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SUMMARY 

Global vegetation is a key component of the climate system due to its key role 

in geosphere-biosphere-atmosphere interactions. Understanding these processes is 

of important for predicting future climate and the future state of terrestrial 

ecosystems. Land surface properties such as the land cover type and leaf area 

index (LAI) are used as essential inputs in many hydrological, ecological, and 

climate models. They are key parameters that describe the functioning of vegetation 

and are required for modeling vegetation productivity, land surface climatology, 

global carbon budgets and agricultural outputs as influenced by resource 

management. Successful modeling of these processes to quantitatively and 

accurately characterize global dynamics requires definition of these parameters 

periodically and globally with high accuracy. For this purpose the MODIS-based land 

surface products were designed and are now regularly available worldwide. 

Nevertheless, analyses based on MODIS inputs of land cover and LAI must be 

tested with respect to their reliability, in order that we can trust and use the outputs 

from simulation models quantifying water and carbon balances at large scale. The 

purpose of the research reported here is to determine the reliability of the MODIS 

spectral reflectance, land cover and LAI products for European landscapes which 

are highly fragmented and not necessarily homogeneous at the 1 km scale 

characteristic of MODIS products. A stepwise analysis has been carried out for 

reflectance, land cover and LAI products, comparing results from ground truth data 

and from high resolution remote sensing images (Landsat) to the coarser scale 

MODIS information. In this way, the influence of landscape fragmentation on the 

MODIS products should be clear and advice can be given about how they should be 

used in land surface modelling efforts.  

Four European locations were chosen for study; landscapes dominated by 

deciduous forest at Hesse, France; by coniferous forest at Tharandt, Germany, and 

by forest and grassland in mountainous terrain in the Berchtesgaden National Park, 

Germany and in Stubai Valley, Austria. All of these landscapes, however, have a 

mixture of land use. In order to compare measurements at intensive study plots with 

MODIS (1 km resolution), it was necessary to build a bridge via remote sensing data 

derived with Landsat TM (30 m resolution). It was demonstrated that for all study 

sites, the registration accuracy of Landsat TM images did not deviate by more than 

half of one pixel, and that the root mean square of error (RMSE) was less than 0.3 

pixel when utilizing at least 40 ground control points and nearest-neighbor 
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resampling technique. Comparing Landsat images with aerial photography clearly 

demonstrated that specific study sites on the ground could be identified and that the 

measured characteristics could be associated with Landsat pixel properties. 

The evaluation results showed that the MODIS reflectance product is 

reasonably accurate (less than 10 % absolute error). Certainly it is appropriate to 

utilize reflectance data from the two types of satellite images and to use these 

information in comparative examinations of land cover mapping and leaf area index 

estimation. The land cover comparison demonstrates that both the scale applied in 

classifications and the number and type of land use categories that are permitted 

lead to important shifts in the characterization of land cover when moving from 30 m 

to 1 km resolution of MODIS. Fragmentation in European landscapes is a 

fundamental problem encountered in the use of MODIS products. A true 

representation of the land surface cannot be obtained from the current MODIS land 

cover classifications at 1 km scale. The use of these descriptors in models 

describing land surface properties may potentially lead to large errors. Thus, 

exchange between the land surface and the atmosphere of water and CO2 as 

estimated by models using MODIS inputs will have a high level of uncertainty, and 

the results must be considered with caution. The problems in classification that are 

encountered lead to further difficulties in land surface characterization, since the 

retrieval of LAI uses land cover as an input variable. At the peak of vegetation 

development, MODIS LAI appears to strongly underestimate values of the Landsat 

based maps. During winter, the comparison is even worse, but is not consistent from 

grassland to deciduous forest and coniferous forest. The results cast doubt on the 

usefulness of MODIS LAI products as input to continental scale simulation models 

for carbon and water balances, at least in Europe where land cover is highly 

modified and fragmented due to centuries of human use and management. Use of 

the MODIS products in Europe requires that new techniques be considered to 

search for compatibility in averaging and aggregating information on land cover and 

reflectance that is used to estimate LAI for large areas. 

 
Keywords: Remote sensing, vegetation, MODIS, Landsat, LAI, Land cover, 
reflectance, evaluation 
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ZUSAMMENFASSUNG 

Aufgrund der komplexen Interaktionen zwischen Geosphäre, Biosphäre und 

Atmosphäre spielt die Vegetation auf der Erde eine der Schlüsselrollen des globalen 

Klimas. Das Verständnis dieser Interaktionen und Prozesse ist von grundlegender 

Bedeutung zur Vorhersage zukünftiger Klima- und Vegetationsszenarios. 

Eigenschaften der Kontinentoberflächen, wie Vegetationsbedeckung und 

Blattflächenindex (LAI) fließen ein als essentielle Vorgaben für die Berechnung 

hydrologischer, ökologischer und klimatischer Modelle. Es sind dies 

Schlüsselparameter zur Erklärung der „Funktion“ der Pflanzendecke und sie werden 

daher benötigt für die Modellierung der Biomasse-Produktion, des Klimas der 

Landoberflächen, der globalen Kohlenstoff-Bilanz und der Landwirtschafts-Erträge in 

Abhängigkeit zum anthropogenen Ressourcen-Management. Ihre realistische 

Modellierung für eine exakte quantitative Charakterisierung globaler Dynamiken 

verlangt die periodische und globale Definition dieser Prozesse in höchster 

Genauigkeit. Hierfür wurden MODIS-basierte Land-Oberflächen-Modelle entwickelt, 

welche inzwischen weltweit verfügbar sind. 

Zur Überprüfung der Vorhersagegenauigkeit der MODIS-Modellierungen sind 

dennoch Tests hinsichtlich Land-Vegetationsbedeckung und LAI erforderlich, um die 

Simulationen hinsichtlich der Quantifizierung der großmaßstäblichen Wasser- und 

Kohlenstoff-Bilanz überprüfen zu können. Die vorliegende Arbeit befasst sich mit der 

Bestimmung der Zuverlässigkeit von MODIS-Produkten, die die spektrale 

Reflexions-Eigenschaften der Land-Bedeckung, der Landnutzung und des LAIs in 

typischen europäischen Landschaften räumlich charakterisieren sollen, welche aber 

hinsichtlich des viel zu großen 1 km-Rasters von MODIS als äußerst fragwürdig zu 

werten sind. Durchgeführt wurde deshalb eine stufenweise Analyse für die Licht-

Reflexion, Landbedeckung und LAI, wobei hoch aufgelöste LANDSAT-TM-

Satelliten-Bilder und reale Daten von den jeweiligen Orten mit den gröber 

aufgelösten MODIS-Informationen verschnitten wurden. Dabei wird der Einfluß der 

Landschaftsfragmentierung auf die MODIS-Simulation verständlich und es müssen 

daher in der Zukunft klare Regeln angewandt werden, sie einzusetzen.  
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Vier europäische Orte wurden für die vorliegende Studie ausgewählt; 

Landschaften in denen folgende Vegetationsformen dominierten: laubabwerfende 

Wälder in der Umgebung von Hesse (Frankreich), Nadelholzforste bei Tharandt 

(Deutschland), Mischwälder sowie alpine Matten im Nationalpark Berchtesgaden 

(Deutschland) und im Stubai-Tal (Österreich). Alle vier Regionen besitzen darüber 

hinaus eine stark variierende Landnutzung. Um die detaillierten vor-Ort-Messungen 

mit MODIS (mit 1 km-Rasterauflösung) vergleichen zu können, war es notwendig, 

eine Brücke zu schlagen mit Hilfe der LANDSAT TM-Satellitenbilder in 30 m-

Rasterauflösung. Es zeigte sich, dass die Bestimmungsgenauigkeit von LANDSAT 

TM-Bildern für alle 4 Regionen nicht mehr als um einen halben Pixel abwich und 

dass die Standardabweichung weniger als 0,3 Pixel betrug. Hierzu war es 

notwendig, mindestens 40 vor-Ort-Punkte mit der Nearest Neighbour-Resampling 

Methode einzubeziehen. 

Die Ergebnisse der Evaluation zeigten, dass die modifizierten MODIS-

Reflexdaten-Produkte hinreichend genau sind (weniger als 10 % des absoluten 

Fehlers). Entsprechend sollten die Reflexions-Daten von zwei verschiedenen 

Satelliten-Bildern verwendet werden und diese Informationen sollten in 

Vergleichsuntersuchungen eingesetzt werden zur Feststellung der Landbedeckung 

und zur Schätzung der Blattflächenindices. Der Vergleich der Landbedeckung 

zeigte, dass sowohl der Maßstab bei der Klassifizierung als auch die Zahl und der 

Typ der Landnutzung sich wesentlich verschiebt beim Sprung von der 30 m- zur 1 

km-Auflösung. Die kleinräumliche Fragmentierung der europäischen Landschaft 

bleibt ein zu lösendes Problem bei der Verwendung von MODIS-Produkten. Eine 

echte Repräsentierung der Landbedeckung kann jedenfalls nicht aus der geläufigen 

MODIS-Landbedeckungs-Klassifikation im 1 km-Raster gewonnen werden. Die 

Verwendung solcher Deskriptoren in Modellen zur Landbedeckungs-Klassifikation 

kann daher zu erheblichen Fehlern führen. Dementsprechend sind MODIS-basierte-

Modelle, die sich mit dem Verhalten von Wasser und CO2 im Austausch zwischen 

der Landoberflächen und der Atmosphäre befassen, fehlerbehaftet oder zumindest 

nur mit Einschränkungen zu betrachten. Die sich dabei ergebenden Probleme der 

Klassifikation führen zu weiteren Schwierigkeiten in der Ansprache der 

Landnutzung, solange der LAI auf Annahmen der Landnutzungen als Input-Variable 

basiert. Auf dem Höhepunkt der jährlichen Vegetationsentwicklung erscheinen LAI-
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Werte, jeweils ermittelt aus den LANDSAT-Satellitenaufnahmen und der MODIS-

Modellierung als stark unterschätzt. Während des Winters treten diese Fehlerraten 

noch stärker ins Gewicht, sind jedoch nicht übereinstimmend für Grasland zu 

laubabwerfendem Wald oder Nadelwald. Die Ergebnisse lassen Zweifel aufkommen 

über die Nützlichkeit von MODIS LAI-Berechnungen als Inputs für 

Simulationsmodelle auf kontinentalem Maßstab hinsichtlich der Kohlenstoff- und 

Wasserbilanz. Dies gilt zumindest für das in der anthropogenen Landnutzung stark 

fragmentierte und heterogene Europa. Die Anwendung von MODIS-Produkten 

innerhalb Europas verlangt daher die hier vorgestellten neuen Technologien bei der 

Suche nach vergleichbaren und aggregierbaren Dateninformation zur Landnutzung 

und ihrer Reflexions-eigenschaften zur Bestimmung des LAI für großräumige 

Maßstäbe. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Recent studies in earth science have revealed the important role of terrestrial 

ecosystems in sustaining the global environment. Global vegetation, covering three 

fourths of the earth’s land surface, has been identified as one of the key components 

of the climate system due to its key role in geosphere-biosphere-atmosphere 

interactions. The biogeochemical processes of vegetation, which involve land-

atmosphere exchanges of energy, mass, and momentum, are influenced by and in 

turn influence the climate system (Bonan, 1996; Sellers et al., 1997). Understanding 

these processes is of importance for predicting future climate and the future state of 

terrestrial ecosystems.  

It is recognized that the most important properties at the land surface for 

climate modeling are those that determine biogeochemical and biogeophysical 

processes (Hall et al., 1995). Land surface properties such as the land cover type, 

leaf area index (LAI), and fraction of incident photosynthetically active radiation (0.4 - 

0.7 µm) absorbed by the vegetation canopy (FPAR), are used as essential inputs in 

many hydrological, ecological, and climate models (Sellers et al., 1995). They are 

key parameters that describe the functioning of vegetation and are required for 

modeling vegetation productivity (Gower et al., 1999), land surface climatology 

(Sellers et al., 1997), global carbon budgets and agricultural outputs as influenced 

by resource management (McVicar and Jupp, 1998). Successful modeling of these 

processes to quantitatively and accurately characterize global dynamics requires 

definition of these parameters periodically and globally with high accuracy. 

Remote sensing is the most effective means of collecting information of global 

extent on a regular basis. Thus, satellites have a unique capability to monitor and 

quantify the dynamics of the earth’s surface. This information can help improve the 

accuracy of the quantitative assessments of the above-mentioned processes. 

Recent studies have revealed the possibility of using remote sensing information to 

characterize vegetation properties, and much knowledge has been gained about the 

role of vegetation in environmental and climate change (Sellers et al., 1994; Bonan, 

1995; Kimes, 1995; Zhou and Robson, 2001). Using radiative transfer modeling, 

Kuusk (1985), Verstraete et al. (1996), Myneni (1991a), and Kimes et al. (2002) 
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greatly improved the possibility of obtaining accurate estimates of biophysical 

variables from spatial, spectral, and temporal dimensions of remotely-sensed data. 

Among the above-mentioned biophysical parameters, which can be derived 

from remote sensing data, land cover and LAI are recognized as two of the most 

important. They are used in all models as essential input parameters to estimate 

canopy photosynthesis and transpiration at global and regional scale. The first 

attempt to produce global land cover and LAI maps used data from the Advanced 

Very High Resolution Radiometer (AVHRR), which was the only satellite sensor able 

to observe the land surface at regional and global scales with high temporal 

frequency until year 2000. The first global map of LAI was produced from AVHRR 

data with the use of biome-dependent semi-empirical and radiative-transfer-based 

relations between LAI and vegetation indices (Myneni and Williams, 1994b).  

Since 2000, the launch of the moderate resolution imaging spectroradiometer 

(MODIS) instruments onboard of Earth Observing System EOS-AM 1 platform 

(Terra) began a new era in remote sensing of the earth system. As a continuation of 

AVHRR, MODIS data will provide long term information about the earth surface, 

providing the chance to quantitatively and more accurately model global vegetation 

dynamics and to distinguish short-term and long-term trends of global vegetation 

change.  This new sensor (MODIS) has higher spectral and angular sampling of the 

radiation field reflected by the earth surface. It also has a more accurate signal in 

terms of radiometric calibration and improved quality of atmospheric and geometric 

corrections (Knyazikhin et al., 1998a; b). High quality data from MODIS now provide 

a unique opportunity to improve accuracy when producing maps of land cover and 

LAI globally. The MODIS land group of the MODIS Science Team has been 

developing algorithms for operational retrievals of land cover, LAI, FPAR, and 

several other important parameters from MODIS data (Justice et. al., 1998). The 

synergistic algorithm for the estimation of global LAI and FPAR from MODIS 

(Knyazikhin et al., 1998a; b) is based on a three-dimensional formulation of radiative 

transfer in vegetation canopies and allows full use of information provided by MODIS 

(7 shortwave spectral bands) and the Multi-angle Imaging SpectroRadiometer, MISR 

(nine angles and four spectral bands). 
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1.2. MODIS Land cover Algorithms 

The MODIS Land cover Product is produced at spatial resolution of 1 km. This 

product followed the International Geosphere–Biosphere Program (IGBP) (Loveland 

et al., 1999) global vegetation classification scheme. This classification defines 17 

classes for the globe. The MODIS land cover classification algorithm uses a 

supervised classification methodology (Schowengerdt, 1997). Supervised 

classification algorithms are used to classify the highly-dimensional (multispectral 

and multitemporal) data provided by MODIS. The algorithm is based on supervised 

classification methodology, which uses a decision tree classification approach and 

exploits a global database of training sites, is a pixel-based classification process. 

The algorithm uses reflectance and its derived parameters such as Vegetation 

Indices (VIs), Bidirectional Reflectance Distribution Function (BRDF), surface 

temperature, etc., as input data. The spectral, radiometric, and geometric quality of 

MODIS data provides a significant improvement in the input feature space used for 

global land cover mapping. A detailed description of model and algorithm is 

presented in (Friedl, 2002). 

1.3. MODIS LAI Algorithms 

1.3.1. Definition of LAI 

LAI is a key variable for the evaluation of evapotranspiration and is used as an 

input in mesoscale weather forecasts and in general atmospheric circulation models 

(Dickinson, 1984; Bonan, 1995)). In the literature, LAI is defined in a number of 

different ways. Throughout this dissertation, the following definition will be used. Leaf 

area index is defined as the one-sided green leaf area per unit ground area. LAI for 

conifer needles is defined as the projected needle leaf area per unit ground area in 

needle canopies (Oker-Blom et al., 1991; Chen and Cihlar, 1996). Quantitative and 

accurate values of LAI at regional and global scales with sufficient temporal 

frequency are important for quantifying mass and energy transfers at the 

atmosphere-biosphere interface and for characterizing and monitoring the biosphere 

and its functioning. As such, there is considerable interest in developing algorithms 

for the estimation of LAI/FPAR from satellite measurements of vegetation 

reflectance (Knyazikhin et al., 1998a; b). 
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1.3.2. LAI Algorithms 

There are two methods that have been used to derive LAI from remote sensing 

data: empirical approaches and inversion of physical models (Price, 1993; Hall et al., 

1995; Asner et al., 1998; Knyazikhin et al., 1998b). Empirical approaches are based 

on curve fitting in order to correlate various measures of surface reflectance, 

including vegetation indices, to ground-based measurements of LAI (Peterson et al., 

1987; Verma et al., 1993). Many attempts have been made to combine spectral 

bands linearly or nonlinearly to form vegetation indices, which maximize sensitivity of 

the indices to LAI, while minimizing the sensitivity to unknown and undesired canopy 

characteristics (e.g., background reflectance). Among the various vegetation indices, 

the normalized difference vegetation index (NDVI) and the simple ratio (SR) are 

most frequently used to derive LAI from remote sensing data (Myneni and Williams, 

1994a; Chen and Cihlar, 1996). LAI is nonlinearly proportional to NDVI, while it is 

linearly related to SR (Myneni et al., 1997b). Numerous studies have described the 

relation of vegetation indices to LAI of agricultural crops, grass, and deciduous 

forests (Asrar et al., 1984). There are even several studies relating Landsat 

Thematic Mapper (TM) and AVHRR data (Chen, 1996) to LAI of conifer stands.  The 

limitations of empirical methods have been well studied. No unique relationship 

between LAI/FPAR and the vegetation index is generally applicable everywhere 

because the reflectances of plant canopies also depend on other factors, such as 

measurement geometry and spatial resolution (Asrar et al., 1992; Price, 1993; Friedl, 

1995; Friedl, 1996). These empirical relationships are, therefore, site- and sensor-

specific, and are consequently unsuitable for application to large areas or in different 

seasons (Gutman, 1991; Gobron et al., 1997). In addition, soil background, as well 

as sun-earth-sensor configuration and atmospheric effects can have a large effect 

on the variation of vegetation indices (Kaufman, 1989; Yoshioka et al., 2000).  

Another approach is to use physically-based models (or canopy reflectance 

models) to describe the propagation of light in plant canopies, and subsequently to 

retrieve biophysical parameters. Physical models attempt to define the relationship 

between leaf, canopy, and biophysical characteristics such as LAI/FPAR and 

reflected radiation. These models can be subdivided into four classes: (i) radiative 

transfer models (Myneni, 1991b; Goel and Kuusk, 1992), (ii) geometric models (Li 

and Strahler, 1986, 1992), and (iii) hybrid models (combinations of (i) and (ii)) (Li et 
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al., 1995; Chen and Leblanc, 1997; Ni et al., 1999), and (iv) Monte Carlo and 

complex computer simulation models (North, 1996; Govaerts et al., 1998; Lewis, 

1999). Once the model is developed and tested, the understanding inferred from the 

models can be used to develop algorithms to relate biophysical characteristics to 

reflectance or its derived indices. The reflectance model can be used directly in 

inversion modeling, deriving the biophysical parameters (for example, LAI) from 

given input of reflectance. The common technique used in inversion of the model is 

the look-up Table (LUT) method, which pre-calculates the reflectances from all 

possible combinations of different parameters, as well as the geometrical 

combinations, and stores these values in the Table. The satellite measurements are 

compared with the entries of the LUT to find the best solution (best resemblance to 

the measured set). Model inversion, which is thought to have some advantages over 

the empirical techniques, has been used for the estimation of MODIS LAI, because it 

relies on fewer assumptions and is based on fundamental physical theories (Privette 

et al., 1994; Gobron et al., 1997; Knyazikhin et al., 1998a). 

1.3.3. The MODIS LAI/FPAR Algorithm 

The MODIS LAI/FPAR algorithm is developed for estimation of global LAI and 

its closely related biophysical parameter FPAR. The algorithm was implemented for 

operational processing prior to the launch of Earth Observation System (EOS) Terra. 

A three-dimensional (3-D) formulation of the inverse problem underlies this algorithm 

in order to improve description of natural variability of vegetation canopies 

(Knyazikhin et al., 1998a; b). A complicated 3-D radiative transfer problem was split 

into two independent, simpler sub-problems using the Green’s function and adjoint 

formulation (Knyazikhin et al., 1998a; b). In the model, three processes within a 

vegetation canopy were formulated in accordance to the law of energy conservation: 

canopy transmittance, reflectance, and absorptance. In this manner, the model 

provides the independence of the retrieval algorithm to any particular canopy 

radiation model. A detailed description of model and algorithm is presented in 

Knyazikhin et al. (1998a; b). 

1.4. Statement of the Research Problems 

The MODIS LAI/FPAR product has been operationally produced since the 

launch of Terra in December 1999. The performance of the algorithm must be 
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assessed as appropriate data become available, since the MODIS LAI/FPAR 

products are widely used by the science community interested in global change 

questions. Because land cover and reflectance data are used as input into the 

MODIS LAI algorithm, the first steps must include an assessment of the MODIS 

reflectance and MODIS land cover products. Then, assessment of performance of 

the MODIS LAI algorithm can be carried out via the use of ground truth data, 

considering the effects of spatial resolution on LAI retrievals as well as the accuracy 

of MODIS land cover and reflectance on LAI retrievals. 

1.4.1.  Assessment of MODIS reflectance product 

Accuracies and uncertainties of surface reflectances used in the algorithm 

strongly influence the quality of retrieved LAI. The radiance measurements at the 

sensor require corrections for spectral calibration and atmospheric effects, and this 

introduces uncertainty in surface reflectances. The MODIS LAI estimates depend on 

the sensitivity of a canopy radiation model to respond correctly to the observed 

variability in surface reflectances. This research will answer the following questions: 

(1) How well does MODIS reflectance characterize the land surface, i.e. does 

MODIS reflectance correspond to Landsat reflectance, which is used as a reference 

baseline? (2) What is the effect of uncertainties in the geo-referencing process of the 

MODIS image on the retrievals of surface reflectance? 

1.4.2. Assessment of MODIS land cover product 

Accuracies of MODIS land cover used in the LAI algorithm also strongly 

influence the quality of retrieved LAI. The accuracy of the land cover map derived 

from remote sensing data depends on the spatial resolution of data. Especially, in 

European landscape, most pixels at 1 km resolution are a mixture of several land 

cover types. This dissertation attempts to answer the following questions: (1) how 

accurate is the MODIS land cover description (compared to ground truth maps 

derived from different sources) and (2) how does data resolution and complexity of 

landscape influence the accuracy of the MODIS land cover map? 

1.4.3. Assessment of MODIS LAI 

Few attempts were conducted by the MODIS team to demonstrate the physical 

functionality and performance of the algorithm for LAI, and the influence of spatial 

resolution of the data. Existing studies were carried out in North America, Africa, 
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Australia, and Northern Europe, where landscapes are relatively homogeneous. This 

study examines the quality of MODIS LAI products at four sites which are 

representative for Central European landscapes. The questions that need to be 

addressed include: (1) what is the effect of inaccuracies in surface reflectances on 

the quality of retrieved LAI? and (2) what is the effect of inaccuracies in the MODIS 

land cover map on the quality of retrieved LAI? 

1.5. Objectives and Organization of This Dissertati on 

The overall objective of this research is to evaluate the performance of the 

MODIS LAI algorithm, with special emphasis on the effects of scale and spatial 

resolution. To achieve this goal, evaluations of MODIS reflectance and land cover 

must first be addressed. Thus, this thesis is organized as follows (see also Table 

1.1):  

The State of the Art concerning remote sensing of vegetation properties is 

summarized in Chapter 2. The four chosen study sites, Hesse deciduous forest, 

Tharandt coniferous forest, Stubai Valley grassland, and Berchtesgaden National 

Park forests, and their characteristics, e.g. vegetation homogeneity at the site and 

especially the existing data required for the analysis, are described in Chapter 3. 

The sites were chosen because of their representativeness for important Central 

European land cover, the degree of complexity of the surrounding landscape, and 

the availability of long-term monitoring data around eddy covariance towers. Chapter 

3 also presents methodology used in this study. In Chapters 4 through 6, the details 

of the research analysis are presented for several sites as shown in Table 1.1 where 

the details are unduly repetitive, the analysis for certain sites is only provided in 

comparative summary (cf. Table 1.1). 

In Chapter 4, Landsat TM reflectance data were used to upscale reflectance 

measurements to MODIS resolution at all four sites. The performance of the MODIS 

reflectance product and uncertainties in surface reflectance were evaluated using 

available Landsat TM scenes from the four study regions. Chapter 4 examines the 

following hypotheses: 

(1) The MODIS reflectance product characterizes the landscape in the same way 

as fine resolution Landsat TM does.  
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(2) The complexity of European landscape does not affect the performance of 

MODIS reflectance algorithm. 

Table 1.1. Topics in different degree of detail presented in this thesis 

Topic Chapter 4: 

Reflectance 

Chapter 5: 

Land cover 

Chapter 6: 

LAI 

1. Sites analyzed with a 

stepwise detailed 

presentation of methods  

Hesse, 

Tharandt 

Berchtesgaden, 

Stubai Valley 

Berchtesgaden, 

Hesse, Tharandt, 

Stubai Valley 

2. Sites described only in a 

comparative summary 

across sites 

Berchtesgade, 

Stubai Valley 

Hesse, 

Tharandt 

 

    

In Chapter 5, land cover classification at the Berchtesgaden and Stubai Valley 

sites is described in detail as derived using Landsat TM data. The classification is 

done with different methods, which allows one to address the advantages and 

disadvantages of the supervised method used by the MODIS team. The best 

classification method is then utilized for all four sites using Landsat TM. The land 

cover maps derived from Landsat TM images were upscaled to MODIS resolution to 

facilitate an assessment of the quality of the MODIS land cover product. Three 

aspects are brought into scrutiny: (1) the relation between land cover heterogeneity 

and spatial resolution, (2) a statistically based method for scaling land cover to 

MODIS resolution, and (3) the impact of heterogeneity on the accuracy of MODIS 

land cover retrievals. Chapter 5 examines the alternative hypotheses:  

(1) The MODIS land cover product permits adequate differentiation of European 

land cover types.  

(2) The fragmentation and roughness of European landscapes confines the 

robustness of MODIS land cover algorithm and limits its usefulness.  

In Chapter 6, ground-based LAI data are used that were collected at the four 

European study sites from 2000 to 2003 by different methods. The measured data 

were aggregated to 1km resolution via upscaling strategies. After scaling up the fine 

resolution LAI to MODIS resolution, a pixel-by-pixel comparison method is 

introduced, which is easily implemented on a routine basis for validation. The effect 
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of misclassification of MODIS land cover is also examined. Chapter 6 evaluates the 

hypotheses:  

(1) Despite coarse resolution, MODIS LAI product characterizes well the leaf 

area index (biomass) of vegetation in European landscapes.  

(2) Fragmentation and roughness of the landscape decreases the accuracy of 

the MODIS LAI algorithm.  

Conclusions from the investigations in Chapters 4 through 6 are summarized in 

Chapter 7. 
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CHAPTER 2. STATE OF THE ART: REMOTE SENSING OF 

VEGETATION 

2.1. Introduction to remote sensing  

Remote sensing is a very broad field of studies. Some of the important 

applications of remote sensing technology are with respect to: 

- Global change detection and monitoring (global warming, deforestation, 

flooding, atmospheric ozone depletion, biomass) 

- Meteorology (atmosphere dynamics, weather prediction) 

- Mapping (topography, land use, leaf area index) 

- Forest and agriculture (vegetation condition, yield prediction) 

- Environmental assessment and monitoring (hazardous waste, soil erosion) 

Remote sensing has been described in many aspects by numerous authors, cf. 

review by Campbell (1996) and (Lillesand et al., 2004). One of the most cited 

definitions was provided by Colwell (1997), who identified the central concepts of 

remote sensing: 

“Photogrammetry and remote sensing are the art, science and technology of 

obtaining reliable information about physical objects and the environment, through a 

process of recording, measuring and interpreting imagery and digital representations 

of energy patterns derived from noncontact sensor systems” 

This definition serves well as a description of remote sensing as used in this 

thesis, e.g. by mean of discernment of information about some entity or object 

properties on the earth’s surface, using data acquired from equipment mounted on 

tower, aircraft, or satellites without physical contact. Remote sensing systems, 

particularly those deployed on satellites, provide a repetitive and consistent view of 

the earth that is invaluable to monitoring the earth system and the effect of human 

activities on the earth. 

Thus, remote sensing makes use of electromagnetic radiation reflected or 

emitted from the earth’s surface. The strongest source of electromagnetic radiation 

is the sun, which emits radiation over the entire electromagnetic spectrum (see 

Table 2.1). Besides passive remote sensing which uses this natural source of 

illumination, it is also possible to use an artificial source of electromagnetic radiation; 
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in this case we speak of active remote sensing. In the context of this study, only 

passive remote sensing data were used. When the radiation reaches the surface of 

the earth, part of it will be reflected. Another part will be absorbed and subsequently 

emitted, mainly in the form of thermal (far infrared) energy. The fraction of the 

irradiance that is reflected (or absorbed and re-emitted) is dependent on wavelength 

and differs for each material, as is illustrated in Fig. 2.1. By measuring the amount of 

electromagnetic radiation that is reflected or emitted and comparing it to the spectral 

reflectance curves of known materials, information about the earth’s land and water 

surfaces can be derived. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Spectral reflectance curves for four different materials (ASTER Spectral 

Library). 

To measure the reflected and emitted radiation, usually an imaging scanner 

aboard an airplane or satellite is used. The details of sensor construction vary with 

the wavelength of interest, and the dimension of the optical systems; and detectors 

are subject to the technical limitations in particular spectral regions. However, all 

passive remote sensing sensors operate on the same principles of optical radiation 

transfer, photon detection, and formation of images. Basically, there are three types 

of passive imaging scanners; e.g., line, whiskbroom, and pushbroom scanners.  
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The line scanner uses a single detector to scan the entire scene. It uses scan 

mirror to direct the surface radiation onto an electronic detector, taking a 

measurement at regular intervals (Floyd, 1987). 

 

Figure 2.2. A line scanner uses a scan mirror to direct the radiation inside the 

instantaneous field of view (IFOV) towards a spectrometer. 

