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Summary

Onshore wind energy has become the most important source of renewable energy in
Germany. This success also lead to rapid developments in turbine technology. The
strongly increased turbine size creates a need for the application of new measurement
technologies to replace tall, expensive and inflexible measurement masts. For this rea-
son, Doppler-lidar measurements have become increasingly popular in the wind energy
community. Yet, for measurements in complex terrain and for turbulence measure-
ments, conically scanning lidars still suffer from systematic errors. However, especially
in complex terrain accurate measurements of the mean wind speed and turbulence
intensity are key for resource and site suitability assessment, as modelling is often asso-
ciated with high uncertainties. Also, the relation of observed turbulence quantities to
surface characteristics and the atmospheric stability regime is often difficult for the ex-
perimentalist. This dissertation focuses on the aforementioned problems and presents
different approaches to resolve them.

The complex terrain error of conically scanning lidars is analysed experimentally
and using flow modelling. The simulations revealed a high sensitivity to land cover,
especially forest generally reduces the error. Among the investigated models, the linear
flow model showed the worst performance in predicting the observed error. The RANS-
models could reproduce the right pattern and magnitude of the lidar error.

As an alternative the multi-lidar (ML) approach is investigated. The value of the
ML-approach, when compared to a single conically scanning lidar, is demonstrated
experimentally in complex terrain for the first time. Given an appropriate setup, mea-
suring with two or three lidars in the same point significantly improved the agreement
with a high quality reference measurement. This can greatly reduce the uncertainties
of lidar measurements in complex flow regimes.

The multi-lidar approach was also experimentally demonstrated to be a promising
approach to measure turbulence statistics in complex terrain. In contrast, the coni-
cally scanning lidar showed a strong overestimation, when compared to the reference
measurements. One of the problems which remains unsolved in the ML-approach is
the attenuation of small scale turbulence by the spatial averaging of the lidar. This
was also clearly visible in the spectral analysis of the ML-experiment.

This dissertation approaches the problem by investigating the capability of a pulsed
lidar to measure the dissipation rate of turbulent kinetic energy (TKE) using three
different methods: A previously described method based on short term variances is
corrected to remove significant systematic errors which were present. Moreover, a
theoretically suggested method based on the structure function of the radial velocity
fluctuations is experimentally evaluated for the first time. The third approach uses the
power-spectral density in the inertial sub-range. It is shown that, given the knowledge
about the spatial averaging function of the lidar and a careful removal of the noise, the
dissipation rate of TKE can be estimated with a reasonable accuracy. However, the
experimentally determined form of the spatial averaging function and the one derived

vii



from theoretical considerations showed significant differences. The differences between
the investigated methods to derive the dissipation rate of TKE are mainly found in
their applicability to different experimental setups with the structure-function approach
providing the most flexible option.

Finally, the dissertation investigates observed turbulence quantities and their relation
to surface characteristics and stability at a 200-m-mast at a forested hilltop site. A
simple approach based on footprint modelling is developed to characterise the surface
ruggedness and roughness in the area of effect of the measurement. It is shown that
especially the normalised standard deviation of the wind along the stream lines exhibits
a high correlation to the surface characteristics within the footprint. Atmospheric
stability also had a strong influence on the representative turbulence intensity at the
investigated hilltop site. The prevalence of stable conditions for wind speeds between
6 − 12 m s−1 lead to a significantly reduced turbulence intensity in this wind speed
range, which is in the order of the difference between standard turbulence classes for
wind turbines.

viii



Zusammenfassung

Die Windenergie an Land ist der wichtigste Energieträger unter den erneuerbaren Ener-
gien in Deutschland. Dieser Erfolg ging mit einer schnellen Entwicklung in der verwen-
deten Technologie einher. Mit den stark gewachsenen Anlagenhöhen werden klassische
mastbasierte Messungen teuer und sind zudem unflexibel. Durch diesen Trend sind
Lidar-Messungen in den vergangen Jahren im Bereich Windenergie immer populärer
geworden. Allerdings sind diese im komplexen Gelände mit systematischen Fehlern
behaftet und weisen bei der Messung von Turbulenz erhebliche Ungenauigkeiten auf.
Demgegenüber sind besonders im komplexen Gelände Messungen der Windgeschwin-
digkeit und Turbulenzeigenschaften wichtig, da die Modellierung hier mit großen Unsi-
cherheiten verbunden ist. Allgemein erweist sich auch die Interpretation experimentell
bestimmter turbulenter Windbedingungen im komplexen und heterogenen Gelände als
schwierig. Ebenso ist die Abschätzung des Einflusses der atmosphärischen Stabilität auf
die repräsentative Turbulenzintensität, die zur Bestimmung der Eignung einer Wind-
energieanlage wichtig ist, oft schwierig. Die vorgelegte Dissertation befasst sich mit den
beschriebenen Problemen und entwickelt dazu verschiedene Lösungsansätze.

