreuth Center of Ecology and Environmental Research

Bav

Conclusions

Rain-out shelter...

- alter short-wave and long-wave radiation balance
- consistently increase plant surface temperature (0.5-1 K) and near-ground air temperature (up to 4 K in clear sky nights)
- enhance humidity in the afternoon

Influencial factors

- time of the day
- atmospheric stability and wind velocity, but well described by cloud cover

Relevance for manipulation experiments

- despite largest differences found in downwelling short-wave and long-wave radiation, surface temperature seems to be the most relevant measure to characterize the impact on plants
- air temperature often not representative

b.M

Bayreuth Center of Ecology and Environmental Research

Bd

References I

- Havenith, G.: Clothing and Thermoregulation, in: Textiles and the Skin, edited by Elsner, P., Hatch, K., and Wigger-Alberti, W., vol. 31 of *Current Problems in Dermatology*, pp. 35–39, Basel, Karger, doi:10.1159/000072236, 2003.
- Hübner, J., Olesch, J., Falke, H., Meixner, F. X., and Foken, T.: A horizontal mobile measuring system for atmospheric quantities, Atmos. Meas. Tech., 7, 2967–2980, doi:10.5194/amt-7-2967-2014, 2014.
- Monteith, J. and Unsworth, M.: Principles of environmental physics, Elsevier academic press, London, 418pp., 3 edn., 2008.