Fig. 2.2 shows an example of a multispectral line scanner. The incoming 

energy is dispersed into a spectrum and led to detectors that are sensitive to specific 

wavelength bands. Rotation of the scan mirror moves the instantaneous field of view 

(IFOV) cross-track, while the in-track movement is provided by the platform motion. 

Whiskbroom scanners, such as the Landsat TM, use several detectors, aligned in-

track, to achieve parallel scanning. The pushbroom scanner, such as SPOT, uses a 

linear array of detectors aligned cross-track - usually Charge-Coupled Devices – to 

take a number of measurements simultaneously over the full width of the scene. 

Apart from these cross-track readings, scanners also take measurements in the in-

track direction, which is defined by the platform’s motion (Landsat 7 science data 

users’ handbook, 
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http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html). 

Line and whiskbroom scanners clearly have many motions occurring during 

acquisition of the image (mirror rotation, earth rotation, satellite roll) and 

consequently require some complex post-processing to adjust to accurate geometry. 

With some effort, this two-dimensional grid of measurements can be transformed 

into a digital image consisting of picture elements or pixels. Every pixel represents 

an average in each of three dimensions: space, wavelength, and time. Not only do 

the corresponding ground locations of the measurements have to be corrected due 

to factors like the earth’s curvature and irregular movements of the scan mirror and 

the platform (geometric corrections), but the measurements themselves must also 

be corrected for atmospheric and sensor effects (radiometric corrections). The 

resolution of the resulting image or series of images, which expresses the level of 

fine detail that can be distinguished, has four aspects. (Floyd, 1987). 

Table 2.1. Principal divisions of the electromagnetic spectrum (Campbell, 1996) 

Division Wavelengths 

Gamma rays < 0.03 nm 

X-rays 0.03 - 3.0 nm  

Ultraviolet 3.00 - 380 nm  

Visible 0.38 - 0.72 µm 

Blue 0.40 - 0.5 µm 

Green 0.50 - 0.6 µm 

Red 0.6 0 - 0.7 µm 

Infrared 0.72 - 1000 µm 

Near infrared 0.72 - 1.30 µm 

Mid infrared 1.30 - 3.00 µm 

Far infrared 3.00 - 1000 µm 

Microwave 0.10 - 30 cm 

Radio   ≥ 30 cm 



Chapter 2 

 14

Table 2.2. Characteristics of scanners, which are used in this study. The exact specifications may differ for other models carried by 

different platforms 

Scanner TMa ETMb MODISc 

Platform Landsat-4/5 satellite Landsat-7 satellite Terra satellite 
Scene coverage 185 x 170 km2 185 x 170 km2 2330 x 10 km2 
Image size 6167 x 5667 pixels 6167 x 5667 pixels  
Resolution    
  - spatial 30 x 30 m2 d 30 x 30 m2 e 250 x 250m, 500 x 500m 
  - radiometric 8 bits 8 bits 12 bits 
  - temporal 16 days 16 days 16 days f 
  - spectral    
 Band 1: 0.45 - 0.52 µm Band 1: 0.45 - 0.52 µm Band 1: 0.62 - 0.67 µm 
 Band 2: 0.52 - 0.60 µm Band 2: 0.52 - 0.60 µm Band 2: 0.84 - 0.87 µm 
 Band 3: 0.63 - 0.69 µm Band 3: 0.63 - 0.69 µm Band 3: 0.46 - 0.48 µm 
 Band 4: 0.76 - 0.90 µm Band 4: 0.76 - 0.90 µm Band 4: 0.54 - 0.56 µm 
 Band 5: 1.55 - 1.75 µm Band 5: 1.55 - 1.75 µm Band 5: 1.23 - 1.25 µm 
 Band 6: 10.4 - 12.5 µm Band 6: 10.4 - 12.5 µm Band 6: 1.63 - 1.65 µm 
 Band 7: 2.08 - 2.35 µm Band 7: 2.08 - 2.35 µm Band 7: 2.10 - 2.15 µm 
  Panchromatic: 0.52 - 0.90 µm  

a Thematic Mapper. 
b Enhanced Thematic Mapper. 
c Moderate Resolution Imaging Spectroradiometer. 
d Spatial resolution of band 6 is 120 x 120 m2 

e Spatial resolution of band 6 is 60 x 60 m2, panchromatic band is 15 x 15 m2 

f Quasi repeat time is 2 days 
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The spatial resolution is the ground area that is represented by a single pixel; 

this area is approximately equal to the geometrical projection of a single detector 

element at the earth’s surface, which is sometimes called the instantaneous field of 

view (IFOV) (Campbell, 1996).  

The radiometric resolution is defined by the number of brightness levels that 

can be distinguished by the sensor. Radiometric resolution is dependent on the 

number of bits into which each measurement is quantified and stored.  

The spectral resolution denotes the width of the wavelength interval at which 

the electromagnetic radiation is recorded. If a multispectral (e.g. TM) or 

hyperspectral scanner (e.g. AVIRIS) is used, which takes measurements in a few up 

to several hundreds of spectral bands, the spectral resolution may well not be 

unique (c.f. TM bands 3 and 4) (Campbell, 1996). 

The temporal resolution, finally, only applies to time series of images and 

describes the length the interval between two successive recordings of the same 

scene. In case the scanner is carried by a satellite, the temporal resolution is 

determined by the satellite’s orbit.  

The characteristics of scanners used in this study are listed in Table 2.2. 

2.1.1. Landsat data 

The modern era of earth remote sensing began with the first Landsat 

Multispectral Scanner System (MSS) in 1972, which provided for the first time a 

consistent set of high-resolution earth images. The characteristics of this sensor 

were multiple spectral bands with reasonably high spatial resolution (80 m), large 

area (185 by 185 km) and repeating coverage (18 days). 

After the first MSS system, we have seen four additional MSS systems, as well 

as the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) with 

30 m spatial resolution and 7 spectral bands (see Table 2.2) (Landsat 7 science data 

users handbook, 

http://ltpwww.gsfc.nasa.gov/IAS/handbook/). 

2.1.2. MODIS data 

The MODerate Imaging Spectroradiometer (MODIS) system, launched in 1999 

onboard the Terra satellite, provides images in numerous spectral bands over a 

range 0.4 to 14 µm. The sensor significantly improves the quality of information that 
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can be gathered about the earth’s surface and near environment. The sensor is also 

important for monitoring global dynamics of vegetation, the atmosphere and global 

warming due to its daily coverage of the earth’s surface (MODIS technical 

specifications, http://modis.gsfc.nasa.gov/) (see Table 2.2). 

2.2. Remote sensing of vegetation 

Approximately 70 % of the Earth’s land surface is covered with vegetation. 

Knowledge about variation in species and community distribution patterns, change in 

vegetation phenological cycles, and natural modifications in plant physiology and 

morphology provide invaluable insight into climatic, geological and physiographic 

characteristics of an area (Jones et al., 1998). By using remote sensing data, 

vegetation can be distinguished from most other (mainly inorganic) materials by its 

nature of notable absorption in the red and blue segments of the visible spectrum, its 

higher green reflectance and, especially, its very strong reflectance in the near-IR. 

Different types of vegetation show distinctive variability from one another owing to 

such parameters as leaf shape and size, overall plant shape, leaf water content, and 

associated background (e.g., soil types and density of vegetative cover within the 

scene). 

2.2.1. Leaf reflectance 

The reflectance from a leaf is determined by the leaf structure as well as the 

biochemical constituents of the leaf. To understand the optical properties of a leaf, 

studies at a detailed level must be undertaken, see Fig. 2.3. 

The cell structure of leaves is highly variable depending upon species and 

environmental condition during growth. A typical leaf consists of several different 

layers with diverse optical characteristics. The uppermost layer, the upper epidermis, 

consists of cells fitted closely together. The other side of the leaf consists of the 

lower epidermis that has openings in the cell layer called stomata, which allow an 

exchange of water and carbon dioxide with the atmosphere. A wax layer called the 

cuticle covers the upper cell layer. Below the upper epidermis is the palisade layer 

that consists of cells rich in chlorophyll. The chlorophyll along with other 

pigmentation molecules is situated in organelles called chloroplasts. These 

organelles are vertically arranged in the palisade layer. Below the palisade layer is 

the spongy mesophyll tissue. It consists of irregularly shaped cells separated by 
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connected air spaces. This gives the tissue a very large surface area. Leaf structure 

is not identical for all plants but this description gives a general idea of the major 

elements common to most species. 

In the visible region of the spectrum the chlorophyll content controls the optical 

properties of the leaves. The chlorophyll absorbs the sunlight that makes 

photosynthesis possible. It is most absorptive in the blue and red regions. Here, as 

much as 70 to 90 % of the incident radiation is removed. In the green region, the 

absorption is lower, which allows a large portion of the green light to be reflected. 

That causes healthy green foliage to appear green to the human eye. 

In the near infrared spectrum, leaf reflectance is controlled by the structure of 

the spongy mesophyll tissue. In this region, the healthy green leaf is characterized 

by high reflectance (40 – 60 %), high transmittance (40 – 60 %) through the leaves 

onto underlying leaves, and relatively low absorptance (5 – 10 %). Notice that a 

healthy green leaf reflectance and transmittance spectra throughout the visible and 

near-infrared spectrum are almost mirror images of one another. The cuticle and 

epidermis are nearly completely transparent to infrared radiation. Radiation passing 

through the upper epidermis is strongly scattered by the mesophyll tissue and the 

cavities at the cell wall to air interface within the leaf (Peterson and Running, 1989). 

Very little radiation is absorbed and most is scattered upwards (reflected). 

Downward scattering leads to transmittance. As illustrated in Fig. 2.4, the reflectance 

in the near-infrared region (NIR) is greater than the reflectance in the visible region. 

Differences in reflective properties of plant species are more pronounced here than 

in the visible region (Campbell, 1996). 

In the longer infrared wavelengths (beyond 1300 nm), leaf water content 

appears to control the spectral properties of the leaf. The term equivalent water 

thickness has been proposed to designate the thickness of a film of water that can 

account for the absorption spectrum of leaf at 1400 to 2500 nm. However, results 

from Gao and Goetz (1995) indicate that it is not only water content that is 

responsible for the optical properties in this spectra but also, to some extent, the 

content of lignin. 
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a) 

 

 
b) 

 

Figure 2.3. (a) Cross section of a typical leaf, and (b) its interaction with sunlight 

(Kimball, 2005). 
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Figure 2.4. Typical spectral response characteristics of green vegetation. 

 

 

 

 

 

 

Figure 2.5. Simplified illustration of behaviour of energy interacting with canopy. In 

the NIR, radiation transmitted through the top layer is available for reflection from 

lower layers (Campbell, 1996). 

2.2.2. Canopy reflectance 

In the field, a vegetation canopy is composed of many layers of leaves, 

branches, stems and understory vegetation. Each of these components is variable 

and, therefore, the reflectance from a canopy varies considerably from the 

reflectance of a single leaf. Leaves may vary in size and orientation, which leads to 

shadowing of various canopy elements, such as leaf, soil and understory vegetation. 

This decreases reflectance below the values measured from single leaves, see 

Table 2.3 and Fig. 2.6. However, the relative decrease is much lower in the NIR 
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region than in the visible region. This is due to the optical properties of leaves in the 

NIR region. 

Table 2.3. Single leaf and canopy reflectance measured in Hesse, 2002 

                           Percent Reflected 

 Visible Near infrared 

Single leaf 5.5 % 65 % 

Canopy 3.0 % 40 - 45 % 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Canopy reflectance is lower than single leaf reflectance due to canopy 

structure. 

The part of the radiation that is transmitted in the top layer of leaves is re-

scattered on the next layer and transmitted back through the first layer. Therefore, 

infrared radiation passes back through the upper leaves, resulting in a high 

reflectance (Campbell, 1996), see Fig. 2.5. This effect is called leaf additive 

reflectance. 

Other factors affecting the reflectance from a surface are the view angle and 

the illumination angle (Deering, 1989). The effect of reflectance variation due to 
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changes in these variables is described by the BRDF. The reflectance model takes 

all of the above variables into account when calculating the reflectance from a forest 

collection, i.e., it calculates the BRDF in specified view and illumination. The BRDF 

often yields a peak of reflectance, if the source of illumination (the sun) is directly 

behind the sensor. This peak in reflectance is called “the hot spot”. A typical BRDF is 

illustrated in Fig. 2.7 where the hot spot is seen with increased reflectance in the 

right part of the figure. It occurs because only the illuminated parts of an object are 

viewed by the sensor (Deering, 1989). 

 

Figure 2.7. Oak-rangeland community bi-directional reflectance surface for 826 nm 

(Deering, 1989). 

2.2.3. Applications of remote sensing of vegetation 

The use of remote sensing data for vegetation study can be seen in two ways. 

The traditional approach is called image-centered. Its primary purpose is in 

determining spatial relationships among objects and features on the ground. In fact, 

the goal of image-centered analyses is creation of a map. Previously, aerial 

photographs were analyzed by photointerpretation. This process requires 

experience of the analyst, who distinguishes the differences in features of interest 

(Campbell, 1996).  
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With remote sensing data now available in digital form, the use of computers 

and image processing software for information extraction is a standard practice. In 

the last three decades, image classification to create thematic maps is a common 

application for remote sensing data in vegetation studies. Various degrees of 

success in image classification has been achieved with different sources of images 

at different scales, from species mapping at stand scale to land cover mapping at 

regional, continental, and global scale (Gopal et al., 1999; Sandmeier and Deering, 

1999; Thomlinson et al., 1999; Friedl, 2002; Ballantine et al., 2005; Giri et al., 2005). 

Traditionally, pixel-based classification is a standard approach towards land cover 

classification. The method is based on the statistics of spectral similarities of each 

pixel in the image. Those pixels having similar spectral properties belong to the 

same class. The most used pixel-based classifiers are: K-means clustering 

(unsupervised training) and maximum likelihood (supervised training). The pixel-

based classification is suitable for medium to coarse resolution remote sensing data.  

In practice, however, it proves difficult to classify high-resolution images with a 

pixel-based method due to the high level of information captured by these images 

(de Jong et al., 2000; Blaschke and Strobl, 2001; Hofman, 2001; Limp, 2002). 

Important semantic/spatial information required to interpret the image is not 

accounted for by the pixel-based classification algorithms. In the past two decades, 

various segmentation techniques have been developed to incorporate context, 

texture, and neighborhood information into the image classification procedure 

(Janssen, 1993). The new software package eCognition (eCognition, 2002) brings 

together several of these contextual and object-oriented approaches and gives 

promising results for high-resolution image analysis (Baatz and Schäpe, 2000). This 

new method used in the current study, first extracts image objects by segmentation. 

The segments are subsequently classified using combinations of spectral and spatial 

information (Baatz and Schäpe, 2000). 

The second approach applied in remote sensing of vegetation is called data-

centered. Here, the information inferred from remote sensing data itself is of interest, 

rather than the spatial relationship of features on the ground. The most common 

approach is to make use of the reflectance measurement from remote sensing data 

for deriving biophysical parameters, either by applying empirical or process-based 

models. For example, an algorithm based on the physics of radiative transfer in 
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vegetation canopies was developed and implemented for the retrieval of vegetation 

green leaf area index (LAI) and fraction of absorbed photosynthetically active 

radiation (FPAR) from MODIS surface reflectances (Myneni et al., 2002) at global 

scale, or from Landsat TM reflectances (Eklundh et al., 2001; Fang et al., 2003) at 

stand scale. In the same manner, chlorophyll content and water content can be 

estimated from hyperspectral reflectance measurements, Landsat TM reflectances, 

and MODIS reflectances data using empirical (Hu et al., 2004) and radiative transfer 

models (Jacquemoud et al., 1995; Zarco-Tejada et al., 2003; le Maire et al., 2004). 

Phenological cycles of vegetation can be determined by analyzing the temporal 

variation of NDVI from time series of satellite images (Kang et al., 2003; Zhang et 

al., 2003). Accurate absolute radiometric calibration and atmospheric correction is 

generally more important for data-centered analysis than for image-centered 

analysis. The results and products of data-centered analysis should also be 

presented in the context of spatial maps in order to fully understand the spatial 

distribution and behavior of the biophysical parameters. 

In recent years, increasing interest in global change and in long-term 

monitoring of the human effects on environment has led to the use of remote 

sensing data at global scale (Kang et al., 2003). In this sense, the two approaches, 

image-centered and data-centered, converge. The requirement for global monitoring 

leads to the need for integration of information, which is extracted from spectral and 

temporal dimensions, into a spatial framework that can be used at global scale. It is 

particularly important in this context to ensure that the data are spatially and 

radiometrically corrected, is consistent over time, and is calibrated from one sensor 

to another. 



Chapter 3 

 24

CHAPTER 3. STUDY SITE CHARACTERISTICS, DATA BASES A ND 

REMOTE SENSING METHODOLOGY 

3.1. Study site characteristics 

3.1.1. Hesse  

The state forest at Hesse, France (48º40´30’’N, 7º03´59’’E) has been 

extensively researched during the last decade (Baldocchi et al., 1996; Tenhunen et 

al., 1998; Granier et al., 2000; Valentini et al., 2000) (Fig. 3.1). The site has been 

included in several European carbon balance research programs, beginning with 

EuroFlux (‘Long-term carbon dioxide and water vapor fluxes of European forests and 

interactions with the climate system’; (Baldocchi et al., 1996; Tenhunen et al., 1998)) 

and continuing currently with the CarboEurope-IP (Assessment of the European 

terrestrial carbon balance; http://www.carboeurope.org/).  

The area is underlain by sandstone or limestone bedrock. The topography is 

classified as a plateau (elevation ranging from 260 to 350 m); with mean slope of 

5 % (Fig. 3.3). The pH of the topsoil (0 – 30 cm) is 4.9 with a C/N ratio of 12.2 and 

an apparent density of 0.85 kg dm-3, and it is covered with a mull type humus (Epron 

et al., 1999). The cool climate leads to a short summer with growing season of 130 – 

140 days, and cold winter (-1°C  on average from December and February over a 

recent 6 year period). Average annual precipitation is ca. 820 mm (Granier et al., 

2000). 

The forest is composed mainly of naturally established beech (Fagus sylvatica 

L.) trees, which constitute more than 90 percent of the forest vegetation cover at the 

Hesse site. The other tree species include Carpinus betulus L., Betula pendula 

(Roth), Quercus petraea (Matt.), Larix decidua (Mill.), Prunus avium L. and Fraxinus 

excelsior L. The stand is considered to exhibit good productivity in the first class of 

Shrober’s yield Table for beech, which predicts a mean increment of 9 m3 ha-1 year-1 

at age of 100 year (Granier et al., 2000). The understorey vegetation (mainly 

Carpinus betulus) is undeveloped due to the closed canopy. The stand was 

approximately 40 years old with a stand density of 3800 stems ha-1, and a basal 

area of 19.6 m2 ha-1 in 1999. The average tree height and circumference (at 1.3 m) 

were 12.7 and 227 mm, respectively, in 1996 (Granier et al., 2000). 
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Surrounding the deciduous forest area are stands with coniferous forest, areas 

with urban land use, agricultural land and grassland. After harvest, fields are left 

fallow and appear similar to bare soil and grassland (Fig. 3.2). 
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Figure 3.1. Hesse forest site in eastern France as seen from aerial photography, the 

red square indicates the immediate vicinity of the tower used for eddy covariance 

measurements. 
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Figure 3.2. Land cover map of Hesse site derived from a SPOT image (date 24 June 

2001) and aerial photo. The tower site for eddy covariance measurements is located 

at (0, 0) corresponding to 48°40 N, 7° 3’ E. (Grani er A., personal communication, 

2003). 
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Figure 3.3. Digital elevation model (DEM) of the Hesse forest study site. (Granier, 

personal communication, 2003). The image corresponds to those in Figs. 3.1 and 

3.2. 
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3.1.2. Tharandt 

The selected research area is located at the long-term Ecological Monitoring 

Station of the University Dresden (50°58‘N 13°38‘E,  380 m) (Fig. 3.4), in Tharandt 

Forest, 20 km SW of Dresden (Germany). The site is characterized by gentle slopes 

with an elevation of ca. 380 m above sea level (Fig. 3.5). The climate is temperate 

continental with a mean annual precipitation of 820 mm and a mean annual 

temperature of +7.6°C. The soils are sandy-loamy br own-earths (rhyolith type) 

developed on porphyry rocks with a moder humus form with sandy-loamy texture 

(Dystric Cambisol - FAO). The mean pH of the organic layer varied between 3.6 and 

4.3 (Zaitsev et al., 2002). 

The indigenous vegetation in this area is mixed forest with multiple stories that 

consist of spruce, beech, fir, and maple (Bitter et al., 1998). Due to the strong impact 

of anthropogenic activities, pure even-aged spruce forests now dominate this area, 

resulting in a decrease in forest diversity, and a deterioration in soil fertility (Nebe 

and Fiedler, 1985; Bitter et al., 1998). Some parts of the area are covered by spruce 

forests (Picea abies (L.)) mixed with a small fraction of pine and deciduous trees. 

At the tower site for eddy covariance measurements of forest gas exchange, 

the dominant species is Norway spruce (Picea abies) which was planted as early as 

1887. Other tree species include Pinus sylvestris, Larix decidua, and Betula spp., 

but these only occupy a small area. In the spring of 1995, beech (Fagus sylvatica) 

was planted in some plots. The understorey vegetation is undeveloped due to the 

dense forest canopy and low soil pH. The stand age was on average 107 years in 

1999 with the stand density of 444 stems*ha-1 near the tower site. Average tree 

height and breast height diameter (at 1.3 m) were 27.9 and 328 mm. The plots 

together with their inventory characteristics surrounding the tower site within a 

0.5 km circle are shown in Fig. 3.6 in detail (Wang et al., 2004). More background 

information on the Tharandt site is also presented in Table 3.1.  
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Figure 3.4. Location of Tharandt forest site in Germany 

 

Figure 3.5. Land cover map and elevation contour of Tharandt forest site (Bernhofer 

C., personal communication, 2003). The grassland meadow at Grillenburg is seen 

clearly in the middle of the forest. Stripes in the forest vegetation result from clear 

cutting of the forest according to the harvest method practised, i.e., indicate early 

stages in forest succession after clear cut. 
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Figure 3.6. Forest stand types located within a 0.5 km circle centered on the tower 

used for eddy covariance measurements of gas exchange. 

Table 3.1. Summary of the main characteristics of the Tharandt forest near the eddy 

covariance tower site 

 Unit Tharandt site 

Location  50°58´N, 13°34´É 

Elevation m 380 

Dominant canopy species  Picea abies 

Stand age years 110 (in 2000) 

Canopy height m 27.9 

Tree density ha-1 477 

Stem diameter cm 33.8 

LAI  8.0 

Aboveground biomass kg m-2 22.7 

The meadow experimental site, which is situated within the forest, covers an 

area of ca. 1.5 ha and is extensively managed with 2 to 3 hay harvests per year. The 

vegetation is dominated by the native fescue (Festuca pratensis), meadow foxtail 

(Alopecurus pratensis) and timothy (Phleum pratense). The meadow is clearly 

distinguishable in aerial photos and remote sensing scenes. Intensive studies of 
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grassland structure, e.g., time dependent changes in LAI and above and 

belowground biomass, have been carried out during 2004 through 2006. Meadow 

gas exchange is documented both with the eddy covariance technique in the context 

of the CarboEurope-IP project and with large chamber measurements (Mirzaei, 

2008). 

3.1.3. Berchtesgaden 

The Berchtesgaden National Park (210 km2), established in 1978 by decree of 

the Bavarian government, is located in south-eastern corner of Germany between 

12°47’E and 13°05’ E and 47°27’N and 47°45 N (Fig. 3.7). In 1990, the 

Berchtesgaden National Park became a UNESCO Biosphere Reserve based on 

existing nearly natural alpine ecosystems. The park belongs to the oldest protected 

areas in the Alps, and it is the only alpine biosphere reserve in Germany. 

The park is a part of the Northern Limestone Alps, characterized by thick 

mesozoic carbonate deposits. The dominant bedrocks in this region are limestone 

and dolomite. The topography is classified as rough terrain, the elevations range 

from 603 m, at the lowland lake Königsee, to 2713 m a.s.l. at the summit of the 

Watzmann Mountain. The occurrence of steep, precipitous, and very precipitous 

slopes is much higher than found for land surface in other categories. The landscape 

characterized by high mountains with steep valleys illustrates recent glacial 

recession.  

Soils are composed of many types (according to FAO classification) depending 

on the bedrock and landscape. Cambisols are the most frequently occurring soil type 

in the park, while Rendzic soils exist frequently in the areas where dolomite 

decomposition occurs. Cambic Podzol and Podzol are found over the radiolarian 

rocks. In some areas because of the influence of groundwater Stagnic Gleysol and 

Gley are present. 

The climate of the region is characterized by both atlantic and continental 

influences. At high altitudes, typical mountain climate conditions prevail. The mean 

annual temperatures range, depending on altitude, from +7°C (Königssee) to -2°C 

on the Watzmann summit (2713 m). Annual precipitation varies between 1500 and 

2200 mm; the mean annual precipitation in the region is ca. 1880 mm (Konnert, 

2001). 
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Figure 3.7. Location and land use map of National Park Berchtesgaden. Source of 

the map is the Berchtesgaden National Park Administration as interpreted from 

aerial photography during 1997 at a resolution of 1 m. 
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Vegetation in the National Park Berchtesgaden is strongly influenced by highly 

variable microclimate due to elevation gradients. This leads to pronounced altitude 

zonation of the vegetation. The composition of forest species changes naturally with 

altitude, the proportion of conifers increases going from low to high elevation (Fig. 

3.7; Table 3.2). 

Table 3.2. The composition of forest species at the Berchtesgaden National Park 

Zone Composition of forest species 

Submontane zone 

(at 700 m a.s.l.) 

Deciduous forests are dominant. Beech forests (Fagus 

sylvatica) are well represented. Acer pseudoplatanus, 

Fraxinus, Ulmus glabra, Tilia platyphyllos and Alnus 

incana excelsior are regularly found within the beech 

forests. 

Montane zone 

700 m a.s.l. – 

1400 m a.s.l. 

Comprised of mixed forest – Fagus sylvatica, Picea 

abies, Abies alba and Acer platanoides. In many cases 

coniferous forest prevail, which is due to anthropogenic 

impact and planting in past centuries. In the northern 

part of the National Park, deciduous forest and silver fir 

(Abies alba) are missing. 

Subalpine zone 

1400 m a.s.l. – 

2000 m a.s.l. 

Spruce-larch forests dominate – Picea abies and Larix 

decidua. In some areas of the park, (Funtensee, 

Steinernes Meer, Blaueistal und Reiteralm) larch-alpine 

pine forests (Larix decidua with Pinus cembra) occur. 

Alpine zone   

above 2000 m a.s.l. 

Wind-dwarfed bushes and alpine meadows. Pinus 

mugo, Alnus viridis and Rhododendron ferrugineum are 

very common. 

 

The forested area and forests composition in the National Park Berchtesgaden 

have been also altered due to hundreds of years of human management practices. 

This anthropogenic impact has had the result, that in many places conifer forest 

dominate, and in the northern part of the park deciduous forest and silver fir (Abies 

alba) are missing. Recently, programs have been implemented that attempt to 

restore the forest to a more natural state. 
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Grassland and meadows are present in the mosaic landscape and have 

undergone long-term change due to management practices such as grazing and 

cutting. Grass and meadows communities are Trisetetum flavescentis, with the 

dominant species Alchemilla vulgaris, Dactylis glomerata, Leontodon hispidus, 

Plantago lanceolata, Geranium sylvaticum, etc.  

In the subalpine zone, a large variety of different herbage plants grow in the 

pastures, the plant association being classified as Alchemillo–Cynosuretum 

(Oberdorfer, 1993). The main species were Alchemilla vulgaris, Cynosurus cristatus, 

Trifolium repens, Phleum alpinum, Poa alpina, Crepis aurea. 

3.1.4. Stubai Valley 

The Stubai Valley in Tirol (Austria) covers an area of 120 km2, with the center 

situated at approx. 47° 07' N, 11° 17' E (Fig. 3.8) . 

Climate 

The Stubai Valley study area is characterized by temperate continental inner 

alpine climate with frequent precipitation and heavy thunderstorms in the summer 

(Zeller et al., 2000; 2001). About 50 % of the annual precipitation is snow during the 

winter months (Cernusca et al., 1999). Average air temperature and annual 

precipitation range from 6.3°C and 850 mm to 3.0°C and 1100 mm at the valley 

bottom and the treeline, respectively. Snow cover duration is approximately 100 

days. The altitude ranges from 900 m at the valley to 3450 m at the top of the 

surrounding mountains. The study area consists mainly of medium to steep slopes 

exposed S to E. The bedrock consists of siliceous and calcareous deposits. 
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Figure 3.8. Location and land cover map of Stubai Valley (Wohlfahrt, 2004). 
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The soils on siliceous rock belong to the pedogenesis Lithic Leptosol – 

Leptosol – Cambisol – Semipodzol – Podzol (Bitterlich et al., 1999); thus, Eutric and 

Oligotrophic Cambisols are developed on the alpine meadows and pastures, and on 

mown Larix decidua meadows. In the abandoned areas, largely Oligotrophic to 

heavily Cambic Podzols occurred, depending on the time since abandonment. In 

addition, on old fallows with a close cover of dwarf shrubs Ferric and Haplic Podzols 

occur. In turn, on limestone of the Brenner mesozoikum, large areas of Rendzina 

and smaller areas of Calcaric Cambisol were found. 

Vegetation 

Vegetation in the Stubai Valley includes alpine grasslands, subalpine 

coniferous forest, and cultivated areas at the bottom of the valley (ECOMONT 

project, (Cernusca et al., 1999)) The alpine grassland distribution in the study area is 

heavily influenced by land use as seen in Table 3.3 (Tasser et al., 1999). 

Table 3.3. The composition of grassland communities in Stubai Valley 

Zone Composition of species 

Intensively 

managed hay 

meadow 

1850 m a.s.l. 

The characteristic plant community of these hay meadows 

is Trisetetum flavescentis, with the dominant species 

Alchemilla vulgaris, Dactylis glomerata, Leontodon 

hispidus, Plantago lanceolata, Geranium sylvaticum, etc. 

Lightly managed 

hay meadow 

Sieversio-Nardetum strictae is the prevailing plant 

community. Species typical for intensively used hay 

meadows are also present. 

Intensively 

managed pasture 

1900 – 2000 m 

a.s.l. 

Seslerio-Caricetum is adjacent to the pasture. Dominant 

species are Alchemilla millefolium, Plantago media, 

Ranunculus montanus, Lotus corniculatus, etc. 

Lightly managed 

pasture 

above 2000 m 

a.s.l. 

The proportion of forage plants (Alchemilla millefolium, 

Lotus corniculatus, Trifolium pratense, etc.) has decreased. 

Dominant plant species such as Calluna vulgaris, Carex 

montana, Sesleria varia, etc. are present. 
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The dominant trees are spruce (Picea abies), Larix decidua at tree line and 

Pinus sylvestris. Mixed and deciduous forests cover a small part of the investigated 

area. Some broad-leaved trees such as Sorbus aucuparia, Salix sp. and Alnus 

viridis also occur locally. 