Zuerst wurde der Fehler eines konisch scannenden Lidars experimentell und mit-
tels Strömungssimulation untersucht. In den Ergebnissen der Modellierung zeigte sich
eine große Abhängigkeit des Lidar-Fehlers von der Oberflächenbedeckung. Bei einem
bewaldeten Hügel war der Fehler gegenüber einer unbewaldeten Oberfläche deutlich
reduziert. Auch zwischen den verwendeten Modellen zeigten sich große Unterschiede.
So war die Übereinstimmung zwischen den RANS-Modellen und den experimentell
bestimmten Fehlern deutlich besser als für das untersuchte lineare Model.

Als Alternative zu konisch scannenden Lidars wurde die Multi-Lidar (ML) Methode
für den Einsatz im komplexen Gelände untersucht. Dabei konnte erstmals experimentell
gezeigt werden, dass die Messfehler in der mittleren Windgeschwindigkeit gegenüber ko-
nisch scannenden Lidars deutlich reduziert werden können, wenn zwei oder drei Lidars
im gleichen Punkt messen. Dies bietet die Möglichkeit die Unsicherheiten in Lidar-
Messungen im komplexen Gelände deutlich zu reduzieren.

Auch bei den Turbulenzmessungen zeigte sich die ML-Methode als vielversprechend.
Im Gegensatz dazu wurde bei der Messung des konisch scannenden Lidars eine deutliche
Überschätzung der Referenzmessung beobachtet. Eines der ungelösten Probleme mit
dem ML-Ansatz ist jedoch die Dämpfung kleiner Turbulenzskalen durch die räumliche
Mittelung der Lidar-Messung. Dies konnte deutlich in der Analyse der Spektren aus dem
ML-Experiment beobachtet werden. Die vorgelegte Dissertation untersucht in diesem
Kontext die Möglichkeit aus Lidar-Messungen die Dissipationsrate turbulenter kineti-
scher Energie (TKE) abzuleiten. Dazu wurden drei Ansätze verglichen. Die erste Me-
thode ist eine Weiterentwicklung und Korrektur eines zuvor veröffentlichten Ansatzes,
der auf der Varianz der radialen Windgeschwindigkeit innerhalb kurzer Messperioden
beruht. Gegenüber dem ursprünglichen Ansatz können durch die Weiterentwicklung
erhebliche systematische Fehler vermieden werden. Der zweite Ansatz basiert auf der
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Strukturfunktion der radialen Windgeschwindigkeit und wurde bisher nur theoretisch
beschrieben. In dieser Arbeit wird er zum ersten Mal experimentell überprüft. Der
dritte Ansatz führt die Bestimmung der Dissipationsrate der TKE basierend auf ei-
ner Analyse der Powerspektren im Trägheitsbereich durch. Die Arbeit zeigt, dass es
möglich ist die Dissipationsrate der TKE aus Lidar-Messungen mit zufriedenstellender
Genauigkeit zu schätzen. Allerdings muss dazu die räumliche Mittelungsfunktion des
Lidars bekannt sein. Bei der experimentellen Untersuchung der räumlichen Mittelungs-
funktion zeigten sich jedoch signifikante Unterschiede zu den vorher durchgeführten
theoretischen Überlegungen. Der Unterschied zwischen den Methoden zur Bestimmung
der Dissipationsrate der TKE liegt vor allem in ihrer Anwendbarkeit auf verschiede-
ne Messkonfigurationen. Hier zeigt die Methode basiernd auf der Strukturfunktion die
größte Flexibilität.