3.2. Methodology 

The overall objective of this study is to provide a ground-surface-based 

evaluation of MODIS reflectance, land cover, and LAI products. There are two steps 

required with respect to accomplishing these aims, namely: 

1) To build an appropriate database, gathering all ancillary data which is 

necessary to carry out the assessments, and 

2) To carry out the ground-based evaluation of the products across several 

scales (Fig. 3.9). 

 

Figure 3.9. Conceptual model from the Bigfoot project. illustrating the use of field 

measurements and remote sensing to characterize the vegetation cover and LAI for 

study sites (http://www.fsl.orst.edu/larse/bigfoot/). 
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Important in this thesis is the development of relationships between ground-

surface data, Landsat-TM observations at 30 m resolution, and MODIS remotely 

sensed data at 1 km resolution, thereby obtaining a ground-surface-based test of 

publicly available products. 

3.2.1. Building an appropriate database 

An extensive collection of reflectance, land cover, and LAI were obtained from 

previous studies at the four study sites as summarized in the following sections.  

3.2.1.1. National Park Berchtesgaden 

a. Alpine habitat mapping and its derivation - land cover map 

The alpine habitat map series were produced using color infrared (CIR) photos 

within the framework of the Project “Alpine Habitat Diversity–HABITALP–INTERREG 

IIIB Alpine Space Program” by the administration of the National Park 

Berchtesgaden. The first version was carried out using images acquired in 1980. 

The other two versions were updated during 1990 and 1997. Interpretation of these 

data was carried out using on-screen digitizing methods, which are mostly based on 

experience of the interpreter to differentiate type of vegetation according to the 

brightness, texture and surface, shadows, and stereoscopic effect. As a result, a 

map that is composed of 153 biotope types in the Berchtesgaden National Park was 

created (Bobeva, 2003). 

 The alpine habitat map was reclassified as part of this thesis work into a land 

cover map (Fig. 3.11), which is composed of six land cover types: deciduous forest, 

coniferous forest, mixed forest, grassland, rocks, and water. The land cover map 

then is used as reference data for validation of the remote sensing classification. 

b. Landsat TM images (for all sites) and its derivations: reflectance and land cover 

Field studies provide detailed measurements over relatively small space and time 

scales. Remote sensing data provide synchronous measurements over very large 

areas but with reduced potential for local details (Kerr and Ostrovsky, 2003). 

Combining remote sensing and field measurements can lead to spatially integrated 

measures of ecosystem structure and function. Landsat TM data was chosen as a 

remote sensing source in this study due to its well-known characteristics and its 

regular use for land cover determinations, LAI mapping, as well as good resolution in 

comparison with ground measurements. 
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Figure 3.10. Scheme describing steps carried out in pre-processing of Landsat data 

for all sites. 

All Landsat TM scenes used at the four sites in this study are listed in Table 

3.4. The selection of scenes was based on the following criteria: 

1) The acquisition time: scenes should be close to the date, when ground-truth 

measurements were made (the same day is of course ideal). In the case that 
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measurements were carried out over the growing season, a series of scenes 

that monitor the change of vegetation functions are required. 

2) The quality: scenes should be cloud-free.  

All Landsat data were subjected to the same pre-processing, which includes 

spatial co-registration, geo-referencing, atmospheric correction, and topographic 

correction as illustrated in Fig. 3.10. This is to ensure consistency of all Landsat 

images. At the end of this process, reflectance data were obtained, ready for use in 

land cover classification and LAI mapping. Details of the pre-processing description 

are given in Appendix A.  

The land cover map was derived from Landsat reflectance images by two methods 

(see more detailed description in 3.2.2):  

1) The traditional method is a pixel-wise classification, based on supervised 

classification and maximum likelihood classifier. 

2) The new method is a patch-based classification.  

As the results of study in Berchtesgaden will show, the classification of data which 

have gone through atmospheric correction and topographic correction, gave the best 

agreement to the ground truth, and the patch-based classification gave better results 

as compared to the pixel-based method. The patch-based classification has been 

applied for all four studied sites. 

c. Forest inventory data and its derivation: LAI map 

A forest inventory database was created within the framework of the projects 

“Mapping Site Characteristics in the National Park Berchtesgaden” (Konnert, 2001). 

The forest-inventory data were initially gathered in 1983/84. The updated 

measurements were made during the period 1995/97 (April to October each year) in 

order to obtain information on the development of the forests within the National 

Park. The inventory was carried out using the angle-counting method (as in the first 

inventory), as well as by using a method of concentric circles. Over the territory of 

the National Park Berchtesgaden a raster grid with 200 x 200 m2 cells was created 

(Fig. 3.11). Nearly 4200 inventory points were monitored. The distance between the 

inventory points is 141 m. In the first forest inventory, 39952 trees were examined. 

During the second inventory 90.3 % of these trees were measured, 9.7 % 

disappeared, 11.2 % had newly established. 



Study site characteristics, data bases and remote sensing methodology 

 
41

For each of the forest stands (at grid cell) a number of stand parameters was 

measured: stand age, tree height, stand density, DBH (diameter at breast height) 

etc. The ground plots in which stand parameters are measured are generally 50, 150 

and 500 m2
 in size, depending on the DBH of trees to be measured (Table 3.5). 

Then all the data sampled in an individual circle are recalculated for 1 ha (Konnert, 

2000). 

The diameter at breast height was measured for all the trees falling into the 

ground plot (concentric circle) at 1.3 m above ground level. Trees were separated 

into different classes based on DBH. Stand age was measured with the counting of 

year rings on cores taken from the trees. Very old trees predominate clearly in all 

measured stands. According to age, all trees were grouped into age classes of every 

20 years. Tree height was measured in every ground plot with Suunto altimeter 

(SUUNTO, CA, USA). Canopy density was estimated in every 500 m2
 circle to one 

tenth of ground cover 

 

 

Figure 3.11. Forest inventory grid in Berchtesgaden National Park as used by 

Konnert et al. (2001). 
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Table 3.4. List of Landsat TM scenes in Berchtesgaden and other sites 

Site Date 

National Park Berchtesgaden  

 September 14, 1999 

Stubai Valley  

 September 13, 1999 

 May 16, 2002 

 June 17, 2002 

 June 26, 2002 

 July 19, 2002 

 July 28, 2002 

 September 14, 2002 

Hesse Forest  

 March 31, 2001 

 May 10, 2001 

 July 5, 2001 

 August 22, 2001 

 November 10, 2001 

 July 08, 2002 

Tharandt Forest  

 February 15, 2001 

 May 13, 2001 

 June 14, 2001 

 August 26, 2001 

 October 20, 2001 

 July 28, 2002 

Table 3.5. Plot sizes according to DBH 

DBH (cm) Plot size (m2) 

0 - 5 25 

6 - 11 50 

12 - 19 150 

≥ 20 500 
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3.2.1.2. Stubai Valley 

a. Land cover map of Stubai Valley 

The land cover map of Stubai Valley was created for investigating land-use 

changes in European terrestrial mountain ecosystems (as a part of ECOMONT 

project). The map was created by visual interpreting airborne CIR images and was 

used for validation of the land cover map derived from Landsat images. The map 

originally in ArcInfo shape file was converted into grid coordinates and resized to 

30 m-resolution to make it comparable to the Landsat TM derived land cover map. 

The classes in the land cover map of Stubai Valley were combined and reclassified 

into a 6 distinct classes identical to the satellite based land cover classes: deciduous 

forest, coniferous forest, mixed forest, grassland, water, and non-vegetation surface 

(rocks, bare soil, and urban areas) (Fig. 3.8). 

b. Landsat TM images and its derivations: reflectance and land cover 

Six Landsat TM scenes in 2002 were collected to capture the development of 

grassland in the year 2002 (Table 3.4). The cloud-free scenes were used for 

assessment of the MODIS reflectance products. The best scene in the season was 

used for deriving a land cover map, which is subsequently used for validating the 

MODIS land cover product.  

c. Forest inventory data and its derivation: LAI map 

Within framework of ECOMONT and INTERREG II projects, a LAI map was 

also developed using inventory data for Neustift (a small part of Stubai Valley). The 

method used for developing of LAI map is the same as used in Berchtesgaden 

National Park, e.g. using allometric relationships to infer LAI from DBH. In this study, 

the ground truth LAI map was used to validate the LAI map derived from Landsat TM 

images in Stubai Valley, using the LAI-VIs model acquired from Berchtesgaden. 

d. LAI measurements at grassland sites 

Destructive harvesting was used to determine LAI in grassland sites over the 

course of the growing season in 2003, monitoring the development of four 

grasslands as well as changes at the time of cutting. Relating LAI measurements to 

vegetation indices derived from Landsat TM data helped to extrapolate LAI to 
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grasslands in the region, as well as to Berchtesgaden National Park. Details of the 

methods are given in section 3.2.2.3. 

3.2.1.3. Tharandt forest 

a. Land cover map of Tharandt 

The land cover map of Tharandt forest was created in 1993 by using Landsat 

TM data. The map was created by supervised classification of Landsat images. The 

land cover map of Tharandt forest is composed of 7 distinct classes: deciduous 

forest, coniferous forest, mixed forest, grassland, agriculture land, water, and non-

vegetation surface (bare soil, and urban areas) (Fig. 3.5). 

b. Reflectance measurements of grassland and coniferous forest canopies  

Field measurements of reflectance were taken in Tharandt forest sites at the 

time close to the time of acquisition of Landsat TM data using an Analytical Spectral 

Device (ASD) spectrometer (details are described in Chapter 4). Comparison of 

measured reflectance and Landsat reflectance was made to confirm the validity of 

the Landsat reflectance, which was then used for MODIS product assessments.  

c. Landsat images and its derivations: reflectance and land cover 

Five Landsat TM scenes in 2001 were collected to capture the vegetation 

development of the year 2001. An additional scene acquired on July 2002 was used 

for comparison to ground measurement of reflectance (Table 3.4). The cloud-free 

scenes were used for assessment of the MODIS reflectance products.  

Due to land-use changes within the last 10 years, a new land cover map is 

needed. The best scene in the season 2001 was used for deriving a land cover map 

via the patched-based classification method.  

c. Forest inventory data and its derivation: LAI map 

Forest inventory was made in the plots within the 0.5 km circle surrounding the 

tower site (Fig. 3.6). More background information on the Tharandt site is also 

presented in Table 3.1. The dominant species is Norway spruce (Picea abies), which 

was planted as early as 1887. Other tree species include Pinus sylvestris, Larix 

decidua, and Betula spp., but these only occupy a small area. At each plot, a 

number of stand parameters were measured: stand age, tree height, stand density, 

and DBH (diameter at breast height) distribution. LAI was obtained by summing the 

leaf area of each tree within the plot and then dividing by the plot area.  
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The existing allometric equation for spruce is for projected leaf area. Chen and 

Black (1992) demonstrated that in order to use 0.5 as the projection coefficient when 

the leaf angle distribution is spherical (random), LAI must be defined on the basis of 

half the total leaf area. To obtain half the total surface area, the projected area was 

corrected by the factor of 1.35 (Niinemets and Kull, 1995). 

d. LAI measurements at grassland site 

LAI measurements were carried out at the grassland site using destructive 

methods over the course of the growing season. Relating LAI measurements and 

vegetation indices derived from Landsat TM data helped to confirm validity of the 

model, which was developed for Stubai Valley. This model was used to extrapolate 

LAI to grasslands in the region as well as to other study sites. Details of the methods 

are given in part 3.2.2.3. 

3.2.1.4. Hesse forest 

a. Reflectance measurements of the deciduous forest canopy 

Field measurements of reflectance were taken from above canopy in Hesse 

forest sites at the time close to acquisition of Landsat TM data using an ASD 

spectrometer (details provided in Chapter 4). Comparison of the measured 

reflectance and Landsat reflectance was made to confirm the validity of the Landsat 

reflectance, which then used for MODIS product assessments.  

b. Landsat images and its derivations: reflectance and land cover 

Five Landsat TM scenes in 2001 were obtained to capture development of the 

deciduous forest in the year 2001. An additional scene acquired on July 2002 was 

used for comparison to ground measurements of reflectance (Table 3.4).  

c. Land cover map 

The land cover map of Hesse forest was created in 1997 by supervised 

classification of a SPOT image. The land cover map of Hesse forest is composed of 

7 distinct classes: young deciduous forest, mature deciduous forest, coniferous 

forest, grassland and agricultural land, bare soil, soil covered by sparse vegetation, 

and urban areas (Fig. 3.3). This land cover map was used as ground truth data for 

validating the new version of land cover map, which was created using Landsat 

data. The new land cover map covered a larger area as needed for assessment of 

MODIS data. 
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d. LAI measurements at deciduous forest site 

In deciduous forest stands, LAI determination by collecting leaves in traps 

distributed below the canopy during leaf fall is a widely used non-destructive 

method. Litter has to be collected in a number of traps with a known collecting area 

over short intervals to avoid losses and decomposition (detail in part 3.2.2.3). This 

practice has been carried out over the long term in the context of monitoring studies 

at the site. 

3.2.2. Strategy for evaluation 

Within the framework of this study, measurements, mapping, and modeling 

activities were carried out at the four above-mentioned sites, each equipped with a 

meteorological flux tower that makes continuous measurements of energy, water, 

and carbon fluxes for a roughly 1-km2 area. Procedures encompass the following: 

1) Detailed ground level measurements for evaluation were conducted within the 

1-km2
 
surrounding the eddy flux tower.  

2) The measurements were then used for evaluation of the products, which were 

derived from high-resolution remote sensing data (Landsat). Extrapolations of 

field measurements to high-resolution grids (reflectance, land cover, and LAI) 

were made using Landsat imagery and statistical models. Errors in these grids 

were estimated using independent field observations. 

3) After processing and upscaling the Landsat product to MODIS scale, a direct 

comparison of MODIS and field-verified high-resolution Landsat-derived 

products were made to quantify errors and uncertainties that exist in MODIS 

products.  

3.2.2.1. Evaluation of MODIS reflectance 

a. Measurement of reflectance at three biomes: Coniferous forest, deciduous forest, 

and grassland. 

Field measurements of reflectance were taken in Hesse forest, Tharandt forest, 

and Tharandt grassland sites at the time close to the passing time of the satellite. 

The spectra were averaged and integrated over the ETM+ spectral band to validate 

the ETM+ atmospherically corrected reflectance. Measurements were collected from 

the eddy covariance tower above the canopy in three different unshaded directions. 

The error bars on the ASD measurements represent the standard deviation 
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computed from the spectra collected at the location (30 measurements). The 

reflectance of the leaves was measured using an ASD spectrometer at 325 – 

1075 nm in 2 nm steps, but only data in the range 400 to 1000 nm were used, to 

avoid the lower signal to noise at the extreme ends of the spectra. The 

measurements were performed with the same illumination conditions as 

measurements of canopy reflectance. The instrument was held at the normal from 

the leaf position, focusing on the leaf. The white reference reflectance was achieved 

using a reference plate (spectralon), having nearly lambertian properties. 

Comparison of measured reflectance and Landsat-derived reflectance was 

made to confirm validity of the Landsat reflectance products.  

b. Upscaling of Landsat reflectance to MODIS scale using a statistical model. 

From numerical experiments using a three-dimensional (3D) atmospheric 

transfer model, Liang et al. (2001) found that upscaling of reflectance from 30 m to 

1 km over vegetated surface is quite linear. It implies that one can linearly average 

the high resolution ETM+ reflectance up to the coarse resolution of MODIS. The 

average of 16 x 16 blocks of ETM+ pixels was calculated to generate a product at 

460 m, which is the same as MODIS reflectance products. 

c. Comparison of MODIS reflectance and Landsat reflectance.  

Multidate Landsat TM scenes, which cover four study sites and relatively cloud-

free, were used in comparison. Pixel by pixel comparison is possible due to the 

accuracy of geo-referencing of both MODIS and Landsat TM data. 

3.2.2.2. Evaluation of MODIS Land cover 

Land cover maps at four sites were collected from former studies. They are 

either derived from airborne photo image (National Park Berchtesgaden and Stubai 

Valley) or high-resolution satellite images (Hesse forest and Tharandt forest). The 

land cover change in recent years will, however, affect the accuracy of these maps. 

There is a necessity to develop a new set of land cover maps, which is compatible 

with the derivation of MODIS land cover products (LAI). This was carried out based 

on Landsat TM scenes and compared with the previous mapping work. 
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3.2.2.2.1. Image classification: concepts and methods 

Box 3.1. Background on image classification  

According to Schowengerdt (1997), image classification is the process used to 

produce thematic maps, which shows the spatial distribution of identifiable earth surface 

features and provides an informative description of a given area. As a result, the image 

is partitioned into some non-intersecting regions, such that each region is 

homogeneous and the union of two adjacent regions is heterogeneous. The 

classification process can use more parameters to classify than brightness, e.g., 

texture, shape, and directional reflectance of objects (Blaschke and Strobl, 2001). In 

general, the classification process involves the following steps. 

Feature extraction: to transform the multispectral image to a subset of bands, 

indices or principal components in order to reduce the data dimensionality while 

increasing information richness. This step is optional. The multispectral image data can 

be used directly in a classification, but it contains various external influences, such as 

atmospheric scattering and topographic effects. Also, the data are often highly 

correlated between spectral bands, resulting in inefficient analysis. Furthermore, image-

derived features, such as indices and measures of spatial structure, may extract the 

greatest amount of information from the original images for classification. In general, it 

is wise to use those features to better distinguish spectral classes. 

Training: to extract the pixel to be used for training the classifier in order to 

recognize the spectral signature of the classes. The classification algorithm needs to be 

trained to distinguish those classes of interest from an image (and its deviation). 

Selections of the training area are used for this purpose. If training data from one image 

are used to classify another image, then all of the images should be corrected for 

atmospheric effects. If the atmospheric effects vary significantly across the scene, then 

spatially-dependent correction of atmospheric effects is needed (Richter, 1996). The 

training of classification algorithm can be supervised or unsupervised. In supervised 

classification, the training areas chosen are based on an existing ground truth map or 

visual photointerpretation, in order to find the most representative area of each class. It 

is important that the training area be homogeneous and at the same time reflects the 

range of variability for the class. Thus, more than one training area per class are often 

selected (Maxwell, 1976). In unsupervised classification, the training area is not labeled, 

but computer algorithms have to distinguish intrinsic spectral data. Results of this 

process are clusters, which are assumed to represent classes in the image and are 

used to calculate signature. However, these clusters often do not correspond to classes 

of interest. Supervised and unsupervised classifications are often used together to 

complement each other in hybrid classification. First the unsupervised classification is 

used to identify different clusters, which is a group of pixels in a distinguished region of 
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a multidimensional data space. Then the analyst chooses the training area within each 

cluster and assigns it to a certain class of interest. 

Labeling: to apply the spectral signature to the entire feature image and label all 

pixels. If the training was supervised, the labels are associated with the spectral 

signature; if it was unsupervised, the analyst must supervise the labeling. The final 

result is to convert the numerical image into descriptive labels that classify different 

surface materials. It is clear that the spectral signature of a surface material is not 

characterized by a single spectral vector, but rather a distribution of a vector. The 

classification accuracy of a multispectral image is determined by the extent of overlap 

between class signatures.  

The extraction of classes can be approached using a classical approach or fuzzy 

mathematical methodologies. The first group of techniques is based on histogram 

thresholding, edge detection, relaxation, and semantic and syntactic approaches. For 

example, the maximum likelihood classifier minimizes the total error in the classification, 

if estimation of the probability distributions is correct and achieves an optimum result. 

The resulting thematic map assumes that every pixel on the image can be labeled as 

belonging to one, and only one, class. This discrete categorization is convenient 

because of its simplicity, but is not particularly an accurate portrait of a real landscape 

as a mixture of several classes. This hard classification is produced by selecting the 

class label with the greatest likelihood of being correct. The feature space decision 

boundaries for a hard classification are well defined. The fuzzy mathematical approach 

accepts the fact that class signatures overlap and expresses that as a likelihood of 

membership in each class (Baatz and Schäpe, 2000). This method allows for multiple 

labels at each pixel, a soft classification is obtained. The feature space decision 

boundaries for a soft classification are ill-defined.  

Pixel-oriented approach versus object-oriented appr oach  

The availability and employment of high spatial resolution and hyperspectral 

sensors has led to much more precise land-cover classifications and a new range of 

applications (Franklin, 2001). On the other hand, new sensors have created new 

technical problems associated with the pixel-based approach (Schiewe et al., 2001). 

The internal variability and the noise within land-use or land-cover classes due to the 

high spatial resolution of the images increase with higher spatial resolution. If a 

traditional algorithm, such as Maximum Likelihood, is applied, the method produces too 

many or ill-defined classes (Schiewe et al., 2001). Recently, a new method of 

classification has been developed, in which the algorithm uses not only spectral 

signatures of the objects, but also texture characteristics and sharpness of object 

images (Baatz and Schäpe, 2000; Blaschke and Strobl, 2001).  

There are several advantages in the application of a classification based on an 

object-oriented approach instead of a pixel-oriented approach. Image objects, besides 
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the spectral information, contain additional attributes (e.g. shape, texture, relational and 

contextual information) that can be used for classification purposes (Baatz and Schäpe, 

2000). Moreover, segmentation produces homogeneous image objects, avoiding the 

induced salt-and-pepper effect.  

The application of an object classification approach has already been applied in 

many studies. Shimabukuro et al. (1998). The studies demonstrate that by means of a 

region growing segmentation (based on the shade fraction of a Landsat TM image) 

combined with an unsupervised classification (based on a clustering algorithm), 

effective measurements of the areal extent of the Brazilian Amazonian deforestation are 

possible. Using a Landsat TM image, Hill et al. (1999) applied a combination of edge 

detection and region growing segmentation methods to classify tropical forest in 

southeast Peru. After the segmentation, a pixel-per-pixel classification (maximum 

likelihood classifier) was applied with acceptable results.  

Baatz and Schäpe (2000), developed an algorithm based on fuzzy mathematics. 

The mathematical approach of fuzzy logic is to replace the strict logical statement 0 and 

1 (i.e. no or yes) by a continuous range of [0…1], where 0 means “exactly no” and 1 

means, “exactly yes” (Baatz et al., 2001). The classification algorithm, based on multi-

resolution segmentation of the input image(s) described in the previous section, has 

shown promising results in application involving high-resolution images. The 

commercial software eCognition® (Baatz and Schäpe, 2000), implements the multi-

resolution method and the classification algorithm based on fuzzy logic mentioned 

above. The algorithm uses the multi-resolution segmentation method, a classification 

procedure based on fuzzy rules, which are based either on one-dimensional 

membership functions or on a nearest neighbor classifier. Both approaches are 

supervised methods. Once the classification is obtained, the results can be refined by 

means of semantic context information mostly by describing neighborhood relationships 

or the composition of sub-objects (Baatz and Schäpe, 2000). 

a. Derivation of land cover maps 

Object-oriented classification was chosen due to its accuracy and its 

advantages (see Box 3.1). Results of the classification are presented in Chapter 5.  
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b. Upscaling of Landsat land cover to MODIS scale using a statistical model 

Box 3.2. Background related to aggregation: 

Aggregating based on dominant values also produces a sub-data set. A dominant 

value, such as dominant land cover type within an area, is used to present the area and 

form new data set with coarser resolution. This method tends to reduce the total variance, 

because low frequency distribution data may be excluded during aggregation. The 

frequency distribution of the aggregated data is dictated primarily by the spatial arrangement 

of the original data (Turner et al., 1989). A large cluster of the same land cover type (similar 

reflectance values) will be more likely retained when upscaling, while small cluster will 

disappear as result of upscaling. The dominant value procedure retains the values of the 

original data but may alter the spatial pattern at coarser resolution. It should be note that, 

this method may introduce bias as some class proportions will diminish and others will 

increase with scale depending on the spatial and probability distributions of the land cover 

types (Moody and Woodcock, 1994). A typical example is the Anderson land cover 

classification system for remote sensed data (Anderson et al., 1976). The system is a 

multilevel hierarchy, where adjacent small land cover area at a low level (finer resolution) 

can be aggregated to form larger area at a higher classification level (coarser resolution). 

For example, adjacent deciduous forest and mixed forest can merge into deciduous forest or 

mixed forest (depending on percentage of each land cover type). 

According to the definition of MODIS land cover, a pixel is defined as belonging to a 

certain class of vegetation if there is at least 60 % of area within that pixel composed 

of the vegetation.  

An algorithm was developed to count the number of pixels of each land cover 

class (derived from Landsat data) found within a corresponding MODIS pixel. The 

following rules were applied according to their priority. 

- If a pixel has more than 60 % of coniferous forest, it is defined as a coniferous 

forest pixel. The same was applied to each of the other classes. 

- If a pixel has more than 60 % of coniferous and deciduous forest combined, it 

is defined as a mixed forest pixel. 

- If a pixel has more than 60 % of grassland and agricultural land, it is defined 

as grassland or agriculture land, depending on the majority representation.  

- Any remaining pixels are kept undefined. 

c. Assessment of MODIS land cover product 

Assessment was made by comparison of MODIS land cover and Landsat land 

cover in 9 x 9 pixels surrounding the eddy covariance tower pixel at experimental 
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sites. Direct pixel by pixel comparison was made of the MODIS land cover product 

and defined Landsat up-scaled land cover in order to assess the accuracy of the 

MODIS land cover product. 

3.2.2.3. Evaluation of MODIS LAI 

a. Ground measurements of LAI. 

Validation of MODIS LAI was based on ground sampling of LAI. Spatial and 

temporal sampling of ground-based LAI was conducted at three sites: coniferous 

forest, deciduous forest, and grassland within the 1-km2
 
surroundings of individual 

eddy covariance measurement towers as described for the individual experimental 

sites.  

In this study, a number of direct and indirect methods have been used to 

estimate LAI at ground level. Direct measurement approaches include area harvest, 

application of allometric equations based on stand diameter data, and leaf litter 

collection. Numerous commercially available instruments, such as Decagon 

ceptometer, Li-Cor LAI-2000, DEMON and TRAC, are used to indirectly estimate LAI 

(Fassnacht et al., 1994; Chen et al., 1997); all of the instruments measure light 

transmittance and assume foliage is randomly distributed in the canopy.  

Area harvest in Stubai Valley and Tharandt grassland 

In general, the area harvest approach is more appropriate for short-stature 

ecosystems (e.g., grasslands, agriculture crops, tundra) than for forests because this 

approach is very laborious when done for an area of sufficient size to adequately 

characterize spatial heterogeneity.  

The area harvest involves the periodic destructive sampling of vegetation in 

plots during the growing season. The plots should be located randomly in a 

representative area. The harvested foliage tissue is subsampled for specific leaf 

area measurement (SLA, the ratio of fresh leaf area to dry foliage mass, cm2 g-1. The 

remaining foliage mass is dried to a constant mass. Plant tissue samples should be 

dried at 60 – 70°C; higher temperatures should be a voided because volatilized 

compounds may be lost. If more than one species is present, separate estimates of 

leaf biomass and SLA should be obtained for each species because they differ 

among species (Landsberg and Gower, 1997). When sampling the foliage in the 

canopy, vertical stratification is required to account for the decrease of foliage: 
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branch mass and SLA deeper in the canopy. Also some attempt should be made to 

characterize the SLA by age of foliage because SLA can differ by twofold from new 

to old foliage (Landsberg and Gower, 1997). 

Canopy structure was assessed in a destructive fashion by stratified clipping 

(Monsi and Saeki, 1953) of square plots of 0.25 m2
 during the respective peak 

season. Thickness of the harvested layers ranged between 0.05 and 0.1 m, 

depending on plant area density. The harvested plant material was separated 

according to combined functional and taxonomical criteria: Leaves were separated 

into those species that had the largest fractional contribution to the total plant area 

index (PAI m² plant area per m² ground area). The remaining leaves, as well as all 

stems, were pooled to two functional groups, namely remaining forbs and 

graminoids. The remaining plant components, i.e. reproductive organs, attached 

dead plant matter and cryptogams, were pooled over all species. Silhouette plant 

areas were determined by the means of an area meter (LI-3100, Li-Cor, USA). 

Silhouette areas of non-flat phytoelements were converted to hemi-surface area by 

multiplying with π/2, assuming them to be represented by cylinders (Campbell and 

Norman, 1998). Dry weight of plant samples was determined after oven drying at 

70°C for at least 72 h and weighting (AE-260, Mettl er Instrumente AG, Greifensee-

Zürich, CH). 

Measurement of LAI by litter collection in Hesse 

In deciduous forest stands, collecting leaves in traps distributed below the 

canopy during leaf fall is a widely used non-destructive method. Litter has to be 

collected in a number of traps with a known collecting area in short interval to avoid 

losses and decomposition. Collected litter is dried (at 70°C for 48 -72 h) and 

weighed to calculate the dry mass of litter as g m-2. Leaf dry mass is then converted 

into leaf area by multiplying the collected biomass by the specific leaf area (SLA, 

m2 g-1). Finally, the LAI is the accumulated leaf area over period of leaf fall. As SLA 

varies with species, site fertility, and duration of collecting, the estimation of SLA is 

very critical (Burton et al., 1991; Niinemets and Kull, 1994). 

Litter was collected during fall using 42 litter traps, each covering 0.25 m2. Dry 

mass of litter was measured weekly during the leaf-fall period (from the beginning of 

October to the end of December), while a sub-sample of leaves was taken every two 
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weeks for measuring the leaf specific area (Delta-T area meter, Cambridge, UK, in 

order to convert dry mass into leaf area.  

Measurement of LAI based on allometric relationships in National Park 

Berchtesgaden and Neustift area of Stubai Valley 

BOX 3.3. Background on allometric methods for LAI d etermination: 

Leaf area of forest stands can be estimated from allometric relationships applied to 

each tree surveyed in randomly located plots in the community of interest. Allometry is 

the relationship between the leaf mass or leaf area of a part (or all of a tree) and an 

independent variable. The dependent variable is indirectly estimated because it is 

difficult, and often laborious, to measure. The independent variables commonly used to 

estimate leaf mass (or area) is diameter at breast height (DBH), stem diameter, and 

sapwood cross sectional area. Direct measurement of biomass and area of plant parts 

using allometry involves harvesting plants that encompass the size range encountered 

in the survey plots, measuring the fresh mass of each component and subsampling 

each tissue for water content. The dry mass is calculated from the total wet mass and 

water content. Gower et al. (1992; 1997) gave a mathematical relationship, which is fit 

to the data: 

    MD  or A = aDb
      (3.1) 

where MD or A is dry mass or area, respectively, of a plant part, D is stem diameter, 

usually at breast height (i.e., DBH), and a and b are regression coefficients. The 

relationship depicted in Eq. (3.1) follows a power or exponential form and assumes a 

uniform variance of the dependent variable over the range of the independent variable. 

Often researchers describe the allometric relationship using Eq. (3.2) 

   log MD or log A = a + b (log D)    (3.2) 

where log is the natural or base 10 logarithmic transformation. This equation is 

preferred over the Eq. (3.1) for two reasons. First, the assumption of uniform variance is 

often violated: the variance of the dependent variable often increases as D increases. 

The double logarithmic transformation model in Eq. (3.2) consistently corrects for this 

problem compared to other models. A second advantage of using Eq. (3.2) is that it 

facilitates the statistical comparison of two or more allometric equations because the 

comparison of two or more allometric equations is more difficult for curvilinear than 

linear relations. The predicted value derived from Eq. (3.2) has a small downward bias 

because of the logarithmic transformation. 

Allometric equations correlating foliage mass to stem diameter (D) or sapwood cross 

sectional area at breast height (1.37 m) can be used to directly estimate LAI if specific 

leaf area (SLA) is known. Specific leaf area is an important physiological characteristic 

because it is positively correlated to maximum photosynthetic rate and percent leaf 

nitrogen concentration - key determinants of productivity (Reich et al., 1995). Specific 

leaf area is also an important parameter in ecosystem process models because it 
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provides the coefficient to convert foliage mass to leaf area (Landsberg and Gower, 

1997). 

Developing site-specific allometric equations is laborious; therefore scientists commonly 

use existing allometric equations. Numerous publications present allometric 

relationships between leaf area and stem diameter (Gholz et al., 1979; Gower et al., 

1997). Using general allometric equations to estimate LAI for a specific stand can result 

in moderate to large errors because numerous abiotic and biotic factors influence the 

allometry coefficients. An understanding of the factors that influence leaf mass or area 

allometric equations can be used to help select an appropriate allometric equation, 

when more than one equation exists. 

The factor that strongly influences the allometric coefficients is tree size. Estimating the 

leaf area of trees that have diameters that exceed the diameter range for the trees for 

which the equation were developed results in moderate to large over-estimates of leaf 

area (Grier and Milne, 1981; Marshall and Waring, 1986). Nutrient availability also 

influences the allometric coefficients. For example, boreal jack pine (Pinus banksiana) 

trees growing with a nitrogen-fixing green alder (Alnus creneta) understory support a 

greater leaf area than trees without the N-fixing alder. Fertilization also influenced the 

allometry of new foliage mass or area (Gholz et al., 1991; Gower et al., 1992). The 

influence of nutrient availability on leaf area allometry is suppressed if water availability 

is more limiting (Gower et al., 1993a). Leaf area allometric equations differ among plant 

species as well. For a similar diameter, tree with a greater longevity will have greater 

leaf area (Gower et al., 1993b). Also, shade-tolerant species support a greater leaf area 

than shade intolerant species (Grier and Logan, 1977; Chapman and Gower, 

1991). 

Attention should be made in selecting the allometric equation used to estimate LAI, if 

site-specific allometric equations cannot be developed. The two most important criteria 

to consider when selecting allometric equations are correctly matching the plant species 

and size. A slight variation of the allometric equation is the pipe model, which correlates 

the cross-sectional area of a stem or branch that is responsible for water transport 

(i.e., sapwood) to foliage mass (Shinozaki et al., 1964a, b). More recently, leaf area is 

used instead of foliage mass because transpiration is correlated to foliage surface 

area, not foliage mass. The form of the pipe model is usually linear. The physiological 

basis of the relationship between leaf area and cross-sectional sapwood area implies 

that the pipe model may alleviate the need for site-specific allometric equations. 

Waring et al. (1982) reported that the ratio of projected leaf area: sapwood cross-

sectional area differs very little (0.15 – 0.18) for lodgepole pine (Pinus contorta) in three 

contrasting environments. However, in other case, the pipe model is influenced by the 

same environmental and ecological factors that affect the allometric coefficient (Gower 

et al., 1993b; Mencuccini and Grace, 1995). 
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Based on the forest inventory database of the National Park Berchtesgaden 

and similar databases for forested areas near Neustift, Stubai Valley, unique 

detailed LAI maps were created at landscape scale. By using the forest type map, 

leaf area index was derived using allometric relationships (relating BDH and LAI). 

LAI was calculated separately for coniferous forest (treated as spruce, Picea abies), 

and deciduous forest (treated as beech, Fagus sylvatica) 

LAI=0.118*BDH1.565      (3.3) 

LAI=0.1*BDH1.72      (3.4) 

For the mixed forest, the mean value from both datasets was used (Bobeva, 

2003).  

In Tharandt tower footprint, LAI was calculated for each tree based on the site-

specific allometric equation from Küssner (Küssner, 1999): 

)log(216.2329.3log BHDLeafArea +=    (3.5) 

LAI was obtained by multiplying to tree density within the plot and then dividing 

by the plot area. 

b. Building models relating measured LAI and Vegetation indices derived from 

Landsat data. 

Box 3.4. Background on vegetation indices (VIs): 

Since the 1960s, scientists have extracted and modeled various vegetation biophysical 

variables using remotely sensed data. Much of the effort has gone into the development 

of vegetation indices. Vegetation indices are radiometric measures that function as 

indicators of relative abundance and activity of green vegetation. These often include 

leaf area index (LAI), percentage green cover, chlorophyll content, green biomass, and 

absorbed photosynthetically active radiation (APAR). 

The designation of vegetation indices should: 

- Maximize sensitivity to plant biophysical parameters, preferably with a linear 

response in order that sensitivity is available for a wide range of vegetation 

condition, and to facilitate validation and calibration of the indices; 

- Normalize or model external effects such as sun angle, viewing angle, and the 

atmosphere for consistent spatial and temporal comparisons. Remember that 

atmospheric effects such as scattering act to increase the reflectance values in 

band TM3 but decrease the reflectance in band TM4 and, hence, reduce the 

vegetation indices. 

- Normalize internal effects such as canopy background variations, including 

topography (slope and aspect), soil variations, and differences in senesced or 
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woody vegetation (non-photosynthetic canopy components); 

- Be coupled to some specific measurable biophysical parameter such biomass, LAI, 

and APAR. 

There are more than 20 vegetation indices in use. Some of them are functionally 

equivalent in information content, while some provide unique biophysical information. 

Numerous ratio-based VIs have been proposed, with the most common being the 

simple ratio (SR) and the normalized difference vegetation index (NDVI) (Baret and 

Guyot, 1991; Goward et al., 1991). Both of these are based on ratios of red (R) to near-

infrared (NIR) reflectance. 

Birth and McVey (1968) introduced the first true vegetation index as the SR, which is 

the NIR to red reflectance ratio. 

     
red

NIRSR
ρ
ρ

=      (3.6) 

where ρNIR and ρred are the surface bi-directional reflectance for their respective bands. 

Rouse et al. (1974) developed the NDVI:       
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The NDVI index was widely used and applied to the original Landsat remote sensor 

data. The advantage of R and NIR ratio-based indices is the contrasting response of R 

and NIR to increases in vegetation cover from an unvegetated condition, and the 

compensating effect on variations in reflectance caused by differences in Sun-surface-

sensor geometry (Chen, 1996). 

These two indices respond to changes in amount of green biomass and chlorophyll 

content. The utility of the NDVI and related indices for satellite and airborne assessment 

of the vegetation cover has been demonstrated for almost thirty years. In a number of 

studies, it has been shown that the LAI correlates well with the NDVI (Knyazikhin et al., 

1998a; b) or with a simple ratio (Chen et al., 2000). The time series analysis of seasonal 

NDVI data have provided a method for estimating net primary production of many 

biome type, monitoring phenological patterns of the vegetation, and estimating LAI, land 

cover percentage as well as the length of the growing season ((Huete and Liu, 1994; 

Ramsey et al., 1995). 

Global vegetation studies were initially based on linearly regressing NDVI values 

(derived from AVHRR, Landsat MSS, Landsat TM, and SPOT data with in situ 

measurements of LAI, APAR, percent cover, and biomass. This empirical approach 

revolutionized global land cover biophysical analysis in one decade (Running, 1994). 

Many studies has shown that the empirically derived NDVI products can be site specific 

dependent, which depend on species, varies with soil color and moisture condition, 

bidirectional reflectance distribution function (BRDF) effects, atmospheric conditions, 
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presence of undercanopy vegetation, and percentage of dead material in the canopy 

itself (Qi et al., 1995). Although the NDVI has been shown to be useful in estimating 

vegetation properties, many important external and internal influences restrict its global 

utility. 

Efforts has been made to the development of improved vegetation indices that will take 

advantage of calibrated hyperspectral sensor system such as the Moderate Resolution 

Imaging Spectrometer (MODIS) (Running et al., 1994). The improved indices normalize 

atmospheric effects and take into account a soil adjustment factor. 

 

In this study, vegetation indices are derived after atmospheric and topographic 

correction of the data was made, reducing the atmospheric effects and helping to 

improve quality of the vegetation indices. On the other hand, LAI values at these 

study sites are relatively high, resulting in a low effect of the background reflectance 

on the canopy reflectance (Huemmrich and Goward, 1997). Therefore, SR and NDVI 

are used in this study to derive LAI from Landsat data, offering the opportunity for 

“scaling up” from the plot level to larger areas. By correlating the vegetation indices 

and LAI measurements spatially and temporally, one can build the models to 

indirectly calculate LAI as a function of vegetation indices. The best model 

correlating LAI and vegetation indices was chosen for each specific site. 

c. Mapping LAI at four study sites 

LAI maps based on satellite images of four sites were derived based on above-

mentioned LAI = f (VIs) models. If there were no ground measurements of LAI at the 

site, the model from the site, which has similar conditions, is applied in 

extrapolations. Results of LAI mapping are presented in Chapter 6. 

d. Upscaling of Landsat LAI to MODIS scale using statistical model. 

From the definition of LAI, it is clear that LAI values over large areas are an 

integrated value of LAI values of all small areas within. The average method is used 

here as in case of reflectance to upscale the high resolution LAI maps to coarse 

resolution, which is comparable to MODIS. The average of 32 x 32 blocks of 30 m x 

30 m pixels was calculated to generate a product at 960 m, which is the same as 

MODIS LAI products. 
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e. Comparison of MODIS LAI and Landsat LAI at 9x9 pixels surrounding tower pixel.  

Pixel by pixel comparison of MODIS LAI and Landsat LAI were made at four 

study sites. Temporal variations of LAI were also examined depending on the data 

availability. The effects of land-cover misclassification on MODIS LAI estimates were 

isolated. 
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CHAPTER 4. EVALUATION OF MODIS REFLECTANCE 

4.1. Results and Discussion 

The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS 

Terra satellite provides major advances in moderate resolution earth observation. An 

improvement of spatial resolution (at 250 and 500 m at finest), temporal resolution 

(daily), and spectral resolution (36 bands) provide new opportunities for global 

change research. Surface reflectance is one of the key products from MODIS and is 

crucial for generating several higher-order land products such as LAI and Fraction of 

Photosynthetically Active Radiation (FPAR). The surface reflectance has gone 

through an atmospheric correction process, in which the removal of water vapor and 

aerosol effects is undertaken. 

Standard MODIS pixels of about 1 km on a side are identified over 

heterogeneous landscapes. Therefore, ground measurements are not feasible for 

direct comparisons to MODIS data. In this study, ground measurements at Hesse 

forest and Tharandt forest were used to calibrate land surface reflectance derived 

from Landsat ETM+ imagery at 30 m, which were then aggregated to the MODIS 

resolution for determining the accuracy of the MODIS reflectance. The validation 

results from ground measurements and ETM+ images acquired in 2001 and 2002 

showed that these products are reasonably accurate, with typically less than 10 % 

absolute error. However the relationship is affected by clouds and haze. 

4.1.1. Georeferencing 

All ETM+ images were acquired at level 1G processing, with a cell size of 

30 m, and UTM (WGS84) projection. Each TM scene was geo-referenced to the 

projection of ancillary datasets of the sites (e.g. Austria Zone 1 projection in Stubai 

Valley). The aerial photo images (in Hesse and Stubai Valley) were also registered 

into the projection of the remote sensing images to help identify the experimental 

sites with confidence. Fig. 4.1 shows an aerial photo of Stubai Valley and Landsat 

TM image for the same area, which visually indicates an error of less than one pixel. 

The white polygons are locations that were made by on-screen digitizing of the aerial 

photo. Table 4.1 indicates that for all study sites, the registration accuracy of images 

did not deviate by more than half of one pixel, and that the root mean square of error 

(RMSE) was less than 0.3 pixel when utilizing at least 40 ground control points and 
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nearest-neighbor resampling technique. The accuracy of georeferencing is sufficient 

for further processing and analysis of the images. 

Table 4.1. Georeferencing accuracy of Landsat TM images 

Site Number of GCPs RMSE 

Hesse 40 0.10 

Tharandt 45 0.12 

Stubai Valley 55 0.15 

Berchtesgaden  62 0.23 

 

 

 a)  b) 

Figure 4.1. a) Aerial photo of Stubai Valley; b) Landsat TM composite band 1, 4, 7 in 

the same area. The white polygons are locations that are determined by on-screen 

digitizing of the aerial photo. Visual analysis showed an error of less than one pixel. 

In order to compare with MODIS data, the Landsat images and aerial photos 

were further reprojected into ISIN projection and WGS84 datum in accordance to 

MODIS data. Results shown in Fig. 4.2 indicate that MODIS products are provided 

with sub-pixel accuracy, approaching the operational MODIS geolocation goal of 

50 m at nadir (Wolfe et al., 2002). The accuracy provided by the MODIS geolocation 

product is sufficient to allow us to create and analyze the scenes further without any 

loss of information associated with improving the geolocation accuracy of MODIS 
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products. The grid in Fig. 4.2a and b is 1x1 km, and this applied for all subsequent 

figures. 

 

 

a)  b) 

Figure 4.2. a) Landsat TM composite (bands 1, 4, 7); b) MODIS 250 m (bands 3, 2, 

7) showing sub-pixel accuracy of registration of MODIS product (< 50 m) in Tharandt 

(upper) and Stubai Valley (lower) sites.  

4.1.2. Measurement of reflectance at two forest sites 

Field measurements of reflectance were taken in Hesse and Tharandt forest 

sites at the time close to the passing time of the satellite. The spectra were averaged 

and integrated over the ETM+ spectral band to validate the ETM+ atmospherically 

corrected reflectance and therefore indirectly evaluate the MODIS surface 

reflectance. Measurements were collected at the flux measurement towers above 

the canopy in three different unshaded directions. The error bars on the ASD 
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measurements represent the standard deviation computed from the spectra 

collected at each location (30 measurements). The reflectance of the leaves was 

measured using an ASD spectrometer at 325 – 1075 nm in 2 nm steps, but only 

data in the range 400 to 1000 nm were used to avoid the lower signal to noise at the 

extremes. The measurements were performed under the same illumination 

conditions as measurements of canopy reflectance. The instrument was held at the 

normal from the leaf position, focusing on the leaf. The white reference reflectance 

was achieved using a reference plate (spectralon), having nearly lambertian 

properties. 

Fig 4.3a shows the reflectance of leaf, bark, and litter at Hesse forest. It can be 

seen that the field-measured spectra of leaves are characteristic of 

photosynthetically active vegetation. The leaf reflectance was approaching 5.5 % in 

the red spectral and 65 % in near-infrared spectral regions. This result differed from 

that reported by Huemmrich and Goward (1997), 0.06 and 0.48 in red and infrared, 

respectively. However, the results are in agreement with the measurements reported 

by Aster spectral library (http://speclib.jpl.nasa.gov/). In comparison to leaf 

reflectance, the reflectance of the bark is higher in red region (25 compared to 5 %) 

and lower in near infrared (55 compared to 65 %), which leads to a lower NDVI. It is 

important to note that the difference in NIR and red reflectance of the bark is 

significantly higher than that of the litter; this might lead to high values of NDVI 

during leaf-off seasons (range from 30 to 40 %). Thus, the stem material played a 

small but significant role in determining canopy reflectance in woody plant canopies, 

especially those with low LAI. Asner (1998) found that LAI and leaf angle distribution 

strongly controlled canopy reflectance, because LAI defines the area that interacts 

with solar radiation and provides much of the reflected radiation which is captured by 

sensors. On the other hand, leaf optical properties (and thus foliar chemistry) are 

affected most directly at the canopy level in the NIR. At low LAI, leaf optical 

variability played a relatively small role in driving canopy reflectance. At high LAI, the 

effects of leaf optical properties were more pronounced in the NIR. 

Fig 4.3.b shows the reflectance of leaf and bark in Tharandt. The leaf 

reflectance approaches 2.7 % in the red and 36 % in the near-infrared spectral 

regions. This result is similar to that reported by the Aster library 



Chapter 4 

 64

(http://speclib.jpl.nasa.gov/). The litter reflectance was lower than litter in Hesse 

forest, 0.15 in red and 0.23 in NIR spectral regions. 

 

a) 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

Figure 4.3. a) Reflectance measurements of leaf, bark, and litter in Hesse forest 

during July 2002; b) Reflectance measurements of leaf and bark in Tharandt forest 

during July 2002. 

Fig. 4.4 shows the reflectance measurements of the canopy at Hesse forest, 

Tharandt forest, and Tharandt grassland, respectively. At Hesse, the canopy 

reflectances were lower as compared to leaf reflectance in both the red and infrared 

regions. In the red region, canopy reflectance was 2 % compared to 5.5 % of leaf 

reflectance, while in the infrared region, canopy reflectance was 45 % compared to 

65 % of leaf reflectance. It can be seen that there is little variation in the visible 

chlorophyll absorption region, while there is a considerable variation in the NIR. 
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The same trend was observed at Tharandt forest, where canopy reflectance 

was lower than leaf reflectance both in the red and NIR (2 % in red and 18 % in 

NIR). This can be explained by the nature of canopy structure. When the light rays 

reach the top canopy, most of the light passed through the top leaf layer, while some 

was reflected, absorbed and transmitted through the leaves. The multiple reflections 

between adjacent leaves and between leave and stems lead to trapping of radiation 

within canopy. This effect is particularly pronounced for dense forests, such as at 

Hesse and Tharandt, where LAI and leaf angle distribution are dominant controls on 

canopy reflectance (Asner, 1998). The variation of reflectance within the canopy was 

much higher in Tharandt coniferous forest as compared to Hesse deciduous forest 

and the Tharandt grassland. This can be explained by differences in canopy 

structure. Coniferous trees have a conical shape and leaves are clumped with 

different leaf angle distribution, causing higher bidirectional reflectance effects. The 

leaves in deciduous forest and grassland are randomly distributed which leads to 

lower bidirectional reflectance effects as compared to that of coniferous forest. 

BRDF effects are particularly strong in errectophile canopies if soil background 

influences are negligible, and are reduced in planophile canopies. This led to higher 

variation of reflectance within canopy in coniferous forest and lower variation in 

deciduous forest and grassland (Fig. 4.4). 
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Figure 4.4. Reflectance measurements of the vegetation canopy at a) Hesse; 

b) Tharandt forest; and c) Tharandt grassland. 
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It should be noted that the reflectance in the red spectral region of three 

different functional vegetation types (broadleaf forest, coniferous forest, and 

grassland) is almost the same, about 2 %. On the other hand, reflectance in the NIR 

spectral region is much different. Coniferous forest in Tharandt has highest LAI (8.2) 

and lowest NIR reflectance of 18 %, while grassland in Tharandt has lowest LAI 

(4.7) and highest NIR reflectance of 48 %, and deciduous forest in Hesse has LAI of 

7.3 and NIR reflectance of 45 %. This demonstrates that the relationship between 

LAI and reflectance (hence vegetation indices) is vegetation type dependent, and is 

influenced strongly by canopy structure and foliar chemistry. 

4.1.3. Measurements of foliar chemistry 

 

Figure 4.5. Chlorophyll content as a function of height in Hesse forest. 

Table 4.1, Table 4.2 and Fig. 4.5 show the measurements of chlorophyll 

content, leaf nitrogen, and specific leaf weight in Hesse forest vertically and spatially. 

Vertically, e.g. with increasing height, the chlorophyll content of canopy increases. 

The top layer of the canopy has the highest chlorophyll content, reaching 400 mg m-

2, while the lower layer has lower chlorophyll content of 290 mg m-2 (note that data 

set is independent of tree height). Spatially, the chlorophyll content seems to be 

consistent within the forest stand, with the mean value of 340 mg m-2 and coefficient 

of variance less than 10 %. This is also true with leaf nitrogen and Specific leaf 

weight (SLW). The leaf nitrogen ranged from 22.4 g m2 in plot 24 to 26.7 g m-2 in plot 
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97 with an average value of 24.3 g m-2 and coefficient of variance less than 5 %. 

SLW varied from 81.1 g m-2 in plot 75 to 92.0 g m-2 in plot 73 with average value of 

86.4 g m-2 and coefficient of variance less than 5 %. The foliar chemistry variables 

are used in the radioactive transfer model to predict LAI from canopy reflectance as 

discussed in Chapter 6. 

Table 4.2. Chlorophyll data as a function of height in Hesse forest 

Height (m) 2 4 6 8 10 12 14 

Number of measurements 28 30 30 55 55 42 68 

Mean (mg m2) 290.2 312.0 325.5 366.5 389.6 409.7 402.4 

Median 286.8 303.0 327.0 369.1 387.8 406.7 408.3 

SD 27.5 34.2 26.2 33.1 30.6 26.4 62.5 

Table 4.3. Spatial measurements of leaf nitrogen, specific leaf weight (SLW), and 
chlorophyll content in Hesse forest 

Plot Leaf N SLW LAI Chlorophyll content 

- g/kg g/m2 m2 m2 (mg m2) 

24 22.4 87.7 7.89 352.4 

35 24.2 83.6 6.73 369.6 

53 24.3 85.1 7.52 346.7 

73 22.8 92.0 4.72 313.9 

75 25.0 81.1 4.67 349.8 

91 26.7 90.8 4.74 380.8 

128 25.6 81.2 6.91 346.0 

1000 22.8 90.2 7.30 294.0 

106 25.2 86.2 5.89 329.6 

Average 24.3 86.4 6.30 342.5 

SD 1.5 4.1 1.30 26.7 
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4.1.4. Cloud screening 

  
a)  

  
b)  

Figure 4.6. a) Landsat ETM (band 1, 4, 7) acquired on 5 July 2001 and cloud 

mask; b) Illustration of how the algorithm works with thin cloud and haze. 

Rigorous cloud screening was performed for the Landsat TM data sets. Fig. 4.6a 

shows the Landsat TM scene acquired on 5 July 2001 at Hesse and a cloud mask, 

which passes the cloud-screening algorithm. The cloud pixels represent 30.6 % of 

the scene. There are numerous clouds covering the southwest part of the scene. 

The haze, which is observed in the middle of the ETM+ image, is not so evident in 

the MODIS image due to the late time overpass, or due to spectral differences. The 

improved algorithm utilizes two additional bands, takes advantage of the enhanced 

TM6 (thermal band), and ancillary data of surface temperature at the time of 

acquisition. The algorithm works well for most areas in the world (Irish, 2000). The 
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Fig. 4.6b shows how well the algorithm works with thin cloud and haze, the most 

problematic for the cloud screening algorithm. The measurements of temperature at 

the site helped to define the T° threshold for sepa rating clouds from urban areas, 

which normally have as high a reflectance as clouds. This helps to separate clouds 

from the scene and make a comparison between the ETM+ and MODIS possible. 

 

a) b)  

 

 

 

c)   

Figure 4.7. a) MODIS (band 3, 2, 7) 500 m resolution acquired on 5 July 2001; 

b) Landsat ETM (band 1, 4, 7) acquired on 5 July 2001 aggregated into 500 m 

resolution; c) MODIS cloud mask detected by MODIS reflectance algorithm. Strips 

are bad data pixels. 
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Fig. 4.7 shows the difference in patterns of cloud in the TM scene and MODIS 

data acquired on 5 July 2001 in Hesse. The difference between MODIS and ETM+ 

cloud could be attributed not only to the MODIS cloud detection algorithm but also 

the difference in time of acquisition. As MODIS and TM acquire 40 min from each 

other (MODIS acquires later than Landsat), the cloud pattern is shifted an 

appreciable distance, which depends on the wind velocity. It is clear that only thick 

cloud was screened out of the MODIS reflectance product, but the thin cloud and 

haze remains. 

4.1.5. Atmospheric correction 

4.1.5.1. Atmospheric correction using ATCORR method 

The reflectance obtained from ETM+ by correcting the atmospheric effects was 

compared to field measurements collected at three different sites (deciduous, 

coniferous forest, and grassland). 

Fig 4.8 shows the comparison between the surface measurements and the 

ETM+ surface reflectance as a function of the central wavelength of each ETM+ 

band (0.47, 0.55, 0.67, 0.87 µm). The error bars on the ETM+ reflectance represent 

the standard deviation computed from 3 x 3 pixels surrounding the pixel where the 

reflectance measurements take place. This was done to avoid the effects of not 

correctly georeferenced. The standard deviation of ASD measurements was 

computed from spectra collected at the sites (about 30 measurements). 

At stand level (or level of ETM+ scale), the variation of reflectance is greatest in 

deciduous forest at Hesse, while it is quite small in the case of coniferous forest and 

grassland at Tharandt. This implies that at stand scale, the coniferous forest and 

grassland in Tharandt are more homogeneous than deciduous forest at Hesse. The 

coniferous forest site gives the best results, especially in the case of TM3 and TM4 

(for simplicity, any reference to a specific spectral band will be numerically noted 

after the TM acronym, e.g. TM4), probably because this is the largest uniform area 

of the three locations. Even ASD measurements show relative heterogeneity (high 

standard deviation) at canopy scale. The grassland site shows high uniformity with 

both ASD measurements and at ETM+ pixel level (low standard deviation). In 

general, the ETM+ reflectance fell within one standard deviation of the mean 

measured reflectance, except for TM3. The deciduous forest shows homogeneity at 
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canopy level and heterogeneity at ETM+ pixel level, but the ETM+ reflectances are 

still within one standard deviation of the mean ASD reflectance. 

We can see that after atmospheric correction was applied, the surface 

reflectance in visible spectral regions decreases as compared to reflectance 

measured by the satellite sensor (top of atmosphere reflectance - TOA). In contrast, 

in NIR spectra, surface reflectance increases as compared to TOA reflectance. The 

reason is that the atmospheric influence is wavelength dependent. That means that 

it will alter the brightness of each spectral band in a different way. The atmospheric 

particles, namely aerosols, scatter the light in visible wavelengths. The shorter the 

wavelength, the more the effect from scattering is. On the other hand, water vapor 

absorbs light of NIR wavelengths causing less brightness of objects, as it would be 

seen from a satellite without atmospheric effects. At the grassland site, the TM3 

reflectance is slightly higher than that measured by ASD, while the TM4 is slightly 

lower than measured by ASD. This might be due to the chosen visibility (optical 

depth equivalence) which is a bit lower than it should be, so that the atmospheric 

correction algorithm cannot compensate for the effects. Alternatively, the ASD 

measurements accidentally fall into low biomass areas. 

Based on this limited dataset, we can say that the ETM+ corrected reflectances 

are in agreement with the ground measurements and contain no bias due to 

atmospheric correction. Therefore, they can be used to indirectly estimate the 

accuracy of the MODIS reflectance product via the process of aggregation. 
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Figure 4.8. Validating retrieved surface reflectance of atmospherically corrected 

ETM+ by ground measurements (ASD) for a) the deciduous forest; b) the coniferous 

forest; c) the grassland plot. 
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4.1.5.2. ATCOR method versus 6S method 

Fig. 4.9 shows the comparison of atmospherically corrected ETM+ reflectance, 

which was corrected by 6S and Atcor methods in Tharandt (March, 2001). In this 

small area, the visibility (or optical depth) is defined and assumed to be constant. 

For both methods, the same set of required parameters for atmosphere 

type/concentration profiles of gases (winter middle latitude), aerosol type and 

concentration (rural area), flight and ground elevation, illumination and view angles, 

and visibility/optical depth has been chosen. 

There is a high correlation between the two methods of atmospheric 

corrections for each band as one can expect. The correlation can be explained by 

the fact that both methods used the same underlying physically-based models to 

compute the atmospheric scattering and absorption and for the same input of 

atmospheric conditions input. In all bands, the correlation coefficients (r2) are close 

to 1 and intercepts are close to zero, while the slopes are 0.98, 0.99, 1.01, 1.00, 

1.01, and 1.01 in ETM+ bands 1, 2, 3, 4, 5, and 7, respectively. TM1 produces the 

largest difference of 2 % (Table 4.3). Here, the radiometric resolution of output data 

of the two methods may play a role. The output image of 6S method is stored in 8 

bits data format, which re-scale reflectance with a factor of 2.55. That means that 

each brightness level is about 0.4 %. While ATCOR re-scale reflectance with a 

factor of 4, each brightness level is about 0.25 %. In the range of high reflectance, 

the influence of radiometric resolution is not so important because the relative 

difference is very low. In the low range of reflectance (e.g. TM1, TM2, TM3), the 

relative difference can be as high as 20 % due to radiometric resolution alone 

(Fig. 4.9). The results show small differences between the two methods of 

atmospheric correction, but this difference is still smaller than error bar, which is 

described in Vermote et al (2002). So, the Atcor method is comparable to 6S method 

and will be used for atmospheric correction of Landsat ETM+ images in this study. 
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Figure 4.9. Comparison of two atmospheric correction methods: ATCOR (x-axis) and 

6S (y-axis) applied for Landsat ETM+ imagery in Tharandt (March, 2001). 

4.1.6. Topographic correction 

Fig. 4.10 shows Landsat ETM+ composite imagery (bands 1, 4, 7) acquired 

over the Stubai Valley site on 16 May 2002. At the time of the satellite overpass, the 
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sun position in relation to the test site center on 47° 07' N, 11° 17' E is at a solar 

zenith angle of 32.7° and 128.3° azimuth. A digital  elevation model (DEM) with a 

resolution of 30 m in x- and y-axis and 1 m for elevation was available. Data sets for 

slope and aspect factors were derived from this DEM (Fig. 4.10a-c). In Fig. 4.10d-f, 

the original image and the resulting images of the atmospheric correction, and 

topographical correction steps are shown. To enable a comparison, the images are 

not processed by image enhancement techniques except for a linear histogram 

stretching, applied to all three images.  

The difference between the original image (Fig. 4.10d) and atmospherically 

corrected image (Fig. 4.10e-f) is apparent. The uncorrected image (Fig. 4.10d) 

appears blurred and demonstrates the hazy atmospheric conditions at the time of 

satellite overpass. Details in the valley bottom cannot be distinguished and the 

topographically induced illumination variations are emphasized, resulting in dark 

color in the northwest-facing slope. With the atmospheric correction (Fig. 4.10e) the 

TM bands are corrected solely by using the atmospheric correction component. 

Thus, the only factor corrected is the altitude dependent effect of the atmosphere. As 

no illumination correction was applied, the topographically induced illumination 

variations are still emphasized. Moreover, the spatial resolution seems improved by 

a reduction of the atmospheric hazing. Details in the valley bottom as well as in the 

alpine agricultural regions are enhanced as a result of the correction. Green color is 

more saturated in comparison with the raw image, e.g. the green of the meadows, 

and the red color is less saturated resulting in more yellow color of the rocky areas. 

The reason are that the red gun (corresponding to TM1) of original data is higher 

than that of the atmospheric corrected data, leading to apparent red appearance; 

while the green gun (corresponding to TM4) is increased in the corrected image. The 

image appears more homogeneous over the various altitudes. No artifacts brought 

in by the atmospheric correction can be detected. 

An impressive improvement of the satellite data from a visual point of view 

could be obtained. The correction of the illumination effects is proved to be 

successful. In the medium and highly illuminated areas, the illumination effect is 

corrected properly. The relief impression is lost and these parts of the image appear 

flat (best seen in the small valley). The faintly illuminated surfaces, however, are 

overcorrected in some shadowed areas and expose artifacts, e.g. along the ridges 
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and in the V-shape valley. The artifacts are most probably due to an insufficient 

spatial resolution of the DEM used in the study. The impact of the DEM inaccuracies 

is emphasized by a mixed signature problem. Surfaces along ridges are often bare 

limestone with high reflectance properties. A pixel of the region just behind the ridge 

consists of dark shadowed areas and highly reflective limestone. The mixed 

signature of such a ridge pixel is influenced by the brightening effect; with regard to 

the proportion of dark and bright parts within the pixel, the surface appears to be 

bright, and as a consequence it is overcorrected. 

Fig. 4.11 shows histograms of TM5 raw data corrected for atmospheric and 

topographical effects (Figs. 4.11d) in the Stubai Valley. The site was chosen 

because it contains areas dominated by forest and alpine grassland under various 

illumination conditions between 880 and 3460m. In the spectral range of TM5 the 

correction of illumination effects should result in a bimodal histogram, the peaks 

representing forest and alpine grassland areas. In contrast to this, the histograms of 

the radiometric raw and the atmospheric corrected image should appear non-

bimodal, since they are influenced by the impact of topographically induced 

illumination effects. 

Indeed the non-bimodality can be seen in the original band 5 (Fig. 4.11d), 

although the blurring influence of the atmosphere reduces the impact of illumination 

on the histogram shapes. The atmospheric correction reveals a contrast 

enhancement by reducing the scattering effect of the atmosphere. Thus illumination 

effects are emphasized and cause a strong heterogeneous appearance of the 

objects in the satellite imagery. In spite of the predominant presence of two 

discriminant object classes, the histogram of the atmospheric corrected image 

appears non-bimodal. By the combination of illumination and atmospheric correction 

(Fig.4.11d), however, the impact of illumination on the appearance of the histogram 

can be eliminated successfully. The bimodality of the histogram clearly shows the 

frequency distribution of the two dominant object classes of forest and grassland. 
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(a)  (d)  

(b)  (e)  

(c)  (f)  

Figure 4.10. a) DEM; b) Aspect; and c) Slope images used for topographic 

correction. Landsat TM composite imagery (bands 1, 4, 7) d) Original image; 

e) image applied atmospheric correction; and f) image applied atmospheric 

correction and topographic correction. 
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The correction of atmospheric and illumination effects lead to an improved 

separability of the classes in the raw data: meadows, grassland and farm pasture 

located on a mean altitude of 900 – 1200 m are more strongly affected by 

atmospheric effects than the alpine agricultural areas which are found on a mean 

altitude of 1500 m. Thus the removal of the atmospheric impact on the spectral 

appearance improves the classification. Also site-specific influences of illumination 

effects can bias the classification results; an object predominantly lying in shadowed 

areas is probably easier to classify since shadows are reduced. This is discussed 

further in the next Chapter. 

Fig. 4.11(a-c) shows the horizontal profile no.1 across Stubai Valley from left to 

right, as the slope changed from very steep (> 40°)  on the southeast facing slope to 

flat at the bottom of the Stubai valley, and again to steep on the northwest facing 

slope (30 – 40°). With this configuration of sun-su rface-sensor, the BRDF of the 

surface causes additive reflectance in the southeast facing slope and reductive 

reflectance in the northwest facing slope. 

The atmospheric corrections of the TM3 and TM4 (Fig. 4.11a and b) are 

shown. The only factor corrected is the altitude dependent effect of the atmosphere, 

no illumination correction was applied. The figure illustrates that the atmospheric 

correction algorithm reduces TM3, while increasing TM4 from the original images. 

The degree of alteration changes along the profile, depending on optical thickness 

and altitude. At low altitude, the reduction of TM3 is small as compared to higher 

altitude. The increase of TM4 appears to be reversed, higher at low altitude and 

lower at higher latitude due to the lower humidity. After atmospheric corrections, the 

topographic effects are still pronounced in both TM3 and TM4, leading to higher 

reflectance on the southeast facing slope. The Fig. 4.11a and b also showed results 

of topographic correction. The atmospheric correction takes place only on non-flat 

surfaces, and has almost no correction on flat areas. The results show that, both 

reflectance TM3 and TM4 increase on the northwest facing slope and decrease on 

the southeast facing slope. These makes coniferous forests on both slopes, which 

are the same in LAI, have the same range of reflectance (as it should be without 

topographic effects). 

It is demonstrated that atmosphere and topography have a crucial impact on 

the spectral appearance of objects in a satellite image. Using ATCOR and the 
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topographic correction algorithm leads to the elimination of the adverse effect of the 

atmosphere and topographically induced illumination variations. 

 

 

 

 

 

   
 
 
a)            c) 

 

 

 

 

 

 

b) 

Figure 4.11. Profile no.1 across Stubai Valley showing the changes in reflectance of 

original data, atmospherically corrected data, and image applied atmospheric 

correction and topographic correction in a) Landsat TM band 3; b) Landsat TM band 

4; in accordance with c) Change in elevation, slope, and aspect along the profile. 

4.1.7. Evaluation of MODIS reflectance 

4.1.7.1. Upscaling from ETM scale to MODIS scale 

From numerical experiments using a three-dimensional (3D) atmospheric 

transfer model, Liang et al. (2001) found that upscaling of reflectance from 30 m to 

1 km over vegetated surface is quite linear. It implies that one can linearly average 
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the high resolution ETM+ reflectance up to the coarse resolution of MODIS. The 

average of 16 x 16 blocks of ETM+ pixels was calculated to generate a product at 

460 m, which is the same as MODIS reflectance products. 

Fig. 4.12a shows a detailed description of the surface at 30 m resolution of 

Landsat ETM+ data surrounding Hesse forest. It should be noted that the higher 

resolution of ETM+ shows many features that are not apparent in MODIS data. 

Fig. 4.12a details the river, roads, and grassland features in the Hesse area, while 

corresponding MODIS suggests that only a few different surface regimes exist. This 

example illustrates the effects of spatial resolution on feature recognition. The 

difference in possible interpretation is probably not important for regional and global 

climate studies because satellite derived parameters must be aggregated to the 

scale appropriate for climate modeling which is on the order of 10 km (Price, 1982). 

The issue is whether the results of aggregation of ETM+ data are similar to MODIS 

data. 

The aggregated image at 500 m resolution (Fig. 4.12b) loses detail in 

information but still shows large objects, e.g. the forest. Within the forest, the 

variation of reflectance is low (Fig. 4.12c), indicating the relative homogeneity of the 

forest. The areas mixed with several land cover types have higher standard 

deviation of reflectance. Visual comparison of Landsat ETM+ and MODIS data 

reveals the same reflectance pattern, but further statistical analysis is needed for a 

quantitative conclusion. 
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a)  b)  

d)  c)  

Figure 4.12. a) Landsat ETM bands 3, 4, 7 composite; b) aggregated Landsat ETM 

500 m resolution; with c) standard deviation of reflectance within aggregated pixel; 

compare to d) MODIS band 1, 4, 7 composite in Hesse site on August, 2001. 

4.1.7.2. Comparison between ETM reflectance and MODIS reflectance  

Since Landsat ETM+ and MODIS bands have the same spectral response 

functions (Vermote et al., 2002), it is possible to make a direct comparison of MODIS 

data to aggregated ETM+. Both Landsat ETM+ and MODIS have a narrow width in 

the red and near-IR part of the spectrum, eliminating the effect of the water 

absorption NIR region and also making the red band more sensitive to chlorophyll 

absorption (Van Leeuwen et al., 1999). Slope and R-squared are used to 

characterize the fitting.  

As the initial part of the evaluation process, a comparison was made in the 

small regions, 13 x 13 pixels and 21 x 21 pixels surrounding the flux tower pixel. 

Fig. 4.13 shows the high correlation of Landsat ETM+ band 3 and MODIS 

reflectance band 1. MODIS band 1 reflectance is slightly higher than TM 3 : 4 % and 
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2 %, respectively. As we go to larger area, the coefficient of correlation (r2) seems to 

decrease. This may be explained by the fact that the portion of pixels with higher 

reflectance variation increases (Fig 4.12b and c). Another reason is that the dynamic 

range of land reflectance is not very well represented in the selected area. 

In heterogeneous areas (higher reflectance variation), the accuracy of image 

georeferencing plays an important role. If the error of georeferencing is 90m, the 

area with incorrect registration would be 10 – 15 % and would cause considerable 

change in reflectance due to change in distribution of land cover types in the pixel of 

interest. Disney et al. (2004) showed that not only the physiological parameter (e.g. 

LAI) of the surface but also the spatial distribution of land cover types determine the 

spectral characteristics of the surface. For example, from space, the equally 

distributed mixed forest would look greener than clustered mixed forest having the 

same green biomass. 

Figure 4.13. Comparison of MODIS band 1 and Landsat ETM+ reflectance in Hesse 

forest (22/08/2001). 
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Figure 4.14. Dependency of the slope and r2 on the way of choosing pixels for 

comparison based on variation of reflectance (in Hesse forest). 

Fig. 4.14 shows the dependency of the slope and r2 as influenced by the 

means of choosing pixels for comparison (based on variation of reflectance within 

pixels of consideration). As the variation of TM pixels within the aggregated pixel 

decrease (from less homogeneous to more homogeneous landscape), the 

coefficient of correlation increases to 1 and slope moves closer to 1 with a coefficient 

of variation is 30 %. This implies that only in homogeneous areas (e.g. large forests), 

is the accuracy of image georeferencing negligible, because the nearby area has a 

similar reflectance to the area of mis-registration.  

The MODIS instrument scans a broader swath than the 180-km of ETM+, so 

each ETM+ data set is fully within MODIS data coverage (Fig. 4.7). Fig. 4.15 and 

Table 4.4 show comparisons between MODIS reflectance and ETM+ reflectance at 

corresponding wavelength for entire ETM+ scenes. Only pixels, which have a 

coefficient of variation smaller or equal to 20 %, are taken into consideration. The 

selections of these pixels make it possible to compare with the results from a 

previous study (Vermote et al., 2002). Note that the MODIS and ETM+ were 

acquired at a similar viewing geometry and overpass time.  

The quantitative comparisons of the aggregated ETM+ reflectance and MODIS 

reflectance product are shown in Fig. 4.15 and Table 4.6. Two parameters used for 
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assessment of correlation are slope and coefficient of correlation (r2). At first glance, 

we can say that MODIS and ETM+ reflectances are in very good agreement, taking 

into account that we forced the fitting line through the origin. Comparisons from all 

bands and all dates show the difference between MODIS reflectance and ETM+ 

reflectance varies from -5 to +7 %. The difference in the green band (TM2) are the 

largest as compared to other bands. This may be explained by the difference in 

spectral response of MODIS and ETM+ sensors which is largest at green 

wavelengths (Table 4.5). Vermote et al. (2002) found that there is a difference in 

spectral response between MODIS and ETM+ bands. The largest difference occurs 

in MODIS band 3 (0.47 µm), where MODIS surface reflectance is about 4 % lower 

than the corresponding TM2 (Table 4.5).  

The degree of correlation between the ETM+ surface reflectance and MODIS 

reflectance varies greatly from scene to scene. For example in the scenes which 

cover Hesse forest, the r2 between ETM+ reflectance TM2 and MODIS band 4 

reflectance is 0.69, 0.79, and 0,91 for 31 March 2001, 5 July 2001, and 22 August 

2001, respectively. Temporal variation of reflectance at the Hesse tower site for 

2001 is shown in Table 4.6. The MODIS reflectances are well within the standard 

deviation of ETM+ reflectances, except for the blue band (TM1).  

Fig. 4.15 shows the comparisons of the MODIS reflectance product with 

aggregated ETM+ product acquired on August 22, 2001. In this partly cloudy scene, 

the mean differences of the two reflectances are small with slopes ranging from 0.96 

to 1.01. Although there is a large scatter in these plots, they contain around 10000 

pixels and the density in the middle of the scattered data are very high. Thus, the 

coefficients of correlation of the two products is also very high, ranging from 0.86 in 

TM4 to 0.93 in TM3 and TM5. The correlation between MODIS and ETM+ 

reflectances is high because most of the uncertainty in the MODIS sub-pixels scale 

is eliminated by filtering out all the pixels, which have high coefficient of deviation. 

On the other hand, the dynamic range of land reflectance (from very low to very 

high) is very well represented in the scene.  

In Fig. 4.15b and c there are pixels where MODIS band 1 and 2 values are 

much larger than TM3 and TM4, which somehow impair the correlation of MODIS 

and ETM+ reflectances. The reason is that the MODIS reflectance product could not 

mask out all of the cloudy pixels, so the MODIS reflectances remain very high at 
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those pixels whereas ETM+ reflectances are low (at the time of ETM+ acquisition 

those pixels are not covered by clouds). 

Another error in the MODIS reflectance product may come from inaccurate 

atmospheric input parameters, mainly aerosol optical depths and water vapour 

content (Liang et al., 2002). Aerosol optical depth represents the most critical issue 

in the atmospheric correction process since it has a large effect on the visible and 

near IR bands. Remember that, ETM+ data is atmospherically corrected by the 

ATCOR method, in which the image based derivation of aerosol optical depth is 

inferred from band TM2, TM3 and TM7 (0.47 µm, 0.67 µm, and 2.13 µm) as it is 

done in MODIS reflectance (Richter, 2001; Vermote et al., 2002). So this possible 

error may be compensated. 

One important source of error comes from differences in the radiometric 

resolution of MODIS and ETM+ data (Table 4.8). The ETM+ is stored in 8 bits data 

format, which re-scale reflectance with a factor of 4. This means that each 

brightness level is about 0.25 %. MODIS is stored in 12 bits format, which re-scales 

reflectance with factor of 100, each brightness level is about 0.01 %. This may lead 

to relatively large differences at lower reflectance and a large scatter in the plots. 

Fortunately, the upscaling process of ETM+ data may reduce the discrepancies, 

since within small area reflectances follow a normal distribution in most cases, 

especially in homogeneous areas. This error compensation explains why the scatter 

is small at low reflectance. 

The finding from this study is generally in accordance to the study of Vermote 

et al. (2002) as seen in Table 4.6. However, the coefficient of correlation is 

significantly lower than that reported by Vermote due to the fact that they made a 

comparison of surface reflectance for a smaller area (21 x 18 km) as compared to 

full ETM+ scenes included in this study. 
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Figure 4.15. Comparison of the surface reflectance derived from ETM+ (x-axis) with the MODIS reflectance product (y-axis): a) Landsat 
B4 – MODIS B2; b) Landsat B3 – MODIS B1; c) Landsat B2 – MODIS B4; d) Landsat B5 – MODIS B6. 
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Table 4.4. Correlation of Landsat TM reflectance which is atmospherically corrected by ATCOR and 6S methods 

TM1 TM2 TM3 TM4 TM5 TM7 

A b r2 A b r2 a b r2 a b r2 a b r2 a b R2 

-0.03 1.02 0.98 0.07 0.99 0.99 0.01 1.01 0.99 -0.02 1.00 0.99 -0.04 1.01 0.99 0.01 1.01 0.99 

a: intercept, b: slope, r2: coefficient of correlation 

 

Table 4.5. Comparison of spectral response from ASD measurements integrated over ETM+ and MODIS bands. MODIS(i)=a*TM(i) 

(where i = 1 to 7) 

 A 

MODIS band 3 0.93 

MODIS band 4 0.97 

MODIS band 1 0.97 

MODIS band 2 1.03 

MODIS band 6 1.02 

MODIS band 7  1.03 
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Table 4.6. Comparisons of the aggregated ETM+ reflectance and MODIS 

reflectance. 

Bands ETM 

(MODIS) 

B2 

(B4) 

B3 

(B1) 

B4 

(B2) 

B5 

(B6) 

Date Slope r2 Slope r2 Slope r2 Slope r2 

17/06/2002 0.98 0.92 1.03 0.87 1.02 0.91 1.01 0.84 

31/03/2001 1.05 0.69 1.02 0.86 0.98 0.69 0.99 0.69 

05/07/2001 1.01 0.79 0.97 0.85 1.01 0.68 1.01 0.85 

22/08/2001 1.01 0.91 0.96 0.93 1.01 0.86 1.01 0.93 

10/11/2001 0.97 0.69 0.98 0.69 0.99 0.91 0.99 0.84 

14/06/2001 1.00 0.68 0.95 0.69 0.99 0.78 1.03 0.78 

26/08/2001 1.05 0.69 1.02 0.68 1.03 0.71 1.01 0.80 

20/10/2001 0.95 0.92 0.96 0.91 1.02 0.76 1.07 0.60 

Vermote 

(2002) 

1.05 0.96 0.97 0.96 1.00 0.92 1.02 0.93 

 

Table 4.7. Comparison of MODIS and Landsat ETM+ reflectances in Hesse for 2001 

TM B1 TM B2 TM B3 TM B4 TM B5 TM B7 

Slope r2 Slope r2 Slope r2 Slope r2 Slope r2 Slope r2 

0.80 0.58 0.95 0.97 0.96 0.85 1.02 0.98 1.00 0.84 1.04 0.85 

 

Table 4.8. Bandwidths (nm) and radiometric resolution of MODIS and ETM+ 

reflectances 

Sensor 
TM B2–

MODIS B3 

TM B3 –

MODIS B1 

TM B4 –

MODIS B2 

TM B5–

MODIS B6 

TM B7–

MODIS B7 

Radiometric 

resolution 

ETM+  450 - 515 630 - 690 750 - 900 1550 -1750 2090-2350 0 - 255 

MODIS 457 - 479 620 - 670 841 - 876 1628 - 1652 2105-2155 0 - 10000 
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4.2. Conclusions with Respect to MODIS Reflectance 

An evaluation of MODIS reflectance products has to rely on ground 

measurements. However, the direct comparison of ground point measurements with 

MODIS products is not feasible. The key step in the MODIS evaluation is the 

upscaling process from ground point measurements to MODIS resolutions using 

high-resolution images (ETM+). The evaluation approaches presented in this work 

are quite general and straightforward, and they have been applied successfully in 

other studies of the land surface products from MODIS (Liang et al., 2002; Vermote 

et al., 2002; Disney et al., 2004; Fang et al., 2004). 

Field measurements were conducted in Hesse forest, Tharandt forest, and 

Tharandt grassland sites. Ground measurements were used to "calibrate" high-

resolution products from ETM+ imagery. The limited dataset of ground 

measurements of reflectance are successfully used to calibrate high-resolution 

Landsat ETM+ products. Therefore, ground measurements are indirectly used for 

evaluating the MODIS products.  

Since high-resolution images measure the top of atmosphere radiance, they 

should undergo a process of atmospheric correction to convert them into the at 

canopy reflectance products which are comparable to MODIS reflectance. 

Subsequently, Landsat ETM+ imagery can be upscaled to the MODIS resolutions for 

evaluating the MODIS reflectance products.  

The initial evaluation results show that the MODIS reflectance product is 

reasonably accurate (less than 10 % absolute error). The MODIS team is still 

developing the algorithms to improve the quality of reflectance product. The final 

conclusion about the uncertainties of these products must be made after MODIS 

data reprocessing. Note that the evaluation results were based on ETM+ scene from 

8 days in 2001 and 2002 and across typical landscapes in Europe. It is quite 

important that such tests be made, in order to understand potential influences of 

landscape structure in the areas of interest. 

In the current atmospheric correction procedure, the surface has been assumed to 

be a Lambertian. This assumption was used in atmospheric correction because we 

have not been able to determine surface BRDF properties at the ETM+ resolution. It 

is probably not a serious issue at this point since the MODIS atmospheric correction 

algorithm currently is also making such an assumption Vermote et al. (2002), but it is 

certainly an important area to be improved in the future. 
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CHAPTER 5. EVALUATION OF MODIS LAND COVER 

5.1. Results and Discussion 

5.1.1. Land cover classification at Berchtesgaden National Park 

5.1.1.1. Habitat mapping by aerial photography in Berchtesgaden National Park 

Aerial color infrared (CIR) photos taken in 1997 were used to map habitats in 

the Berchtesgaden National Park within the framework of the Project “Alpine Habitat 

Diversity–HABITALP–INTERREG IIIB Alpine Space Program” by the administration 

of the National Park Berchtesgaden (Franz, 2000). In general, aerial CIR 

photography is considered to provide the best method for accurate classification of 

land cover over large areas due to the high resolution of the image. One drawback is 

that the interpretation is visually carried out, so that it is very laborious and time 

consuming. A set of criteria was developed to define 153 biotope types in the 

National Park Berchtesgaden. To differentiate biotope types, the brightness, texture 

and surface, shadows, and stereoscopic effect of the image was used (Kias et al., 

1999). Homogeneous areas satisfying specific criteria were identified and assigned 

into one of 153 biotypes (Franz, 2000). The alpine habitat map is used in this study 

as the ground truth map to validate the land cover map derived via remote sensing 

imagery.  

The initial map was reduced and reclassified into six classes based on 

functional type of the vegetation and to reflect the dominant plant growth forms at 

the study sites as shown in Fig. 5.1a. The six classes are: deciduous forest, 

coniferous forest, mixed forest, grassland, water, and rocks. In the National Park 

Berchtesgaden, the deciduous forest refers to broadleaf forest which defoliates 

during winter and it is dominated by Fagus sylvatica and Alnus viridis. The 

coniferous forest includes forest types with needle-like leaves which include stands 

dominated by Picea abies and Pinus mugo in Berchtesgaden. The mixed forest is 

defined as a mixture of deciduous broadleaf and needleleaf species where each 

occupies at least 25 % of the area (Küchler, 1988). 
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5.1.1.2. Supervised classification results with Landsat images of National Park 

Berchtesgaden. 

Supervised classification was performed using Landsat ETM+ images in 

Berchtesgaden and Stubai Valley. In supervised classification, the basic steps are: 

(1) select training samples which are representative and typical for that information 

class, spectral characteristics of each class is defined; (2) perform classification with 

the training samples set and specific classification algorithms; (3) assess the 

accuracy of the classified image through analysis of a confusion matrix which is 

generated by comparing to reference data. 

According to the fieldwork survey of the study area and ancillary data, there are 

seven classes that need to be identified by image classification in Berchtesgaden: 

deciduous, needleleaf, mixed forest, grassland, water, shrubland, and rock (bare 

soil). Training samples were selected according to the ground truth from the 

fieldwork and using aerial photography. These homogeneous areas are identified in 

the image to form the training samples for all of the classes. What is important to be 

mentioned here is that the ground truth used for training samples for classification 

are independent from the ground truth used for accuracy assessment in order to 

objectively evaluate the quality of the classification result. The number of pixels in a 

training area for a given class was based on the proportional representation of the 

class. Care was also taken to adhere to the rule of 3n pixels per training class where 

n represents the number of bands (Mather, 1987). Once the training sites for each 

land cover type are chosen, the spectral signatures from the specified regions of 

interest are derived. For every object class a spectral signature (spectral response) 

in bands 1 to 7 (except 6) Landsat TM was derived. 

The maximum likelihood classifier is selected for performing the supervised 

classification due to its advantage compared to other algorithms such as minimum 

distance. The assumptions, calculation characteristics, and advantage and 

disadvantage of this classification algorithm have been described in detail in Chapter 

2. Supervised classification of Landsat image of Berchtesgaden (with 6 bands) 

resulted in Fig. 5.1b.  
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a)  

 

 

 

 

b)  

 

Figure 5.1. a) The land cover map of National Park Berchtesgaden (ground truth 

map); b) The land cover map of National Park Berchtesgaden derived from Landsat 

TM by using Maximum Likelihood classifier. 
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a) b) 

Figure 5.2. a) Comparison between spectral signature of deciduous forest and mixed 

forest; b) Comparison between spectral signature of deciduous forest and mixed 

forest. 

Accuracy assessment for supervised classification of Landsat data can be 

evaluated from the error matrix in Table 5.1 that is generated using the ground truth 

map. From Table 5.1, it can be seen that the classification has an overall accuracy 

of 55.2 %. The producer’s accuracy of the coniferous forest is quite good (55 %). 

This means 55 % coniferous area has been correctly identified. The user’s accuracy 

of this class is 56.6 %; this means 56.6 % of the areas identified as coniferous forest 

within the classification is truly of that category. Other vegetated classes are 

deciduous forest, mixed forest and grassland. From Table 5.1, it can be seen that 

those classes have relatively low producer’s and poor user’s accuracy. 

The spectral signatures of water and rock are extremely different from other 

vegetated classes due to the spectral characteristics of the Landsat. This explains 

why the producer’s accuracies of those classes are 96.1 % and 96.9 %, respectively. 

The overall accuracy of 55.2 % is confused (Campbell, 2002) but reasonable, 

considering the complexity of the region, and improved in comparison to a previous 

study in this region (Bobeva, 2003). The greatest difficulty limiting positive results is 

the occurrence of shadows, which cannot be removed by topographic correction of 

the remote sensing data. Another reason comes most probably from the basic 

differences between the ground truth map and remote sensing based classification 
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map. The former is polygon based, while the land cover map, deriving by maximum 

likelihood classifier of remote sensing data is pixel based. The ground truth map was 

made in 1994 while the satellite image was acquired in 1999.  

Table 5.1. Error matrix according to the ground truth map for supervised Landsat 

classification in Berchtesgaden  

 Reference data 

Class Water Rock Mixed 

forest 

Deciduous 

forest 

Grassland Coniferous 

forest 

Total 

Water 96.06 0.00 2.28 0.95 0.39 0.34 4.00 

Rock 0.80 96.87 11.92 13.00 35.30 19.90 36.88 

Mixed forest 2.11 1.09 32.01 41.54 11.19 18.50 16.44 

Deciduous 0.42 0.01 3.44 22.22 1.88 0.85 1.97 

Grassland 0.42 1.01 5.29 3.78 25.27 5.43 7.35 

Coniferous 0.19 1.01 45.05 18.50 25.97 54.98 33.36 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 
Class Producer' accuracy User's accuracy 

 (Percent)  (Percent)  

Water 96.06 5016/5222 82.72 5016/6064 

Rock 96.87 32566/33617 58.32 32566/55842 

Mixed forest 32.01 10326/32263 41.47 10326/24899 

Deciduous 22.22 957/4307 32.05 957/2986 

Grassland 25.27 6070/24020 54.56 6070/11125 

Coniferous 54.98 28590/51997 56.60 28590/50510 

Overall Accuracy = (83525/151426) 55.2 % 

Kappa coefficient = 0.41 

A more careful inspection of the error matrix shows that there is significant 

confusion between the mixed forest and deciduous forest. This occurs because 

these two land cover types have close spectral values within the image data of 

Landsat. This may be due to the fact that the Landsat image was taken in 

September, when the canopy of deciduous forest was fully developed. The mixed 

forest as defined above (Küchler, 1988) tended to have the spectral signal of closed 

deciduous forest. Fig. 5.2a indicates similarity in the spectral signature of deciduous 
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forest and mixed forest. This similarity leads to difficulty in distinguishing the two 

forest types. Thus, these two forest types have subsequently been merged into one 

class, namely deciduous forest. The only reliable vegetated class associated with 

this overall classification from both a producer’s and a user’s perspective is the 

coniferous forest, since the spectral signature of coniferous forest is significantly 

different from other forested classes (Fig. 5.2b). 

5.1.1.3. Object-based classification of National Park Berchtesgaden 

As indicated in Chapter 3, eCognition classifies an image based on an object-

based approach. The classification process is divided into three steps: image 

segmentation, classification and accuracy assessment. In contrast to traditional 

image processing methods, in which the basic units are single pixels, the basic units 

of object-based image analysis are image objects or segments. An advantage of the 

object-based approach is the fact that the expected result of image classification is 

the extraction of real world objects, e.g. the forest patches. This expectation cannot 

be achieved with common, pixel-based approaches. 

5.1.1.3.a. Image segmentation 

One of the main features which made eCognition different from other image 

processing package is object-oriented processing of the image. The first step in 

eCognition is to extract image objects by grouping pixels, which have the same 

spectral characteristics and exist adjacent to each other. The image objects will 

become basic building blocks for subsequent classification, and each object will be 

treated as a whole in the classification. The segmentation rule is to create image 

objects as large as possible and at the same time as small as necessary. After 

segmentation, a great variety of information can be derived from each object for 

classifying the image since an image object offers substantially more information in 

comparison to a single pixel. 

eCognition uses a newly developed multi-resolution/multi-spectral 

segmentation procedure, which is based on the possibility to generate image object 

primitives in any chosen scale, using data with different resolution and different 

spectra. The segmented image then can be used in image analysis to extract the 

objects of interest such as land cover/land use units. The segmentation procedure 

follows a relatively general assumption of homogeneity within basic objects. Thus in 
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most cases, objects of interest cannot be directly extracted, but require grouping of 

some adjacent basic objects. For the object oriented approach to image analysis in 

eCognition, image objects resulting from a segmentation procedure are, therefore, 

intended to be image object primitives, serving as information carriers and building 

blocks for further classification. In this sense, the best segmentation result is one 

that provides optimal information for further processing. 

In order to receive optimal raw material for object oriented image analysis, the 

development of multi-resolution/spectral segmentation aims to: 

1. Produce highly homogeneous segments for the optimal separation and 

representation of image objects/regions. 

2. Produce highly homogeneous segments where the average size of image 

objects must be adaptable to the scale of interest. 

Multi-resolution/spectral segmentation is a basic procedure in eCognition for 

object oriented image analysis. It is used here to produce image object primitives as 

a first step for a further classification and other processing procedures. 

Multi-resolution/spectra is a bottom up region-merging technique starting with 

one-pixel objects. In numerous subsequent steps, smaller image objects are merged 

into bigger ones. Throughout this pair-wise clustering process, the underlying 

optimization procedure minimizes the weighted heterogeneity of resulting image 

objects. In each step, that pair of adjacent image objects is merged, which results in 

the smallest growth of the defined heterogeneity. If the smallest growth exceeds the 

threshold defined by the scale parameter, the process stops. 

Throughout the segmentation procedure, the whole image is segmented and 

image objects are generated based upon several adjustable criteria of homogeneity 

in color and shape. Adjusting the so-called scale parameter indirectly influences the 

average object size: a larger value leads to bigger objects and vice versa. 

Additionally the influence of shape as well as the image’s channels on the object’s 

homogeneity can be adjusted. 
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a) b) 

  
c) d) 

Figure 5.3. a) Original image (without segmentation); b) Segmentation result 1 with 

parameters of Scale 10, color 0.8, and shape 0.2, smoothness 0.9, compactness 

0.1; c) Segmentation result 2 with parameters of Scale 20, color 0.8, and shape 0.2, 

smoothness 0.9, compactness 0.1; d) Segmentation result 3 with parameters of 

Scale 30, color 0.8, and shape 0.2, smoothness 0.9, compactness 0.1. 

In performing the segmentation of the Landsat ETM, visible and NIR spectral 

region (bands 1, 2, 3, 4, 5, and 7) with 30 m spatial resolution were included into the 

segmentation process with equal full weighting (set weight 1.0). The segmentation 

process based on a high spatial resolution promotes use of the detailed information 

actually derived from the earth surface. 

The scale parameter of the procedure was set to 10. The composition of 

homogeneity criteria was the following: color 0.8, shape 0.2. For the shape criterion, 
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smoothness was 0.9 and compactness was 0.1. Subsequently the parameters were 

varied as discussed below to optimize performance in relation to the ground truth 

map. 

5.1.1.3.b. Comparison of segmentation results with different scale parameters 

Figs. 5.3a-d show the effect of segmentation results using different 

segmentation parameters. Except for differences in scale, other parameters that 

influence the segmentation result (color, shape, smoothness and compactness) 

were kept constant. Fig. 5.3a is the original image Landsat ETM bands 3, 4, and 7 

before segmentation. Fig. 5.3b is the segmentation result with a scale parameter 10. 

Comparing this segmentation result with the original image, it is found that neighbor 

pixels are grouped into pixel clusters-objects, but because of the low value of the 

scale parameter, relatively small objects were created. Fig. 5.3c&d are the 

segmentation results with scale parameter 20 and 30, respectively. Comparing these 

with Fig. 5.3b, it is clear that higher scale parameter values generate larger objects. 

By comparison of the patterning in the segmentation in relation to ground truth 

maps, a scale parameter of 10 was selected as appropriate because the 

segmentation result provides the best fit to the information class extraction, 

especially considering fragmentation of the area (Fig. 5.4). The extracted image in 

the left panel of Fig. 5.4a is composed of homogeneous forest and more 

heterogeneous areas of grassland. The outcome of the segmentation in the image in 

the right panel with a higher scale parameter value shows larger unrealistic objects 

for the forest and smaller unrealistic objects for the grassland area. Thus, by 

choosing the scale parameter of 10, the fragmentation of grassland in this region is 

well described. 

Thus, the multi-resolution segmentation extracts regions of local contrast. If areas of 

interest are small, multi-resolution segmentation should be applied with a smaller 

scale parameter value extracting principal image objects of smaller average size. 

The typical result of a segmentation run with a smaller scale parameter is: larger 

homogeneous image objects, smaller heterogeneous image objects and smaller 

homogeneous image objects embedded in a high contrast region as seen in Fig. 5.4. 
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a) b) 

Figure 5.4. Image segmentation result produced for the area at the north end of 

Königsee in the Berchtesgaden National Park with a) scale parameter = 10; and 

b) with scale parameter = 20 or larger. 

Object-based classification of Landsat image in Berchtesgaden (with 6 bands) 

results in Fig. 5.5. Accuracy assessment for object-based classification of Landsat 

data can be evaluated from the error matrix in Table 5.2 that is generated using the 

same ground truth map as discussed above. From Table 5.2, it can be seen that 

there is a significant improvement of the classification, which has an overall 

accuracy of 75.8 %, and Kappa coefficient of 0.63. The producer’s accuracy of all 

classes increase, only producer’s accuracy of rock class remains very high at 96 % 

(Table 5.3). The producer’s accuracy of deciduous forest and grassland are nearly 

double that obtained with supervised classification at 57 and 49 %, respectively, 

while producer’s accuracy of coniferous forest increase significantly from 54 to 76 %. 

The improvement of object-based classification is even more profound when looking 

into user’s accuracy (Table 5.4). The user’s accuracies of all classes increase, 

except producer’s accuracy of grassland decreases from 54 to 48 % (Table 5.3). 

This is due to the occurrence of many small areas of grasslands which are situated 

within the forest. Those small areas are not detected by the segmentation process, 

are included into forest areas, and lead to an underestimated area of the grassland 

class.  

On other hand, there is also a large increase in user’s accuracies of deciduous 

forest (55 %) and rocks (90 %), while the user’s accuracy of the coniferous forest is 

slightly improved (63 %) compared to supervised classification (56 %). It is clear that 
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object-based classification avoids the so-called “salt and pepper pattern”, which 

occurs when using pixel-based classification in the forests and rock areas. 

Especially in steep mountain regions, topographic effects cause shadows which 

make the salt and pepper pattern even worse. 

Table 5.2. Error matrix by ground truth map for object-based classification of 

Landsat image in Berchtesgaden 

Reference data 
Class 

Coniferous Deciduous Grassland Water Rock Total 

Coniferous 76.79 35.62 32.36 1.26 1.64 40.70 

Deciduous 12.93 57.09 15.98 1.58 1.08 16.22 

Grassland 1.96 1.88 49.10 0.50 1.04 3.61 

Water 0.01 0.31 0.55 96.40 0.06 2.85 

Rocks 8.31 5.10 2.01 0.26 96.18 36.62 

Total 100 100 100 100 100 100 

 

Producer' accuracy User's accuracy 
Class 

(Percent)  (Percent)  

Coniferous  76.79 52821/68782 62.98 52821/83867 

Deciduous  57.09 18366/32171 54.94 18366/33427 

Grassland 49.10 3592/7315 48.29 3592/7438 

Water 96.40 5667/6200 96.53 5667/5871 

Rocks 96.18 67952/71604 90.04 67952/75469 

Overall Accuracy = (99915/131667) 75.9 % 
Kappa coefficient = 0.63. 
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a) 

LEGEND 

 

b)  

 

Figure 5.5. Result of object-based classification in Berchtesgaden a) Ground truth 

map; and b) Object-based land cover map. 
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Table 5.3. Comparison of producer’s accuracy of pixel-based and object-based 
classifications of Landsat image in Berchtesgaden 

 Water Rock Deciduous Grassland Coniferous 

Pixel-based 

classification  

96.06 96.87 22.22 25.27 54.98 

Object-based 

classification 

96.40 96.18 57.09 49.10 76.79 

 

Table 5.4. Comparison of user’s accuracy of pixel-based and object-based 

classifications of Landsat image in Berchtesgaden 

 Water Rock Deciduous Grassland Coniferous 

Pixel-based classification  82.72 58.32 32.05 54.56 56.60 

Object-based classification 96.53 90.04 54.94 48.29 62.98 

 

5.1.2. Land cover classification in Stubai Valley and at Tharandt and Hesse 

Forests 

The same trend toward higher accuracy was obtained with object-based 

classification of Landsat images in Stubai Valley, as seen in Fig. 5.6 and 

summarized in Tables 5.5 to Table 5.8.  

In Stubai Valley, with pixel-based classification one can achieve relatively high 

overall accuracy 72.1 % (Kappa coefficient = 0.58). This result is higher than 

obtained in Berchtesgaden, since the topographic effects in Stubai Valley are not as 

profound as in Berchtesgaden. The result is also better than previously obtained for 

this mountain region of the Alps using maximum likelihood classification (Bobeva, 

2003). But overall accuracy is lower than another study in the Alps using a rule-

based fuzzy logic classifier, and combining the spectral information with ancillary 

data layers and a knowledge base (Stolz et al., 2005). By taking into account the 

probability of occurrence of a land use class dependent on environmental and 

physical factors such as slope, altitude, soil and climate, Stolz et al. (2005) achieved 

an accuracy of 88 %.  
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In the case of Stubai Valley, it is worth to mention that the study extends over a 

large watershed, where rough terrain is about one third of the total area. The overall 

accuracy of 72 % is a satisfying result (Campbell, 2002). But a closer evaluation of 

the classified categories reveals some problems. Although the image acquisition 

date allows a high number of grasslands to be differentiated, the confusion of high 

elevation grassland with meadows and several other classes is evident. The poor 

separability between grassland and meadows is a result of the similar spectral 

signatures of these two classes and may not be avoidable. The misclassification of 

meadows and rocks is mainly due to limitations in the ground truth map, which was 

produced almost 15 years ago. At the current time, meadows appear to have 

expanded above treeline due to global warming effects, and this change is seems to 

be captured well by the remote sensing data. There is significant confusion between 

the deciduous forest and coniferous forest classes, where 31.7 % of deciduous 

forest is misclassified as coniferous. Fortunately, this has little effect on overall 

accuracy because deciduous forest covers less than 1 % of the Stubai Valley. The 

two classes, coniferous forest and rocks, covering 70 % of the area have been well 

classified with accuracies of 73 and 78 % respectively.   

The object-based classification of Landsat data in Stubai Valley achieve even 

higher overall accuracy of 80.8 % (Kappa coefficient = 0.7) (Table 5.7). The 

producer’s accuracy of all classes increases. The producer’s accuracy of deciduous 

forest, urban and meadow classes are approximately double that obtained with 

supervised classification at 63, 76 and 56 %, respectively, while producer’s accuracy 

of grassland increases significantly from 48 to 64 %. The two main classes, 

coniferous forest and rocks, obtain only little improvement. The improvements 

obtained with object-based classification are also evidenced when looking into user’s 

accuracy (Table 5.8), where object-based classification achieves higher accuracies 

in all classes. Using the combination of texture and shape with spatial information on 

an object, object-based classification leads to much higher accuracy. The 

consistency of high accuracy with object-based classification of Landsat TM images 

over two mountainous areas supported the idea to apply this method for land cover 

classification in Hesse and Tharandt forest, and this was subsequently carried out. 

Going beyond the methodological limits of pixel-based approaches, multi-scale 

image segmentation and object-based approaches were used for land cover 



Evaluation of MODIS land cover 

 
105

classification in Hesse and Tharandt forest. The results are shown in Table 5.9. In 

comparison to the ground truth data, which are derived from different sources of 

ancillary data: inventory data, SPOT image, etc. (see Chapter 3), very high 

accuracies of 82.8 % in Hesse (Kappa coefficient = 0.78) and 91.3 % in Tharandt 

(Kappa coefficient = 0.88) were achieved. The higher accuracy in Tharandt seems 

due to lower complexity of the landscape at the Tharandt forest site, where the 

coniferous forest covers most of area, surrounded by agriculture fields. The 

deciduous forest at Hesse covers a smaller portion of the scene and is surrounded 

by meadows and agricultural areas.  

Table 5.5. Error matrix by ground truth map for pixel-based classification of Landsat 

image in Stubai Valley 

Class Coniferous Grassland Urban Rocks Meadow Deciduous Total 

Coniferous 73.48 9.29 2.30 3.99 13.01 31.77 24.40 

Grassland 13.18 62.20 37.29 1.10 8.44 16.68 10.45 

Urban 0.45 2.89 52.65 0.14 0.23 0.00 0.75 

Rocks 3.55 6.18 7.75 78.31 27.70 0.00 45.63 

Meadows 8.16 17.16 0.00 16.38 50.38 15.75 17.99 

Deciduous 1.19 2.28 0.00 0.07 0.25 35.79 0.78 

Total 100 100 100 100 100 100 100 

Overall Accuracy = (187405/259812) 72.1 %  
Kappa coefficient = 0.58. 
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Table 5.6. Error matrix by ground truth map for object-based classification of 

Landsat image in Stubai Valley 

Class Coniferous Grass Urban Rocks Meadow Deciduous Total 

Coniferous 84.75 12.08 1.89 3.79 11.29 23.07 27.32 

Grassland 4.61 64.73 21.72 0.94 4.23 9.62 7.64 

Urban 0.20 3.14 76.19 0.12 0.00 0.00 0.79 

Rocks 3.79 7.67 0.00 86.85 28.23 0.00 50.32 

Meadows 5.92 10.37 0.21 8.27 55.91 3.76 13.15 

Deciduous 0.72 2.01 0.00 0.02 0.34 63.55 0.78 

Total 100 100 100 100 100 100 100 

Overall Accuracy = (209984/259945) 80.8 %  
Kappa coefficient = 0.7.  
 

Table 5.7. Comparison of producer’s accuracy of pixel-based and object-based 

classifications of Landsat image in Stubai Valley 

 Coniferous Grassland Urban Rocks Meadows Deciduous 

Pixel-based 

classification  
81.48 48.24 38.89 89.8 31.85 26.76 

Object-based 

classification 
84.75 64.73 76.19 89.85 55.91 63.55 

 

Table 5.8. Comparison of user’s accuracy of pixel-based and object-based 

classifications of Landsat image in Stubai Valley 

 Coniferous Grassland Urban Rocks Meadows Deciduous 

Pixel-based 
classification  

73.48 62.2 52.65 78.31 50.38 35.79 

Object-based 
classification 

83.93 68.63 52.81 90.35 58.34 47.7 
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Table 5.9. Overall accuracy and Kappa coefficient of Landsat land cover products 

compared to the “ground truth” land cover map 

 Berchtesgaden Stubai Hesse Tharandt 

Overall 

auracy 

(99915/131667) 

75.9 % 

209984/259945 

80.7 % 

(15685/19128)  

82.8 % 

(15685/19128)  

91.3 % 

Kappa 

cefficient 
0.63 0.70 0.78 0.88 

 

  
a) b) 

Figure 5.6. Land cover map resulting from object-based classification in Stubai 

Valley a) Ground truth map; b) Object-based land cover map. 

5.1.3. Scaling up of land cover to evaluate the MODIS product 

5.1.3.1. MODIS land cover products  

In order to compare the land cover maps developed for specific sites in this 

thesis to MODIS land cover, and to assess or validate MODIS land cover 

descriptions, the 6 site-specific classes must be assigned to suggested equivalent 

MODIS land cover classes. This practice of translation equating local land cover with 

analyses developed for global scale applications has been viewed as a means for 

evaluating errors associated with MODIS land cover products (Turner et al., 1996). 
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MODIS land cover descriptions are produced on a 32-day basis using decision tree 

and trained artificial neural network classifiers (Strahler et al., 1999). There are 

several different descriptions for land cover that are included in the MODIS12Q1 

product catalog (Morisette et al., 2002). In this study, land cover type 1 and type 3 

are of interest. The land cover type 1 is in accordance with a scheme that has been 

accepted by the International Geosphere-Biosphere Programme (IGBP) for regional 

to global scale land cover classification, identifying 17 classes (Table 5.10) 

(Loveland et al., 2000). The land cover type 3, which is subsequently used to 

produce the MODIS LAI/FPAR product, identifies 6 biomes based on biophysical 

and physiological characteristics of the biomes and 3 additional land covers 

(Table 5.11) (Myneni et al., 1997a). The six-biome scheme is promoted to enable 

researchers to identify characteristics via relatively coarse resolution satellite data, 

which are important to ecosystem bio-geochemistry.  

Table 5.10. MODIS land cover type 1 (IGBP Land cover Units) 

1 Evergreen 

Needleleaf 

Forests 

Lands dominated by woody needleleaf vegetation with a percent cover > 

60 % and height exceeding 2 meters. Almost all trees remain green all 

year. Canopy is never without green foliage. 

2 Evergreen 

Broadleaf 

Forests 

Lands dominated by woody broadleaf vegetation with a percent cover > 

60 % and height exceeding 2 meters. Almost all trees and shrubs remain 

green year round. Canopy is never without green foliage. 

3 Deciduous 

Needleleaf 

Forests 

Lands dominated by woody needleleaf vegetation with a percent cover > 

60 % and height exceeding 2 meters. Consists of seasonal needleleaf 

tree communities with an annual cycle of leaf-on and leaf-off periods. 

4 Deciduous 

Broadleaf 

Forests 

Lands dominated by woody broadleaf vegetation with a percent cover > 

60 % and height exceeding 2 meters. Consists of broadleaf tree 

communities with an annual cycle of leaf-on and leaf-off periods. 

5 Mixed 

Forests 

Lands dominated by trees with a percent cover > 60 % and height 

exceeding 2 meters. Consists of tree communities with interspersed 

mixtures or mosaics of the other four forest types. None of the forest 

types exceeds 60 % of landscape. 

6 Closed 

Shrublands 

Lands with woody vegetation less than 2 meters tall and with shrub 

canopy cover > 60 %. The shrub foliage can be either evergreen or 

deciduous. 

7 Open 

Shrublands 

Lands with woody vegetation less than 2 meters tall and with shrub 

canopy cover between 10 – 60 %. The shrub foliage can be either 

evergreen or deciduous. 

8 Woody Lands with herbaceous and other understory systems, and with forest 
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Savannas canopy cover between 30 – 60 %. The forest cover height exceeds 2 

meters. 

9 Savannas Lands with herbaceous and other understory systems, and with forest 

canopy cover between 10 – 30 %. The forest cover height exceeds 2 

meters. 

10 Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than 

10 %. 

11 Permanent 

Wetlands 

Lands with a permanent mixture of water and herbaceous or woody 

vegetation. The vegetation can be present in either salt, brackish, or 

fresh water. 

12 Croplands Lands covered with temporary crops followed by harvest and a bare soil 

period (e.g., single and multiple cropping systems). Note that perennial 

woody crops will be classified as the appropriate forest or shrub land 

cover type. 

13 Urban  Land covered by buildings and other man-made structures. 

14 Cropland 

Vegetation 

Mosaics 

Lands with a mosaic of croplands, forests, shrubland, and grasslands in 

which no one component comprises more than 60 % of the landscape. 

15 Snow and 

Ice 

Lands under snow/ice cover throughout the year. 

16 Barren Lands with exposed soil, sand, rocks, or snow and never has more than 

10 %. 

17 Water 

Bodies 

Oceans, seas, lakes, reservoirs, and rivers. Can be fresh or saltwater 

bodies. 

 

Table 5.11. MODIS land cover type 3 (LAI/FPAR) 

1 Grasses/cereal crops 

2 Shrubs 

3 Broadleaf crops 

4 Savanna 

5 Broadleaf forest 

6 Needleleaf forest 

7 Unvegetated area 

8 Urban area 

9 Water 

 



Chapter 5 

 110

Table 5.12. Equivalence utilized in comparing site-specific land cover classes to 

MODIS type 1 and MODIS type 3 classes 

a) Berchtesgaden National Park 

Site-specific 

class 

MODIS type 1 (IGBP Class) MODIS type 3 (For 

LAI/PAR) 

Coniferous forest Evergreen and deciduous 

needleleaf forest 

Needleleaf forest 

Mixed forest Mixed forest Needleleaf forest or 

Broadleaf forest based on 

majority 

Deciduous forest Deciduous broadleaf forest Broadleaf forest 

Grassland and 

Cropland 

Grassland Grasses/cereal crops 

Water Water Water 

Rocks Barren Barren 

 

b) Stubai Valley 

Site-specific class MODIS type 1 (IGBP Class) MODIS type 3 (For 

LAI/PAR) 

Coniferous forest Evergreen and deciduous 

needleleaf forest 

Needleleaf forest 

Deciduous forest Deciduous broadleaf forest Broadleaf forest 

Meadows Grassland Grasses/cereal crops 

Grassland  Grassland Grasses/cereal crops 

Urban Urban/Built-up Barren 

Rocks Barren Barren 
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c) Hesse forest 

Site-specific class MODIS type 1 (IGBP Class) MODIS type 3 (For 

LAI/PAR) 

Coniferous forest Evergreen and deciduous 

needleleaf forest 

Needleleaf forest 

Matured deciduous 

forest 

Deciduous broadleaf forest Broadleaf forest 

Young deciduous 

forest 

Deciduous broadleaf forest Broadleaf forest 

Grassland  Grassland Grasses/cereal crops 

Cropland Cropland Grasses/cereal crops 

Rocks and bare soil Barren Barren 

d) Tharandt forest 

Site-specific class MODIS type 1 (IGBP Class) MODIS type 3 (For 

LAI/PAR) 

Coniferous forest Evergreen and deciduous 

needleleaf forest 

Needleleaf forest 

Mixed forest Mixed forest Needleleaf forest or 

Broadleaf forest based 

on majority 

Deciduous forest Deciduous broadleaf forest Broadleaf forest 

Grassland  Grassland Grasses/cereal crops 

Cropland Cropland Grasses/cereal crops 

Rocks and bare soil Barren Barren 

5.1.3.2. Site-specific equivalence or translation of classes 

Table 5.10 and 5.11 list the 6 site-specific classes used for land cover at all 

four study-sites and indicate how they are equated with MODIS type 1 and MODIS 

type 3 land cover maps. There is no ambiguity in translation to MODIS type 1 land 

cover, since similarly defined classes occur. At the Hesse site, two classes of mature 

and young deciduous forest are included into a single deciduous broadleaf forest 
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class with reduction in number of objects. The same reduction in numbers of classes 

occurs in Stubai Valley, where grassland and cropland are defined as grassland. 

MODIS type 3 land cover has no mixed forest (Table 5.11). Thus, mixed forest was 

translated into deciduous forest or needleleaf forest depending on which class 

represented the major portion of the MODIS scale pixel. 

5.1.3.3. Scaling up of the land cover map 

Since almost all pixels at the 1 km scale of the MODIS image are a mixture of 

several land cover types, a definition of a “pure pixel” is required in the upscaling 

process. Here a pure pixel was defined when the representation of an individual land 

cover type exceeds 60 %. If this criterion was not met, the pixel remained 

unclassified and was eliminated from the evaluation. The upscaling results of 

Landsat land cover map to MODIS scale are shown in Fig. 5.7, 5.8, 5.9 and 5.10. 

Landscape complexity, either as a disturbance of the image via shading or extreme 

fragmentation, directly influences the upscaling results. In Berchtesgaden, the most 

complex landscape, only 45 % of area could be successfully translated into a 

MODIS 1 km scale land cover map. The rest remains unclassified (Fig. 5.7). As 

landscape goes from more to less complex, the classified area increases from 77 % 

to 85 and 88 % in Stubai Valley, Hesse forest and Tharandt forest respectively 

(Fig. 5.8, 5.9 and 5.10). 
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a) b) 

 

LEGEND 
 

 

c)  

Figure 5.7. Land cover map of Berchtesgaden: a) Upscaling to MODIS resolution at 

threshold of 0.6; b) Derived from Landsat TM; and c) Derived from MODIS data. 
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a) b) 

 

LEGEND 

 

c)  

Figure 5.8. Land cover map of Stubai Valley: a) Upscaling to MODIS resolution at 

threshold of 0.6; b) Derived from Landsat TM; and c) Derived from MODIS data.



Evaluation of MODIS land cover 

 
115

 

  
a) b) 

 

LEGEND 
 

 

c)  

Figure 5.9. Land cover map of Hesse forest: a) Derived from Landsat TM; 

b) Upscaling to MODIS resolution at threshold of 0.6; and c) Derived from MODIS 

data. 

 

 

 



Chapter 5 

 116

 

  
a) b) 

 

LEGEND 
 

 

c)  

Figure 5.10. Land cover map of Tharandt forest: a) Upscaling to MODIS resolution at 

threshold of 0.6; b) Derived from Landsat TM; and c) Derived from MODIS data. 
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5.1.4. Comparison of the MODIS land cover map and ground truth maps 

5.1.4.1. Areal comparison 

a) MODIS land cover type 1 and Landsat land cover 

Fig. 5.11 shows the total areas (in percentage) of the 4 main land cover 

classes in Berchtesgaden, which results from Landsat data (30 m resolution) and 

MODIS data (1km resolution). The total areas of 4 main land cover classes are quite 

similar except for mixed forest. The large percent difference for mixed forest 

obtained in this study is similar to earlier findings reported by Bobeva (2003). In this 

specific case, discrepancies can be explained by the difference in the definitions of 

“mixed forest” in the MODIS classification scheme and Landsat classification 

scheme. In the MODIS classification scheme, mixed forests are defined as lands 

dominated by trees with a percent cover of 60 % and higher and height exceeding 

2 m, none of the forest types exceeds 60 % of landscape. In Landsat TM 

classification scheme, the threshold for mixed forest is 70 % tree cover and tree 

height greater than 3 m. The difference of scale also contributes to the 

discrepancies. The mixed forest, which covered 40 % of total area in Berchtesgaden 

in the Landsat land cover map at 30 m resolution, is not equally distributed over the 

area. The MODIS land cover map can depict 22 % of the area as mixed forest at 

1km resolution, the rest of the area is made up of other land cover classes. 

Deciduous forest represents approximately 4 % of total area of Berchtesgaden, thus 

making it difficult to delineate the boundaries with coarse resolution MODIS data, 

where only 2.5 % of the area is defined as deciduous forest. There are better 

agreements in areal statistics of coniferous forest and grasslands/croplands, which 

compose of 36 % and 17 % of cover at Landsat resolution and 43 % and 17.3 % at 

MODIS resolution respectively. The area of coniferous forest is higher in the MODIS 

land cover than in Landsat land cover. In contrast, the area of deciduous forest is 

higher in Landsat land cover than in MODIS land cover. This result may due to the 

misclassification with the MODIS land cover algorithm. 

The results of areal statistical analysis of Stubai Valley, Hesse forest, and 

Tharandt forest are shown in Table 5.13a, b, c. 
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Figure 5.11. Areal statistics of the land cover map in Berchtesgaden, as mapped by 

MODIS land cover map (type 1) and Landsat TM land cover.  

In Stubai Valley, the MODIS land cover map underestimates the area of bare 

soil/rock and croplands/grassland. It can depict only 1.2 % of area as bare soil/rock, 

while this class composes 21 % of area in the Landsat land cover map. Similarly, 

only 4.9 % of croplands/grassland land cover occurs in the MODIS land cover map, 

while it is 20.4 % in the Landsat land cover map. On the other hand, the MODIS land 

cover map shows considerably large area of mixed forest (18.5 %) and woody 

savanna (17.2 %) which are not classified in the Landsat land cover map. Here the 

differences in classification scheme and resolution certainly play a role, because in 

the Landsat scheme, there are no mixed forest and woody savanna classes. The 

area of mixed forest in the MODIS land cover map may be a mixture of forest, 

grassland and bare soil/rock. Deciduous forest represents approximately 1.9 % of 

total area of Stubai Valley, thus making it difficult to delineate the boundaries with 

coarse resolution MODIS data. There is highest agreement in areal statistics of 

coniferous forest, which compose of 53.5 and 53.0 % at Landsat resolution and 

MODIS resolution, respectively. 

In Hesse forest, the classification eliminates mixed forest and woody savanna 

from consideration in the Landsat land cover map, while they are 23.5 and 1.2 % in 

the MODIS land cover map respectively. In contrast, the MODIS land cover could 

not depict the existence of coniferous forest and bare soil/rock, which are visible at 
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Landsat resolution. The bare soil surrounding Hesse forest exists only seasonally 

due to harvesting and ploughing. This area could be classified as cropland in the 

MODIS scheme because they use multiple scenes for classification during the 

growing seasons. The croplands/grassland areas in both products are in good 

agreement with 60 % in Landsat and 58 % in the MODIS land cover map. The 

deciduous forest is also in fair agreement with 25 % in Landsat and 17 % in the 

MODIS land cover map. 

Table 5.13. Areal statistical analysis of Landsat and MODIS land cover maps in 

a) Stubai Valley, b) Hesse forest, and c) Tharandt forest 

a) Stubai Valley 

 Deciduous 

forest 

Mixed 

forest 

Coniferous 

forest 

Croplands/ 

Grassland 

Woody 

Savanna 

Bare soil/ 

Rock 

Urban 

Landsat LC 1.90 0.0 53.5 20.44 0.0 21.1 3.0 

MODIS LC 4.93 18.5 53.1 4.93 17.3 1.2 0.0 

b) Hesse forest  

 Deciduous 

forest 

Mixed 

forest 

Coniferous 

forest 

Croplands/ 

Grassland 

Woody 

Savanna 

Bare soil/ 

Rock 

Landsat LC 25.1 0.0 4.9 60.24 0.00 9.5 

MODIS LC 17.3 23.5 0.0 58.02 1.23 0.0 

c) Tharandt forest 

 Deciduous 

forest 

Mixed 

forest 

Coniferous 

forest 

Croplands Grassland Bare soil/ 

Rock 

Landsat LC 5.90 19.2 43.70 11.0 17.9 2.0 

MODIS LC 1.23 61.7 19.75 13.6 3.7 0.0 

 

In Tharandt forest, small areas of bare soil exist in the Landsat land cover map, 

but do not exist in the MODIS land cover map. Other land cover classes show 

significant discrepancies in certain areas. Mixed forest occupies 19 % in Landsat 

land cover map, while it occupies 61 % in the MODIS land cover map. In contrast, 

coniferous forest covers 44 % in Landsat land cover map, much higher than that of 
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20 % found with MODIS. The discrepancies here are mainly due to scale 

differences. At larger scale, the MODIS land cover map can depict the mixture of 

coniferous and deciduous forest as mixed forest. As a result the sum of forest areas 

in both Landsat and MODIS land cover maps are quite similar, 70 % in Landsat and 

82 % in the MODIS land cover maps. 

In the previous studies, Giri (2005) showed a much better agreement between 

MODIS land cover maps and GLC-2000 at global scale. The percent agreement of 

global area totals of forest, grasslands, croplands, urban lands, barren lands, and 

mosaic of croplands/natural vegetation are 91, 82, 87, 93, 97 and 75 %, 

respectively. The percent agreement for shrublands/ savannas and wetlands are 58 

and 37 %. This agreement can be explained by the fact that, the GLC-2000 was 

based primarily on SPOT VEGETATION, where daily 1-km data were acquired in 

1999/2000 (Fritz et al., 2002). Thus the time difference of approximately 10 months 

between GLC-2000 and the MODIS land cover map is negligible; and the effect of 

resolution differences can be ignored. 
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Table 5.14. Confusion metric of Land cover classification in Hesse forest 

Ground truth  

Coniferous forest Deciduous forest Mixed forest Grassland Cropland Crop Grass Mosaic Bare soil Total Class 

pixels % pixels % pixels % pixels % pixels % pixels % pixels % pixels % 

Coniferous forest 0 0 0 0 0 0.0 0 0 0 0.0 0 0.0 0 0 0 0.0 

Deciduous forest 0 0 3 30 0 0.0 1 50 0 0.0 8 29.6 0 0 12 17.4 

Mixed forest 0 0 4 40 2 66.7 0 0 5 18.5 3 11.1 0 0 14 20.3 

Grassland 0 0 0 0 0 0.0 0 0 0 0.0 0 0.0 0 0 0 0.00 

Cropland 0 0 1 10 0 0.0 0 0 19 70.4 7 25.9 0 0 27 39.1 

Crop Grass Mosaic 0 0 2 20 1 33.3 1 50 3 11.1 9 33.3 0 0 16 23.2 

Bare soil 0 0 0 0 0 0.00 0 0 0 0.0 0 0.0 0 0 0 0.0 

Total 0 0 10 100 3 100 2 100 27 100 27 100 0 0 69 100 

Table 5.15. Confusion metric of Land cover classification in Tharandt forest  

Ground truth 

Coniferous forest Mixed forest Grassland Cropland Crop Grass Mosaic Total Class 

pixels % pixels % pixels % pixels % pixels % pixels % 

Coniferous forest 7 25.9 4 14.3 0 0 0 0.0 0 0.0 11 15.7 

Mixed forest 20 74.1 22 78.6 2 50 1 33.3 2 25.0 47 67.1 

Grassland 0 0.0 0 0.0 0 0 0 0.0 0 0.0 0 0.00 

Cropland 0 0.0 0 0.0 2 50 2 66.7 5 62.5 9 12.9 

Crop Grass Mosaic 0 0.0 2 7.1 0 0 0 0.0 1 12.5 3 4.3 

Total 27 100 28 100 4 100 3 100 8 100 70 100 
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Table 5.16. Confusion metric of Land cover classification in Stubai Valley  

Ground truth 

Coniferous forest Deciduous forest Mixed forest Grassland Opened Shrubland Total Class 

pixels % pixels % pixels % pixels % pixels % pixels % 

Coniferous forest 22 55.0 1 100 1 100 6 54.5 2 33.33 32 54.24 

Deciduous forest 1 2.5 0 0 0 0 0 0.0 0 0.00 1 1.69 

Mixed forest 8 20.0 0 0 0 0 2 18.2 2 33.33 12 20.34 

Grassland 2 5.0 0 0 0 0 0 0.0 0 0.00 2 3.39 

Opened Shrubland 7 17.5 0 0 0 0 3 27.3 2 33.33 12 20.34 

Total 40 100 1 100 1 100 11 100 6 100 59 100 

Table 5.17. Confusion metric of Land cover classification in Berchtesgarden  

Ground truth 

Coniferous forest Deciduous forest Mixed forest Bare soil Crop Grass Mosaic Total Class 

pixels % pixels % pixels % pixels % pixels % pixels % 

Coniferous forest 15 75 2 50 8 53.3 0 0 1 50 26 60.5 

Deciduous forest 0 0 1 25 1 6.7 0 0 0 0 2 4.65 

Mixed forest 5 25 1 25 5 33.3 0 0 0 0 11 25.6 

Bare soil 0 0 0 0 0 0.00 0 0 0 0 0 0.0 

Crop Grass Mosaic 0 0 0 0 1 6.7 2 100 1 50 4 9.3 

Total 20 100 4 100 15 100 2 100 2 100 43 100 
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5.1.4.2. Spatial (per-pixel) comparison 

a. Comparison of MODIS land cover type 1 and Landsat land cover:  

The per-pixel agreement between MODIS land cover and Landsat land cover 

type 1 is presented in Table 5.10. In general, the per-pixel agreement between 

upscaled Landsat land cover and MODIS Land Cover is lower than the area 

comparison.  

In Hesse forest, the overall accuracy is 47.8 % with a Kappa coefficient of 0.28. 

Cropland and mixed forest agree best with the ground truth data, having accuracies 

of 70.4 and 66.7, respectively (Table 5.14). Only 30 % of deciduous forest and 

33.3 % of the crop-grass mosaic are correctly classified. It is easy to understand 

because 40 % of deciduous forests are misclassified as mixed forest due to the 

similarity in these reflectance signals. On the other hand, the definitions of MODIS 

deciduous forest and mixed forest make it even more ambiguous, since more than 

60 % of deciduous forest is required to decide on deciduous forest, and below 60 %, 

deciduous forest would often be classified as mixed forest. The crop-grass mosaic is 

mainly misclassified as cropland (26 %) due to similarity between the two classes, 

while 11 % of the area of cropland is classified as crop-grass mosaic. 

In Tharandt forest, the overall accuracy is 45.7 % with a Kappa coefficient of 

0.18. Mixed forest and crops land have the best agreement to the ground truth data, 

with accuracies of 78.6 % and 66.7 %, respectively (Table 5.15). While only 25.9% 

of coniferous forest and 12.5% crop-grass mosaic are correctly classified. Grassland 

is either classified as cropland (50 %) or mixed forest (50 %). The rest of coniferous 

forest (74.1 %) is classified as mixed forest due to the similarity of reflectance 

signals and the ambiguous definition of MODIS classes. The crop-grass mosaic is 

mainly misclassified as cropland (62.5 %) due to similarity between the two classes. 

While 33.3 % cropland and 25.0 % crop-grassland mosaic are misclassified as 

mixed forest. 

In Stubai Valley, the overall agreement is 50.8 % with a Kappa coefficient of 

0.19. Coniferous forest is most in agreement with the ground truth data, with 

accuracy of 55 % (Table 5.16), while the other land cover classes are mostly 

misclassified. Grassland is either classified as coniferous forest (54.5 %) or mixed 

forest (18.2 %) or open shrubland (27.3 %). Only 33 % of open shrubland are in 

agreement with ground truth data, while 33 % of the area is misclassified as mixed 



Chapter 5 

 124

forest, and the rest are misclassified as coniferous forest. In addition to the highly 

fragmented nature of the landscape in Stubai Valley, the roughness of the Alpine 

mountains contributes to the difficulties of the classifications. 

In Berchtesgaden, after aggregation into 6 land cover classes, the overall per-

pixel agreement is 51.2 % with a Kappa coefficient of 0.22 (Table 5.17). The highest 

agreement was found in coniferous forest, where 75 % of the areas are correctly 

classified; while 25 % of the coniferous forest areas were classified as mixed forest. 

The other land cover classes are mostly misclassified. While 50 % of the areas of 

crop-grassland mosaic are in agreement with ground truth data, 50 % of the areas 

were classified as coniferous forest. Only 33 % of mixed forest areas are in 

agreement with ground truth data, while 53.3 % of the areas were misclassified as 

coniferous forest and the rest are misclassified as deciduous forest (6.6 %). Only 

25 % of deciduous forests were correctly classified. Most of the deciduous forests 

were classified as either coniferous forest (50 %) or mixed forest (25 %). All of the 

bare soil areas were misclassified as crop-grassland mosaic. 

The detailed comparison between MODIS land cover type 1 and upscaled 

Landsat land cover maps reveals some important characteristics of the MODIS land 

cover products. In the mountainous areas, namely Stubai Valley and 

Berchtesgarten, where the coniferous forest is dominant, the MODIS land cover 

algorithm works quite well with the coniferous class, having accuracies of 55 % and 

75 %, respectively. However, many of the coniferous areas were misclassified as 

mixed forest due to the similarity of the spectral signals of the two land cover types 

as well as the ambiguous definition of the MODIS land cover product. In the 

relatively low and flat areas of Tharandt and Hesse forest, which are composed 

mainly of mixed forest, the MODIS land cover algorithm works well, with accuracies 

of 78.6 % and 66.7 % respectively. Again, most of the misclassification occurs 

between mixed forest and coniferous forest. The largest problem with the MODIS 

land cover algorithm is in dealing with grassland, cropland, and crop-grassland 

mosaic classes. In addition to the similarity of the spectral signal of these three 

classes, the fragmentation of the landscape plays an important role here. In Hesse, 

the cropland areas, which make up of nearly half of area, are relatively 

homogeneous and result in high accuracies of the MODIS land cover product. In 

contrast, in the other regions, grassland, cropland, and crop-grassland mosaic are 
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very fragmented. This makes it more difficult to differentiate between the three 

above-mentioned land cover types at the 1 km2 scale. 

The differences among the classifications are also due to the distributed 

pattern of forest and surrounding grassland patches. The low resolution of MODIS 

classifications is unable to reproduce the level of detail found in Landsat data. It is 

surprising that there is no significant difference in accuracies of MODIS land cover 

type 1 with respect to the complexity of the terrain. In the Berchtesgaden site, where 

terrain is the most complex, the MODIS land cover agrees well with Landsat 

classifications with an overall accuracy of 51.2 %. While the terrain in Tharandt 

forest is least complex, the overall accuracy is 45.7 %. With the same range of 

overall accuracy, one cannot identify the effect of terrain roughness with respect to 

results from the classification algorithm. 

b. Comparison of MODIS land cover type 3 and Landsat land cover: 

Table 5.18 and 5.19 show the overall accuracy and Kappa coefficient of 

MODIS land cover type 1 and type 3. The overall accuracy of MODIS land cover 

type 3 is significantly higher than that of land cover type 1 due to the aggregation of 

similar land cover classes. The grassland, cropland, and crop-grassland mosaic 

were aggregated into grasses/cereal crops; mixed forest can be either coniferous 

forest or deciduous forest based on their majority. The accuracies of MODIS land 

cover type 3 are much improved in all four study sites because there is no confusion 

between mixed forest and other forest classes; or in grassland and cropland, or 

crop-grassland mosaics.  

The complexity of the terrain similarly showed no effect on the accuracies of 

MODIS land cover type 3 classification. At the Berchtesgaden site, the MODIS land 

cover agrees well with Landsat classifications with an overall accuracy of 94.4 %. 

The homogeneity of the land cover may play a crucial role because the land cover is 

much more homogeneous in Berchtesgaden compared to other sites. 
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Table 5.18. Overall accuracy and Kappa coefficient of MODIS land cover products 

(type 1) compare to “ground truth” land cover map, which is upscaled from Landsat 

TM land cover map 

 Berchtesgaden Stubai Hesse Tharandt 

Overall 
Accuracy 

51.2% 50.8% 47.8% 45.7% 

Kappa 
Coefficient 

0.20 0.19 
 

0.28 
 

0.17 
 

 

Table 5.19. Overall accuracy and Kappa coefficient of MODIS land cover products 

(type 3) compare to “ground truth” land cover map, which is upscaled from Landsat 

TM land cover map 

 Berchtesgaden Stubai Hesse Tharandt 

Overall 
Accuracy 

94.4% 63.1% 70.1% 84.7% 

Kappa 
Coefficient 

0.88 0.18 
 

0.32 
 

0.68 
 

 

5.2. Conclusion with respect to MODIS land cover pr oducts 

Previous results from the MODIS validation team have suggested that the 

MODIS land cover product is realistic, and that the algorithm performs well at the 

global scale. At site scale, this study comes to the following conclusions: 

1) The areal statistical analysis shows that MODIS classification results obtained 

at lower spatial resolution are generally comparable to those from Landsat 

TM. The discrepancies here are mainly due to resolution differences of the 

two land cover maps. Land cover classes with small area cannot be depicted 

by the MODIS land cover map, but still appeared in the Landsat land cover 

map. The discrepancies occur mostly in some regions with mixed land 

surface cover, where brightness variations of mixed surface types can 

produce a mathematical ambiguity that cannot be resolved without additional 

information.  

2) Spatial analysis has proven that MODIS land cover maps type 3 with the six 

biomes better agree with the Landsat reference maps than the MODIS land 
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cover type 1 with 17 classes (IGBP). Fragmentation in European landscapes 

is a fundamental problem encountered in the use of MODIS products. A true 

representation of the land surface cannot be obtained from the current 

MODIS land cover classifications at 1 km scale. The IGBP classification 

scheme is not compatible with the structural classification schemes commonly 

used in the study area, e.g. woody savanna class in MODIS IGBP cannot fit 

to any land cover type of the region. The lack of local training data and the 

coarse spatial resolution are also sources of inconsistencies. 

The problem with misclassification of cropland and grassland was evident 

in the MODIS land cover type 1 product, but the combination of cropland and 

grassland in MODIS land cover type 3 results in similar estimates to the 

Landsat land cover. In the same manner, the misclassification of needleleaf 

or broadleaf forest as mixed forest was profound in MODIS land cover type 1. 

The separation of needleleaf forest and broadleaf forest in MODIS land cover 

type 3 helps to improve the ambiguity of mixed forest in comparison to the 

other forest types.  

3. The complexity of the terrain showed no or small effect on the accuracies of 

the MODIS land cover classification. While the homogeneity of the land cover 

shows a significant effect on the quality of MODIS land cover product. The 

homogeneous land cover in National Park Berchtesgaden contributes to 

higher accuracies of MODIS land cover products as compared to other sites.  

4. Despite the limitation of the MODIS land cover products, the results are 

encouraging and conclusively demonstrate the quality of MODIS data for land 

cover mapping applications, especially the MODIS land cover type 3. MODIS 

data clearly provides a significant improvement in terms of quality relative to 

the heritage AVHRR data. The major advantage of MODIS land cover data is 

that a consistent methodology is applied across the globe and is repeatable. 

The quality of the results might support large-scale land cover mapping. The 

major weakness of this approach is the lack of local/regional validation. The 

use of these descriptors in models describing land surface properties may 

potentially lead to large errors at local/regional scale. Thus, exchange 

between the land surface and the atmosphere of water and CO2 as estimated 
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by models using MODIS inputs will have a high level of uncertainty, and the 

results must be considered with caution.  

5. The study shows the limitation of pixel-based classification compared to 

object-based classification, because object-based classification can 

incorporate more contextual information into classification algorithm. The 

MODIS land cover algorithm is based on supervised classification 

methodology, which uses a decision tree classification approach and exploits 

a global database of training sites. Therefore, classification results produced 

from MODIS data are heavily dependent on the integrity and representation of 

global land cover in the site data.  

6. MODIS land cover also has a limitation of pixel-based classification. Object-

based classification which incorporates more contextual information into the 

classification algorithm might improve the accuracies of the MODIS land 

cover product, especially at landscape and regional scales. For regional or 

landscape scale studies, MODIS at 250-m resolution would produce more 

detailed results for land cover, while still taking advantage of frequent 

temporal coverage by MODIS. 
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CHAPTER 6. EVALUATION OF MODIS LAI PRODUCTS 

6.1. Derivation of LAI-Vegetation Index (LAI-VI) mo dels for coniferous forest 

in mountainous Alpine areas (Berchtesgaden National  Park and Stubai 

Valley) 

6.1.1. LAI measurement in Berchtesgaden 

 The LAI map of Berchtesgaden, which was derived from forest inventory data, 

is shown in detail in figure 6.1a, b, c. It should be recognized that the forest inventory 

database of the National Park Berchtesgaden is a unique dataset in the context of 

long-term ecological monitoring and the degree of detail of the measurements (see 

Konnert et al., 2001 – reference on the inventory here). 

Figure 6.1. a) Forest inventory points; b) Land cover map; and c) derived LAI map of 

Berchtesgaden National Park.  

Utilizing the inventory data, forest type map, and allometric relationships 

relating BDH and LAI, a detailed LAI map was created at landscape scale. LAI was 

calculated at each plot separately for coniferous forest (assumed to be Norway 

spruce, Picea abies), and deciduous forest (treated as beech, Fagus sylvatica) (see 

details in chapter 3.2.2.3, eq. 3.3 and 3.4.) 

Once the LAI at each plot was calculated, plots were grouped into patches according 

to the tree types, tree age, and tree density. Thereafter, the LAI of each patch was 

a) b) c) 
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calculated by averaging all plot LAI values. In Berchtesgaden forest, LAI varied 

greatly, from 2 to 12, with an average value of 6.5. The coniferous forest has a 

substantially higher LAI as compared to deciduous forest, mostly due to the higher 

density and age of coniferous forest in comparison to that of deciduous forest and 

higher leaf mass per tree. The LAI on the west-facing slopes is also higher than on 

the east-facing slopes, apparently due to the fact that east-facing steep slopes 

prevent establishment of deeper soil, increase soil erosion, and reduce the stability 

of forest trees. 

 

Figure 6.2. a) LAI map of Berchtesgaden National Park. b) Landsat true color image 

composite (Bands 3, 4, 7.) for the park. 

Fig. 6.2a provides a broader view of the LAI map of Berchtesgaden National 

Park (as of 1997) in accordance to the Landsat true color composite image acquired 

on Sep. 14, 1997 (Fig. 6.2b. Apparently, we can observe the correlation of denser 

forest with the dark green color signature in the Landsat image, indicating higher LAI 

areas in the LAI map, while the thinner forest (light green color) is in correlation with 

lower LAI areas. 

6.1.2. Selecting LAI-VI models and derivation of LAI map from Landsat data 

in Berchtesgaden 

An attempt was made to relate LAI and vegetation indices (VIs) derived from 

Landsat images and based on pixel-by-pixel comparison of the two images in 

Fig. 6.2. This resulted in a poor correlation with a low r2 of 0.18. This is largely due to 

the error in the co-registration process. Although a rigorous effort was made to 

 
1997 Sep. 14, 1997 

a) b) 
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obtain high precision in the image to image registration between the LAI map and 

Landsat image, an error of half pixel makes it impossible to guarantee that the LAI 

measured plot on the ground corresponds exactly to specified satellite pixel. In 

addition, the LAI point grid data were obtained via allometric equations and 

averaging within the 200 x 200 m inventory grid, which does not correspond to the 

Landsat grid (30 m x 30 m).  

In the patch-based LAI map, each LAI values represent leaf area index for 

larger forest stands, not for a single inventory point determination. The variation of 

LAI within a patch also contributes to the above-mentioned low correlation of LAI 

and VIs. This result is in accordance with the previous conclusion, that the internal 

variance of the objects affects the correlation of LAI and VIs (Tian et al., 2002a, b; 

Wang et al., 2003). Therefore, pixel-by-pixel comparison of the Landsat image and 

LAI map should only be considered in the ideal situation, where the homogeneous 

objects are observed on the ground (Tian et al., 2002a, b; Wang et al., 2003). 

Figure 6.3. Patch-based comparison between LAI and NDVI of a) coniferous forest 

in Berchtesgaden. b) deciduous forest in Berchtesgaden. 

To avoid these problems, a patch-based comparison of VIs derived from 

Landsat data and LAI was analyzed. The patches in consideration are regarded as 

homogeneous forest polygons which have an average LAI value. Each patch may 

consist of several measured plots. By averaging VIs of the pixels within an LAI 

patch, one obtains a VI representative for the patch. 
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Fig. 6.3 illustrates the relatively tight correlation between LAI and NDVI of both 

coniferous and deciduous forests in Berchtesgaden, with r2 of 0.78 and 0.63, 

respectively. Previous studies also reported higher correlation coefficients of patch-

based analyses as compared to pixel-per-pixel correlation of LAI and VIs (Tian et al., 

2002b; Wang et al., 2004). The two models relating NDVI and LAI were obtained for 

coniferous (6.1) and deciduous (6.2) forest as follows: 

NDVI = 0.0551 * Ln(LAI) + 0.6629     (6.1) 

NDVI = 0.1061 * Ln(LAI) + 0.5978    (6.2) 

The coniferous model (r2 = 0.78) far outperformed the deciduous model 

(r2 = 0.63). These results are in agreement with a previous study by Fassnacht et al. 

(1997). However, in comparison of the performance of the two models, it must be 

noted that there is greater variability in the coniferous LAI data than in the deciduous 

data, and this distribution of LAI data might explain the differences in predictive 

performance. 

Other studies have reported that the reflectance received by the satellite 

sensor, hence NDVI saturates at LAI between 4 and 8 (Peterson et al., 1987; 

Spanner et al., 1994). In this study, deciduous LAIs range from 2 to 10, whereas 

most of the deciduous plots had LAI greater than 4; this suggests that the majority of 

data may have fallen within the region of saturation. The coniferous plots, in 

contrast, had LAIs ranging from 1 to 15, whereas data in the range from 1 to 5 

(where the satellite signal was more sensitive to changes in LAIs) contribute strongly 

to derivation of the coniferous model. 

As has been suggested previously (Spanner et al., 1994), the LAI-VIs models 

can be sufficient for prediction of LAI from satellite data when r2 > 0.5. Thus, the two 

above-mentioned models can be used with confidence to derive LAI maps from 

Landsat (Landsat LAI) images at 30 x 30 m resolution in Berchtesgaden. The patch-

based Landsat LAI map was then created by averaging all pixels of Landsat LAI, 

which fall within a corresponding patch in the measured LAI. 
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Figure 6.4. a) Correlation between patch-based measured LAI and Landsat 

estimated LAI and b) Correlation between standard deviation (SD) of measured LAI 

and Landsat TM estimated LAI in Berchtesgaden. 

The slope of the correlation between patch-based measured LAI and Landsat 

estimated LAI and is very close to 1. Of course the LAI-NDVI models are derived 

from the measured LAI itself. It is nevertheless important to recognize that a high 

value is obtained for the correlation coefficient (r2 = 0.9) and RMSE (= 0.24). The 

tight correlation between measured LAI and Landsat LAI confirms the usefulness of 

these two LAI-NDVI models, which were used to derive a fine resolution LAI map at 

30 x 30 m scale for the Berchtesgaden National Park (Fig 6.14). The RMSE value 

indicates that there is considerable uncertainty in the LAI which was derived from 

Landsat data. In other words, it sets a limit on the accuracy of LAI maps derived 

from Landsat images. 

The relatively high correlation coefficient (r2 = 0.56) between standard deviation 

(SD) within patches of measured LAI and Landsat TM LAI in Berchtesgaden (Fig. 

6.4b) is explained by the fact that both measured and remote sensing methods 

capture the inner variation of LAI within the patches. On other hand, the SD of 

measured LAI within the patches is significantly higher that that of Landsat LAI 

(20 %). The main factor, which contributes to this difference, is the sampling 

distance (space). In the former method, the sampling distance is 141 m and the 

sampling area is 500 m2; each measurement is isolated and regarded as an 
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independent measurement. In the case of Landsat LAI, the data is continuously 

sampled and the sampling distance is only 30 m. This makes the measurement 

highly auto-correlated, causing a lower standard deviation from the Landsat LAI. 

6.1.3. Validation of Landsat-derived LAI maps in Berchtesgaden 

The empirical forest LAI models were extrapolated to and tested in Stubai 

Valley, which has a similar landscape as well as climate conditions. An LAI map was 

derived using inventory data for forest parcels near Neustift, a small section of the 

Stubai Valley. The method used for LAI map development was the same as used in 

Berchtesgaden National Park. The measured LAI map was used as “ground truth” 

LAI map to test a Landsat LAI map based on equations 6.1 and 6.2 applied in Stubai 

Valley. 

Figure 6.5. Correlation between patch-based measured LAI and Landsat LAI in 

Stubai Valley. 

Fig 6.5 shows the correlation between the two LAI maps at Neustift, where the 

regression is forced through origin. The high correlation coefficient (r2 = 0.76) 

demonstrates that the LAI-NDVI models acquired in Berchtesgaden are effective in 

Stubai Valley, and may be confidently used in other similar Alpine regions. This is 
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also expressed by the slope of the trend line (~1). The similarity of the two LAI 

relationships results due to application off the same methods, using inventory data to 

develop the “ground truth” LAI map at the two sites. On the other hand, Landsat 

images obtained under similar conditions, e.g., September 13, 1999 and September 

14, 1999, were used to develop Landsat LAI maps in Stubai Valley and 

Berchtesgaden, respectively.  

Going from low to high LAI, the difference between measured and Landsat LAI 

increases, reflecting the nature of the allometric methods for LAI determination. The 

exponential relationship between LAI – DBH leads to potentially large errors when 

estimating with large DBH. Even so, the RMSE of 0.30 is comparable to other 

studies (Bobeva, 2003; Wang et al., 2004). The biggest challenge for validation of 

the moderate (> 1 km) resolution MODIS LAI product is the scarcity of ground-truth 

measurements. Considering the small scale of in situ measurements and the large 

amount of work associated with field measurements, it is unrealistic to expect 

sufficient data for a pixel-by-pixel comparison for all sites. An alternative is to use the 

LAI-VI models acquired in Berchtesgaden for coniferous and deciduous forests as 

well as grassland (acquired in Stubai Valley, see next section) for examination of the 

two Alpine mountainous sites studied here, and to derive in turn fine resolution 

“ground truth” LAI maps which are then used for evaluating MODIS LAI. 

6.2. Derivation of a high resolution LAI map in Stu bai Valley from Landsat 

data 

6.2.1. Grassland LAI measurements in Stubai Valley 

LAI in Stubai Valley was sampled at two grassland sites, corresponding to 

different management practices: the grassland site at the bottom of Stubai Valley 

was cut three times during the year (site 1), while the meadow site on a south-facing 

slope was abandoned and exhibited natural changes in LAI without management 

(site 2). 

The Landsat images were chosen from 6 days, corresponding with vegetative or 

critical growing conditions at the grassland sites. Different LAI-VIs models were 

tested which led to the result that the simple ratio (SR) is the most suitable 

vegetation index for use in correlation with the measured LAI. 
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Figure 6.6. a) The Landsat SR time series compared to measured LAI; 

b) Correlation between measured LAI (from 2 local sites) and Landsat SR in Stubai 

Valley. 

Fig 6.6a shows 9 LAI measurements (in red diamonds), and the assumed 

course for seasonal change in LAI at the valley bottom site (red line), which was 

linearly interpolated between measurements. The SR index (in pink diamonds) 

corresponds well to the changes in LAI over the course of growth. The two first cuts 

are clearly identified. Only in the case 2 days after the 2nd cut (day 208) is the SR 

still relatively high compared to measurements, due to the effect of dead green 

materials left over on the field after the cut. These still can absorb and reflect the 

incoming light. This case was excluded from further analysis because of its 

abnormality. The SR ranges from 5 to 20, while LAI ranges from 2.0 to 4.2 

suggesting that the majority of data fall within a range, where the satellite signal 

sensitively to changes in LAI is high. A tight correlation between Landsat SR and LAI 

was observed (r2 = 0.90). LAI alone can explain 90 % the variation in SR.  

To examine the influence of the satellite data resolution on the LAI-VI 

relationship, correlations between LAI and MODIS VIs (NDVI and SR) at different 

resolutions (250, 500, and 1000 m) were examined. Statistical analysis indicated 

that the MODIS SR is better correlated with LAI. as already found in case of Landsat 

SR. Furthermore, MODIS SR 250 m resolution was more strongly correlated with the 

three cuts at days 154, 206, and 274 than the coarser resolutions. Thus, the effects 

of mixed pixels, which include another land cover type in the case of more coarse 
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resolution, clearly influence the results. Therefore, only MODIS SR 250 m resolution 

was used for further study. 

 

Figure 6.7. a) The MODIS SR time series in accordance to measured LAI at the 

valley bottom site; b) Correlation between measured LAI and MODIS SR in Stubai 

Valley at the valley bottom site. 

The comparison between measured LAI and MODIS SR at 250 m resolution is 

shown in Fig 6.7a and b. Even at the finest resolution of MODIS products, the size of 

the measured plots is still relatively small compared to the pixel size. Nevertheless, 

the MODIS SR index was well correlated with the changes in LAI. The three cuts of 

grassland during the year 2002 could be clearly identified (Fig. 6.7a). After removing 

abnormal data obtained immediately after the 2nd and 3rd cuts, an r2 = 0.93 was 

obtained. It is important to note that, when LAIs vary from 1 to 4.5, the MODIS SR 

changes from 6 to 15, while Landsat SR changed from 4 to 20. 

6.2.2. Selecting LAI-VI models and derivation of LAI map from Landsat data 

in Stubai Valley 

The model relating SR and LAI from Landsat for grassland and meadow is as 

follows: 

LAI = 0.1373 * SR + 1.63     (6.3) 

With three models (6.1), (6.2), and (6.3) for coniferous forest, deciduous forest 

and grassland, respectively, the fine resolution LAI maps were derived for 

Berchtesgaden and Stubai Valley. 
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6.3. Derivation of LAI map in Tharandt forest from Landsat data 

6.3.1. Grassland LAI measurements in Tharandt 

LAI measurements in Tharandt forest were carried out at the grassland site 

using destructive and non-destructive methods over the course of the growing 

season in 2004. 

 

Figure 6.8. a) The MODIS SR time series in accordance to measured LAI (2004); 

b) Correlation between measured LAI (from 2 local sites) and MODIS SR in 

Grassland Tharandt (2004). 

Fig 6.8a presents the LAI measurements in Tharandt obtained by different 

methods: optical method (in open triangle), destructive method (open square) and 

measured LAI course of growth (as a continuous line and linearly interpolated 

between measurements. Because of the lack of cloud free Landsat data in 2004, the 

MODIS reflectance data at 250 m resolution had to be used for analysis. The 

MODIS SR index (in plus sign) corresponds well to the change of LAI. The SR 

ranges from 4 to 15, while LAI ranges from 1 to 7. The majority of data are in the 

range of LAIs where the satellite signal is sensitive to changes in LAI. Only within the 

range from 6 to 7 is it possible that a saturation occurs in the reflectance signal. 

However, a relatively strong linear LAI – SR relationship (r2 = 0.79) was also 

observed at this site (Fig. 6.8b). 
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Figure 6.9. Comparison between 2 models correlating measured grass LAI and 

MODIS SR in Stubai Valley and Tharandt. 

Fig. 6.9 shows the statistical analysis of the data which compares results of the 

relationships obtained at the grassland sites in Stubai Valley and Tharandt.. The 

results indicate that there was no statistically significant difference in the slopes for 

two models, but a small different in the intercepts of the LAI-SR equations (Fig. 6.9) 

in Stubai Valley and Tharandt. Because of the inaccuracy in low LAI determinations 

(at values below 1.0), this difference was ignored In general, deviations in the 

equations may occur due to differences in the harvesting methods applied by the 

two different research groups. 

6.3.2. Selecting LAI-VI models and derivation of LAI map from Landsat data 

in Tharandt forest 

The models (6.1) and (6.3) were used for coniferous forest and grassland, 

respectively to establish a fine resolution LAI map for Tharandt. For deciduous forest 

stands, the model obtained from Hesse forest (shown in the next section) was used 

(eq. 6.4). 

 

Site
Stubai
Tharandt

Plot of Fitted Model

0 4 8 12 16

SR

0

2

4

6

8

LA
I



Chapter 6 

 140

6.3.3. Comparison of the Landsat-derived LAI map for coniferous forest in 

Tharandt to older estimates 

 

Figure 6.10. Comparison between measured LAI as determined in 1993 and 

Landsat LAI estimated in 2001 for coniferous forest in Tharandt.  

In Tharandt, there were measurements of LAI in spatially distributed coniferous 

forest stands carried out in 1993 according to the allometric method. We should 

expect a close correspondence in those studies with the relationships from 

Berchtesgaden and Stubai Valley. The environmental conditions in Tharandt Forest 

do not differ strongly and methods were in principle the same. However, during 

8 years, the natural growth of forest as well as the management activities would 

have influenced LAI. Comparison with the August 2001 Landsat estimates can shed 

light on this change.  

Fig. 6.10 illustrates a strong linear relationship (r2 = 0.81) between measured 

LAI in 1993 and Landsat estimated LAI in 2001 for coniferous forest in Tharandt 

despite branch cutting and removal of fallen materials. The major of data and, 

therefore, the trend line lies well above the 1 : 1 line, which confirms growth of the 

forest with increasing LAI. However, Landsat LAI (2001) is significantly higher than 

measured LAI (1993) only in the low range of LAIs, whereas small difference is 

found at high LAI. This probably demonstrates differences in the growth 

characteristics in stands of different ages and/or density. At the higher LAI (old forest 

and/or dense forest), the forest is probably already at the maximum capacity for 
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supporting needle materials, while at the lower LAI, this biomass pool has potential 

to increase. 

6.4. Derivation of LAI map for Hesse forest from La ndsat data 

6.4.1. LAI measurements in Hesse forest 

Figure 6.11. a) Landsat TM true color composite of Hesse forest, the measurement 

area is in red; b) Spatial grid for measurement of LAI in two forest stands, young 

stand is in the larger light green rectangle (with tower at the center of the small 

square), and an old stand is in the smaller rectangle. 

In Hesse deciduous forest, LAI was temporally measured by collecting leaves 

in traps and spatially by applying optical methods and using a DEMON leaf area 

analyzer (detail in section 3.2.2.3). Results are shown in Fig. 6.11. 

The spatial measurements were carried out in 2001 and 2002 at two forest 

stands (Fig. 6.11a and b). The data was rasterized to correspond to a 30 x 30 m 

resolution image using Arview software. The young forest stand has an average LAI 

of 8.1, while the old forest stand has an average LAI of 5.8. The data also showed 

that LAI in 2002 was greater than in 2001. 

 

a) b) 
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Figure 6.12. a) Temporal measurements of LAI at the Hesse tower site in 2001 

illustrated as the linear interpolation between the measurements (yellow diamonds) 

and NDVI determined at different times from Landsat; b) Correlation between 

measured LAI and Landsat SR in 2001 (yellow triangle) and 2002 (purple square) in 

Hesse forest. 

Fig. 6.12a shows temporal measurements of LAI in 2001 at the tower site in 

comparison to average NDVI of the old forest stand (purple squares) and young 

forest stand (blue diamonds). The LAI at the tower is 7.3, somewhat lower than the 

average LAI of young forest stand. The NDVI of the young forest is higher than the 

old forest during full canopy development because of higher LAI, but lower during 

the leaf-off season. That may be explained by the fact that the understory of old 

forest is more developed than young forest, due to higher light availability during the 

growing season. 

Fig. 6.12b shows the patch-based relationship between measured LAI in 2001 

and 2002 in Hesse forest and SR which is derived from Landsat data acquired at full 

canopy development in the corresponding years (August 22, 2001 and July 08, 

2002). The linear model is: 

LAI=1.03*SR + 3.22     (6.4) 

The high observed-correlation (r2 = 0.96) is due not only to the sensitivity of the 

satellite signal to the change of LAI, but also the effect of LAI observations, since 

there is no data in the middle range of LAI (from 2 to 5). Therefore, care must be 

taken when interpreting this result. 
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6.4.2. Selecting LAI-VI models and derivation of the LAI map from Landsat 

data for Hesse forest 

The models (6.1), (6.3), and (6.4) were used for coniferous forest, grassland, 

and deciduous forest respectively to establish the fine resolution LAI maps in Hesse. 

6.4.3. Validation and/or consistency of the Landsat-derived LAI map for 

Hesse forest 

Since we do not have an independent dataset for validation of the Landsat LAI 

map for beech forest, the quality and consistency of LAI maps at the same stage of 

development was examined. The LAI maps derived from 2 Landsat scenes acquired 

on July 5, 2001 and August 22, 2001 were chosen. Both maps were upscaled to 

1000 m resolution in order to take advantage of patch-based comparison and to 

avoid the errors associated with incorrect image registration. A very strong 

relationship (r2 = 0.92) between the two LAI maps (Fig. 6.13) was observed as 

expected. The LAI in August was estimated about 6 % higher than LAI in July which 

may be ascribed to the canopy development. From visual examination of the two LAI 

maps, some changes of LAI in grassland and cropland were observed due to 

management activities. This change is seen in the scatter diagram of Fig. 6.13, 

where LAI ranges from 3 to 4. The LAI-VI models were judged to be reliable for 

validation of MODIS LAI in the next steps for the Hesse site, although future work 

should include comparisons across sites with independent deciduous forest LAI 

determinations. 
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Figure 6.13. Comparison of LAI maps on July 5, 2001 and August 22, 2001 in Hesse 

forest (scale 1 km). 

6.5. Upscaling Landsat LAI to 1 km resolution 

With respect to upscaling, LAI values over larger areas should be the 

integrated LAI value of included small areas. The high resolution Landsat LAI maps 

were upscaled to coarse resolution comparable to MODIS LAI as illustrated in Fig 

6.14. As we can see in this figure, most of the 1 x 1 km pixels are composed of 

different land cover types and variation LAI within 1 x 1 km pixel is apparent. 

While every effort has been made to accurately georeference the maps, this 

still does not guarantee that the Landsat maps exactly overlay the MODIS maps. 

The error of geo-referencing likely changes the composition of land cover within 

individual 1 x 1 km pixels, which in turn causes a change in the average upscaled 

Landsat LAI of the pixel. An analysis of the effects of incorrect geo-referencing on 

the LAI upscaling process was made (Fig. 6.15). In the georeferencing process, 

MODIS and Landsat data are subject to an error of 50 m and 30 m, respectively (see 

Chapter 3). Therefore, in the worst case, MODIS and Landsat data in this study 

might have an error as large as 80 m when overlaid on each other. Fig. 6.15 shows 

the correlation of upscaled LAI to that of the cases, where the error of MODIS-

Landsat georeferencing are 90 m to the north, south, east, and west. In all cases, 

the correlations in LAI are very tight (r2 ≈ 1) and relations are 1 : 1, suggesting that 
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the effect of incorrect geo-referencing on upscaled Landsat LAI is very small and 

can be ignored. 

Figure 6.14. Upscaling of Landsat LAI to MODIS LAI resolution in Berchtesgaden 

and Stubai Valley during early summer. 

 

 

TM LAI 20/06/2000 (jday 171) MODIS LAI (jday 169-177) Upscaled TM LAI 

 

TM LAI 17/06/2002 (jday 168) MODIS LAI (jday 160-168) Upscaled TM LAI (jday 168) 
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Figure 6.15. Effect of incorrect geo-referencing on scaled Landsat LAI in 

Berchtesgaden. 

6.6. Evaluation of MODIS LAI products 

Validation is defined as the process of assessing the quality of the MODIS LAI 

products by independent means (Landsat LAI). The validation procedure requires 

aggregation of the fine resolution Landsat LAI map to moderate resolution through 

an averaging procedure. The comparison between these two LAI maps provides a 

quantitatively accurate assessment of the MODIS LAI products. The public MODIS 

LAI product (MOD15A2) is composited over an 8-day-period based on the maximum 

LAI value retrieved. Its accuracy is expected to be 0.5 LAI. The MODIS LAI data also 

include quality assessment (QA) data. The QA dataset include information about the 

overall condition of input data and the algorithm to retrieve LAI.  
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The MODIS LAI algorithm uses a biome classification map and atmospherically 

corrected MODIS spectral reflectances at 1 km resolution to retrieve LAI. It 

compares measured reflectances with those determined from a suite of canopy 

models, which depend on biome type, canopy structure, and soil/understory 

reflectances. The canopy/soil/understory models are used to derive the distribution 

of all possible solutions of LAI. The mean values of these distribution functions are 

achieved. The overall uncertainty (Wang et al., 2001) in model and observations are 

set to 20 %. When the main algorithm fails, a backup algorithm is triggered to 

estimate LAI using vegetation indices. In the case of a dense canopy, its reflectance 

can be insensitive to LAI. When this happens, the canopy reflectance is said to 

belong to the saturation domain, and LAI is retrieved using a backup model with 

saturation (Knyazikhin et al., 1998b). 

 

Figure 6.16. Comparison of MODIS LAI and Landsat LAI in Berchtesgaden in 

different cases: a) All 9 x 9 pixels; b) Only pixels that are correctly classified by 

MODIS Land cover algorithm; and c) Only via the radiative transfer model. 

The Landsat LAI maps were compared to MODIS LAI maps, which were 

obtained on the same days. Three cases were examined to determine the effect of 

land cover classification on the retrieval of MODIS LAI and the difference between 

MODIS LAI algorithms: radiative transfer model (RT) and back up model.  

Case 1: Using all data available 

Case 2: Using data with correct land cover identification 

Case 3: Using data with correct land cover identification and the RT model 

When all pixels are included into the analysis, the correlation between MODIS 

LAI and Landsat LAI is relatively high (r2 = 0.50; Fig. 6.16a) and the MODIS LAI is 
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an underestimate by about 25 %. When only pixels, which are correctly classified by 

MODIS land cover maps are taken into comparison, the correlation is similar 

(r2 = 0.49; Fig. 6.16b) and the underestimation is in the same range (27 %). This 

result contradictory to the results found at other study sites (see next section).  

MODIS LAI derived by the RT model showed much higher correlation with the 

Landsat TM (r2 = 0.58; Fig. 6.16c) compared to MODIS LAI derived by both RT and 

backup models. This means that the RT model works better than the backup model 

(Fig. 6.16b). The result is in agreement with previous studies (Tian et al., 2002b; 

Yang et al., 2006). Nevertheless, the RT model more substantially underestimated 

LAI (33 %) as compared to backup + RT models (27 %). This is due to the fact that 

the backup model works mainly in the saturation domain, estimating a very high 

value of LAI (approx. 6.0), whereas the RT model works best in the range of lower 

LAI (0 – 5). 

The analysis also showed that MODIS LAI is better correlated with the Landsat 

LAI than measured LAI in Berchtesgaden in all three cases 1, 2, and 3. This was 

true both in terms of slope and the coefficient of correlation (r2) as shown in 

Table 6.1, and even though Landsat LAI and measured LAI are highly correlated 

(Fig. 6.4). This result can be explained by the fact that, both MODIS LAI and Landsat 

LAI are derived from reflectance with the same underlying physics, and these 

reflectances in different resolutions are highly correlated (Chapter 4). This means 

that Landsat LAI is a more suitable measure for validation of the MODIS LAI product 

because measurement designs probably do not capture the variation of LAI within 

1 km2 areas, while the Landsat data does capture that variation better. 
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Table 6.1. Correlation of MODIS LAI – measured LAI and MODIS LAI – Landsat LAI 

at 1 x 1 km resolution in Berchtesgaden 

Case 1 Case 2 Case 3 Correlation at 1 x 1 km 

resolution Slope r2 Slope r2 Slope r2 

MODIS LAI - Measured LAI 0.68 0.45 0.65 0.44 0.60 0.58 

MODIS LAI - Landsat LAI 0.75 0.50 0.73 0.49 0.67 0.58 

 

Table 6.2. Correlation of MODIS LAI - Landsat LAI at 1x1km resolution in 4 study 

sites 

Case 1 Case 2 Case 3 Note Site 

 

Date 

 Slope r2 Slope r2 Slope r2  

Berchtesgaden 20.06.2000 0.75 0.50 0.73 0.49 0.67 0.58  

Tharandt 13.05.2001 0.68 0.42 0.79 0.57 0.67 0.70 best 

 14.02.2001 0.70 0.03 0.80 0.17 0.49 0.15 worst 

Hesse 05.07.2001 0.77 0.41 0.83 0.57 0.59 0.57 best 

 10.11.2001 1.24 0.09 1.33 0.14 1.19 0.19 worst 

Stubai Valley 17.06.2002 0.78 0.42 0.85 0.61 0.75 0.65 best 

  16.05.2002 1.06 0.03 1.15 0.12 0.53 0.77 worst 

 

Table 6.2 shows the evaluation results of MODIS LAI in all 4 study sites using 

Landsat TM LAI maps. Except in Berchtesgaden, where there is only one dataset, 

the days with best and worst results are shown. 

Where all data are taken into consideration at the peak of vegetation 

development, the MODIS LAI shows a better agreement with the reference Landsat 

LAI maps (r2 = 0.41 – 0.50); but substantially underestimated from 25 % to 32 %. In 

the winter season, MODIS LAI shows different behavior at different sites. While 

MODIS LAIs were overestimated 24 % in Hesse, where deciduous forest dominates, 

it underestimated 30 % in Tharandt, where coniferous forest dominates. The worst 

agreements with the reference Landsat LAI were also found during the winter 

season. There might be several reasons that account for the lower correlation of the 

two LAI maps during winter: i) the RT model of MODIS LAI is less sensitive in the 
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low range of reflectance in the winter time compared to the LAI-SR model as in the 

case of Landsat LAI. This causes overestimation of LAI at the Hesse site in the 

winter time, when the forest is leafless. ii) the low sun angle in the winter leads to a 

low reflectance value and causes underestimation of MODIS LAI in the Tharandt 

site, where LAI is relatively constant during the year. 

When only correctly classified pixels are taken into consideration, the slope 

and coefficient of correlation at all sites increases, which indicates a better 

correlation of the MODIS LAI and reference Landsat LAI. The underestimations of 

MODIS LAI in the best correlations are from 15 % (Stubai Valley) to 27 % 

(Berchtesgaden). In the worst correlation situation, the MODIS LAI overestimates in 

Hesse by 33 % and in Stubai Valley by 15 %, while it underestimates in Tharandt by 

20 %. This result demonstrates the crucial importance of the MODIS land cover map 

as input data into the MODIS LAI algorithm, since the MODIS LAI algorithm works 

better in the areas, which are correctly classified. 

Where only pixels evaluated via the RT model are taken into consideration, the 

coefficients of correlation increase significantly at all 4 sites. In the best correlation 

cases, the coefficients of correlation are high (from r2 = 0.58 – 0.70). On the other 

hand, the slopes of the correlations decrease dramatically. In the best correlations, 

the underestimates are 25 % in Stubai Valley to 40 % at Hesse. In the worst cases, 

the overestimates of MODIS LAI are 19 % in Hesse, and 50 % in Tharandt and 

Stubai Valley. The results confirm that the MODIS LAI RT model works better than 

the backup model (Table 6.) and agree with previous studies (Tian et al., 2002b; 

Yang et al., 2006). On other hand, the RT model underestimates LAI even more 

than the case of using both backup + RT models.  

6.7. Conclusion with respect to MODIS LAI 

The usefulness of MODIS LAI within the continent of Europe depends on its 

success to reproduce average LAI over 1 km2 areas that are likely to include 

different land cover types. The analysis and attempted validation effort carried out 

here depends upon the application of consist methods to derive spatially distribute 

LAI maps of high resolution. This chapter summarizes the investigation of attempted 

validation of MODIS LAI products at four European study sites. The validation of 

MODIS LAI products includes three steps: i) sampling of LAI in field campaigns and 



Evaluation of MODIS LAI products 

 
151

collection of ancillary data; ii) derivation of a fine resolution reference LAI map based 

on field data and satellite images; and iii) comparison of MODIS LAI product with the 

aggregated reference LAI map. The following conclusions appear justified: 

1. While the field measurements of LAI via both direct and indirect optical 

methods are laborious, they are necessary for validation or rejection of MODIS 

LAI. The unique measurement datasets used in this study are well suited to the 

aim of MODIS LAI validation spatially and temporally. The accuracies of the 

indirect methods depend upon the allometric equations applied, the accuracy 

of optical devices and the variation of the LAI at the field sites along with ability 

to sample it. A direct comparison between sparsely sampled point field 

measurements and corresponding MODIS LAI products (1 km) can be a 

challenging task, and is perhaps impossible because ground-based 

measurements are spatially limited, and scale-mismatch, georeferencing 

errors, and land surface heterogeneity cannot be fully included into the 

analysis.  

2. The accuracy of the LAI-VI models is a function of (i) the degree of non-

linearity of the models and (ii) the intra-patch spatial heterogeneity. The choice 

of an LAI-VI model is site dependent and may need to be considered before 

upscaling. Because empirical functions are used in such extrapolations, 

atmospheric corrections are mandatory. The LAI-SR relationship showed better 

correlation at the grassland sites (Tharandt, Stubai Valley) and deciduous 

forest in Hesse with ground-based data. The LAI-NDVI relationship provided a 

better correlation in Berchtesgaden for both deciduous and coniferous forest. 

The LAI-VI models could be successfully applied at other sites (cf. 

Berchtesgaden vs. Stubai Valley comparison).  

3. The accuracy of the MODIS LAI algorithm depends on the accuracy of 

reflectance and land cover products. While the MODIS reflectance product is 

well within the error limit, the MODIS land cover product showed much less 

accuracy than expected. Therefore, the MODIS LAI algorithm showed better 

correlation to the reference LAI in those areas which are correctly classified by 

MODIS land cover mapping. Improvement in accuracy of the MODIS biome 

map used as input into the LAI algorithm is critical to the improvement of 

MODIS LAI products. 
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4. The MODIS LAI algorithm works better in the low range of LAI, where the RT 

model is used. At the higher range of LAI, the use of the backup model results 

in weak correlation of the MODIS LAI maps and reference LAI maps. 

Seasonality in evergreen needleleaf forests appears exaggerated in the 

MODIS LAI product, and there are significant inaccuracies in LAI during the 

winter season. In general, the MODIS LAI algorithm works better during the 

growing season. Previous studies show that complex terrain makes difficulties 

for both fine- and coarse-resolution reflectance estimation, which again limits 

the applicability of the MODIS LAI algorithm. In contrast, this study found no 

difference in usefulness of the MODIS LAI algorithm in complex or non-

complex terrain. The MODIS LAI substantially underestimated deciduous and 

needleleaf LAI at all 4 sites (except deciduous LAI in the leaf-off season). This 

result is in contrast with other studies where MODIS LAI overestimated 

broadleaf and mixed-woodland LAI (Fernandes et al, 2003). 

5. Surface reflectances are highly contaminated by clouds and snow, especially 

during the wintertime, which significantly limits the retrieval rate of the main RT 

algorithm and causes anomalous seasonality over needleleaf forests, as well 

as abnormality in estimation of the growing season. For example, in needleleaf 

forest there were large fluctuations in LAI values, even between consecutive 

periods within the same season. Because these large fluctuations are unlikely, 

the observed decreases in LAI values were attributed to changes in 

atmospheric conditions. A gap-filled MODIS LAI product is proposed, in which 

the bad quality data are replaced by interpolated data from good data acquired 

from period before and after. The first result is promising as slope and 

coefficient of correlation of all 3 cases in Berchtesgaden increase; there is less 

underestimation and a stronger correlation of MODIS LAI in comparison to 

reference LAI. 
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CHAPTER 7. GENERAL CONCEPT AND OVERALL RESULTS 

7.1. Goals of the Current Thesis 

Questions currently investigated in ecological research are dominated by the 

phenomenon of global change. In particular, questions related to carbon dioxide 

exchange between the biosphere, the atmosphere and the oceans are important to 

understand, since changing climate depends on atmospheric CO2 concentration, 

and the impact on mankind of climate change is a growing concern worldwide. In 

order to understand carbon dioxide exchange between the land surface and the 

atmosphere in general, large networks have been set up to monitor CO2 and water 

fluxes in different types of vegetation. One of the first networks was developed in 

Europe with the designation EUROFLUX, which was then succeeded by the network 

project CarboEurope (www.carboeurope.org). Observations from sites across 

Europe have been included into a large database available for modelling. 

Internationally, there are similar projects in North America (AmeriFlux), in Asia 

(AsiaFlux), and on other continents. Even though there are now several hundred 

monitoring sites, a problem that remains is to generalize these observations at local, 

national, continental and global scales; and to extrapolate them to large areas that 

provide global estimates of CO2 exchange at hourly, daily, monthly and annual 

temporal scales. 

In order to extrapolate in time and space, the carbon flux community depends 

on information from remote sensing, and in theory especially from the MODIS 

platforms which were specifically built for the purpose of gathering information for 

global change studies. Via spectral reflectance signals that are received daily and 

averaged over 8 day periods, the MODIS effort provides to the research community 

a variety of products at ca. 1 km2 resolution such as NDVI, maps of land cover, and 

estimates of LAI. These variables are key components of land surface models 

applied at different spatial and temporal scales. The purpose of the research 

reported here is to determine the reliability of the MODIS spectral reflectance, land 

cover and LAI products for European landscapes which are highly fragmented and 

not necessarily homogeneous at 1 km scale. A stepwise analysis has been carried 

out for reflectance, land cover and LAI products, comparing results from ground truth 

data and from high resolution remote sensing images (Landsat) to the coarser scale 
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MODIS information. In this way, the influence of landscape fragmentation on the 

MODIS products should be clear and advice can be given about how they should be 

used in land surface modelling efforts.  

Four European locations were chosen for study; landscapes dominated by 

deciduous forest at Hesse, France; by coniferous forest at Tharandt, Germany, and 

by forest and grassland in mountainous terrain in the Berchtesgaden National Park, 

Germany and in Stubai Valley, Austria. All of these landscapes, however, have a 

mixture of land use. Large homogeneous landscapes simply do not exist in Central 

Europe. The inhomogeneities influence the reflectance signals received by the 

MODIS satellite. On the other hand, the selected sites are favourable for these 

remote sensing investigations because many additional ecological studies have 

been carried out at these locations. In all situations, unique databases on LAI and/or 

forest structure have been assembled based on ground level investigations. 

Furthermore, land use maps exist at high resolution that allow direct comparisons 

with remote sensing data. The observations of LAI allow for direct testing of the 

MODIS LAI product.  

Finally, the sites represent two types of terrain that are totally different, 

relatively flat terrain at Hesse and Tharandt, and steep mountain terrain in 

Berchtesgaden and Stubai Valley. The results can also be examined in this context, 

i.e., whether the MODIS products provide information that is more useful in flat 

terrain and is progressively less reliable in complex mountainous terrain. These 

questions are quite important, since approximately 20 % of the terrestrial land 

surface is covered by mountains. Surface exchange in mountain regions influences 

water balances of those regions which deliver fresh water to flatland areas with large 

populations. 

At the selected sites, the following hypotheses were tested with respect to 

MODIS satellite data: 

(1) The MODIS reflectance product characterizes the landscape in the same way 

as fine resolution Landsat TM does.  

(2) The complexity of European landscape does not affect the performance of 

MODIS reflectance algorithm.  

(3) The MODIS landcover product permits adequate differentiation of European 

landcover types.  
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(4) The fragmentation and roughness of European landscapes confines the 

robustness of MODIS landcover algorithm and limits its usefulness.  

(5) Despite coarse resolution, MODIS LAI product characterizes well the leaf 

area index (biomass) of vegetation in European landscapes.  

(6) Fragmentation and roughness of the landscape decreases the accuracy of 

the MODIS LAI algorithm.  

7.2. Data Organization Tasks 

In order to evaluate the hypotheses, considerable effort was required to 

organize a supporting database that provided similar information for all four study 

sites (Chapter 3). Land cover maps were obtained as recent products from the 

individual research groups at the sites. In some cases, it was necessary to derive an 

update of these directly from Landsat scenes acquired during the years 1999, 2001 

and 2002 (Table 3.4). A single Landsat scene was analyzed for reflectance 

information for the Berchtesgaden National Park, obtained as close as possible to 

the time during which forest inventory data were collected. At Hesse, Tharandt and 

Stubai Valley, chronosequences of scenes during 2001 and 2002 were analyzed for 

reflectance in order to have information related to seasonal leaf area development. 

Forest inventory provided maps of LAI for the Berchtesgaden National Park, in 

Stubai Valley and in Tharandt Forest, while harvest data were obtained at the 

meadows in Tharandt Forest and Stubai Valley. LAI changes in the Hesse Forest 

were obtained as time sequence data on litter collection. Details of the methods 

applied and the projection of ground measurements to create LAI maps were 

discussed in detail in Chapter 3. 

7.3. Comparison of Reflectance from Ground Truth Pl ots to the MODIS Scale 

In order to compare measurements at intensive study plots with MODIS (1 km 

resolution), it was necessary to build a bridge via remote sensing data derived with 

Landsat TM (30 m resolution). It was demonstrated that for all study sites, the 

registration accuracy of Landsat TM images did not deviate by more than half of one 

pixel, and that the root mean square of error (RMSE) was less than 0.3 pixel when 

utilizing at least 40 ground control points and nearest-neighbor resampling 

technique. Comparing Landsat images with aerial photography clearly demonstrated 
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that specific study sites on the ground could be identified and that the measured 

characteristics could be associated with Landsat pixel properties. In the case of 

MODIS images, the accuracy was within the 50 m planned by the operations team. 

Thus, here again specific features of vegetation cover and ground truth sites were 

recognizable in both Landsat TM and MODIS 250 m NDVI images, i.e., overlap 

occurred and it was possible to relate ground-based observations with remotely-

sensed signals. Thus, the path was clear to accomplish generalizations across the 

scene, and upscaling of information to MODIS scale was accomplished. There is no 

doubt that the accuracy of georeferencing was sufficient for further processing in 

order to test the proposed hypotheses. 

7.4. Evaluation of MODIS Reflectance Products 

The upscaling process for reflectance from ground point measurements to 

MODIS resolution using high-resolution images (ETM+) was conducted for the 

Hesse Forest, the Tharandt Forest, and Tharandt grassland sites. The evaluation 

results showed that the MODIS reflectance product is reasonably accurate (less 

than 10 % absolute error). Certainly it is appropriate to utilize reflectance data from 

the two types of satellite images and to use these information in comparative 

examinations of land cover mapping and leaf area index estimation. The Landsat 

images do provide useful and appropriate information for upscaling from ground 

truth sites and for testing MODIS products. Thus, hypotheses (1) and (2) may be 

accepted as true within reasonable bounds, at least they are true enough to permit 

evaluation of the following hypotheses via a Landsat and MODIS comparison. 

7.5. Evaluation of MODIS Landcover Products 

The digital data with 30 m resolution of Landsat images provide a means for 

testing the accuracy of MODIS landcover products. As a first step, it is necessary to 

relate the Landsat images to ground truth determinations of land cover. This was 

carried out via two methodologies, namely supervised classification and object-

based classification. It was demonstrated that object-based classification provided 

maps with a much better correspondence to ground truth than supervised 

classification. Especially with the object-based methodology, one has the possibility 

to characterize land cover change in the highly fragmented landscapes of Central 
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Europe (Table 5.9). The methods were tested especially in complex terrain of the 

Berchtesgaden National Park and in Stubai Valley, since shadowing in the remote 

sensing images adds to the problems encountered with land use fragmentation. 

Even in these landscapes, an accuracy of ca. 75 to 80 % was achieved in overall 

classification, when attempting to distinguish 6 land cover categories. The land cover 

maps that are obtained from Landsat images allow us to manipulate effectively the 

spatial land cover data and to compare a high resolution approximation of land cover 

to the coarse scale land cover achieved via MODIS. The two approaches are 

compatible, since reflectance data for the two satellites are comparable as has been 

discussed above. 

The comparison demonstrates that both the scale applied in classifications and 

the number and type of land use categories that are permitted lead to important 

shifts in the characterization of landcover. In area comparison, MODIS landcover 

products were found to underestimate bare rock/soil complexes in alpine regions, 

ascribing vegetation characteristics to these areas instead, apparently as a result of 

scattered vegetation. The dense Norway spruce forests were described relatively 

well. Deciduous forest and croplands were distinguished well at Hesse, but 

important problems were revealed that are related to seasonally bare soil (similarly 

in Tharandt). It was averaged into cropland due to multiple scenes employed in the 

MODIS classification method. Forest types were not well distinguished in Tharandt 

due to patterns of mixing of stands and the scales of observation by MODIS. 

The pixel-by-pixel agreement between upscaled Landsat landcover and MODIS 

Land Cover was less satisfying than the areal comparison. Cropland and mixed 

forest were identified best at Hesse, but deciduous forest and crop-grassland mosaic 

was poorly classified. At Tharandt it was similar, but coniferous forest and crop-

grassland was poorly identified. In alpine regions, 50 % overall agreement was 

found on a pixel-by-pixel comparison. The Norway spruce coniferous forest was 

identified best, apparently dominating large contiguous areas. Other landcover was 

poorly classified. MODIS landcover type 3 performed better than landcover type 1. It 

seems probable that Hypothesis (3) must be rejected in general, although for certain 

applications it might be possible to justify use of MODIS landcover. Individual 

investigators must confront this problem and take responsibility for MODIS landcover 
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use in European studies. In this sense Hypothesis (4) correctly summarizes the 

situation. 

The problems in classification that are encountered lead to further difficulties in 

land surface characterization, since the retrieval of LAI uses landcover as an input 

variable (see 7.5). Thus, fragmentation in European landscapes is a fundamental 

problem encountered in the use of MODIS products. A true representation of the 

land surface cannot be obtained from the current MODIS classifications. The use of 

these descriptors in models describing land surface properties may potentially lead 

to large errors. Thus, exchange between the land surface and the atmosphere of 

water and CO2 as estimated by models using MODIS inputs will have a high level of 

uncertainty, and the results must be considered with caution. 

7.6. Evaluation of MODIS LAI Products 

The validation of MODIS LAI products was carried out via three consecutive 

steps: i) sampling of LAI in field campaigns and collection of ancillary data; ii) 

derivation of a fine resolution reference LAI map based on field data and Landsat 

satellite images; and iii) comparison of MODIS LAI product with the aggregated 

reference LAI map from Landsat data. LAI data based on forest inventory and 

allometric equations was available from two Norway spruce sites in the 

Berchtesgaden National Park and in Stubai Valley near Neustift. LAI was estimated 

for forest patches and compared to Landsat NDVI to derive equations that allowed 

continuous mapping of coniferous forest over the study site landscapes. The same 

equations were applied at Tharandt. Harvesting of biomass at grassland sites in 

Stubai Valley and Tharandt allowed predictive equations to be derived that estimate 

grassland LAI in dependency on the simple ratio vegetation index (SR). Spatial 

studies of LAI in the Hesse Forest in France provided a similar equation for 

deciduous forest in dependence on SR. The four equations were applied to Landsat 

images to obtain high resolution (30 m) maps of leaf area index at the four sites. 

These “ground truth” maps were then used to evaluate MODIS LAI products by 

aggregating high resolution data to 1 km resolution and comparing to MODIS LAI 

estimates. Due to difficulties that occur in mapping land cover with MODIS at 1 km 

resolution (see 7.4 – high fragmentation of European landscapes means that most 

1 km pixels are in fact mixed), a single selected algorithm to estimate MODIS LAI 
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does not provide the same information as would be derived at higher resolution 

(even with MODIS 250 m data). The correlation of MODIS values to the Landsat 

based values is best when landcover is correctly classified (dominant landcover is 

clearly a single type). Also better predictions occur when LAI is in general low. At the 

peak of vegetation development, MODIS LAI appears to strongly underestimate 

values of the Landsat based maps. During winter, the comparison is even worse, but 

is not consistent from grassland to deciduous forest and coniferous forest. Possible 

reasons have been discussed. In general, Hypothesis (5) must be rejected, while 

Hypothesis (6) is supported. 

The results cast doubt on the usefulness of MODIS LAI products as input to 

continental scale simulation models for carbon and water balances, at least in 

Europe where landcover is highly modified and fragmented due to centuries of 

human use and management. Use of the MODIS products in Europe requires that 

new techniques be considered to search for compatability in averaging and 

aggregating information on land cover and reflectance that is used to estimate LAI 

for large areas (1 km2 or more). It may be possible to treat 1 km2 pixels of MODIS in 

some way that the mixed composition can be determined and used to differentiate 

LAI for the component vegetation or biomes. 
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