Neben der Entwicklung von Methoden im Bereich der Lidar-Messungen präsentiert
die Arbeit auch Messungen verschiedener Turbulenzgrößen vom 200-m-Mast des Fraun-
hofer IWES am Rödeser Berg. Zur Interpretation des Zusammenhangs zwischen den
Eigenschaften der Oberfläche im Einflussbereich der Messung und den Beobachtungen
wurde ein einfaches Tool basierend auf dem Footprintansatz entwickelt. Besonders für
die normalisierte Standardabweichung entlang der Strömungslinien zeigten sich hohe
Korrelationen mit der Rauigkeit und dem Zerklüftungsgrad der Oberfläche im model-
lierten Footprint. Neben den Oberflächeneigenschaften hatte auch die atmosphärische
Stabilität einen großen Einfluss auf die Turbulenzeigenschaften. Besonders im für die
Ermüdungslasten wichtigen Bereich zwischen 6-12 m s−1 war die Turbulenzintensität
aufgrund des häufigen Auftretens stabiler Schichtung signifikant reduziert.
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1. Introduction

1.1. Motivation and background

One of the major challenges for our society is the anthropogenically induced climate
change and the associated risks (IPCC, 2014). More than half of the anthropogenic
greenhouse gas emissions stem from the combustion of fossil fuel to extract primary
energy (IPCC, 2011). The transformation of the energy system - away from fossil fuels
towards renewable energies - is, thus, one of the central pillars for the reduction of the
emission of greenhouse gases. Wind energy has seen a rapid development over the past
decades and plays a key role in this context (Wiser et al., 2011).

In Germany, onshore wind energy has already become the biggest renewable energy
source. In 2014, its share on the total gross energy consumption was approx. 9.4 %
(Berkhout et al., 2015). Despite this development, further extension is required to meet
the ambitious goals of the German government (§1 Abs. 2 of the Erneuerbare-Energien-
Gesetz - EEG 2017). Several studies have shown, that onshore wind energy still offers
large unused potentials in Europe and in Germany (EEA, 2011; Bofinger et al., 2011;
Lütkehus et al., 2013; Callies, 2015). While the coastal regions in Germany are already
extensively used for wind energy, a lot of the unused wind energy potential is found
further onshore (Callies, 2015) and current development of wind park projects is also
moving towards this direction (Berkhout et al., 2015). Much of the wind energy poten-
tial in the middle and south of Germany is located in orographically complex terrain
and/or forested areas. This has lead to new technical developments. To make on-
shore sites with generally lower wind speeds and often higher turbulence environments
economically viable, hub heights and rotor diameters have grown significantly.

These developments also pose significant challenges to resource and site assessment
methods in wind energy projects. Modelling and understanding of the wind conditions
in complex terrains and up to great heights remains one of the challenges in wind energy
science (van Kuik et al., 2016). The topic is also still subject of intensive experimental
research in the wind energy community (e.g. Mann et al., 2017).

The move towards more complex areas has also triggered an increased need for mea-
surements in commercial wind energy developments. Due to the high sensitivity of the
power output of a wind turbine to the wind speed, the estimation of the wind resource
is one of the major uncertainty factors in the economical assessment of a wind park
development. For this reason, the wind energy community has established a compre-
hensive framework to ensure the quality of traditional mast based anemometry (IEC,
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1. Introduction

2005b, 2016; FGW, 2014; Measnet, 2016). However, measurements at the hub height
of a modern wind turbine (up to 160 m by the time of writing this dissertation) are not
economically feasible using a traditional measurement mast and cup or sonic anemome-
ters. Therefore, remote sensing - especially lidar technology - has become a popular
alternative and quickly penetrated several wind energy applications. Much of the re-
search in the wind energy community has gone into evaluating lidar measurements
against classical mast based anemometry (point measurements) (e.g. Antoniou et al.,
2004; Smith et al., 2006; Kindler et al., 2007; Gottschall et al., 2012) to establish the
technology in a relatively conservative industrial community. The main motivation for
this is the need of a validation against traceable reference to estimate the uncertainties
associated with the application of a measurement device. By the time of writing this
dissertation lidar measurements in flat terrain were well established in resource assess-
ment (e.g. FGW, 2014; Measnet, 2016) and power performance measurements (IEC,
2016).

In orographically complex terrain, however, measurements with classical profiling
lidars can be associated with systematic errors (Bingöl et al., 2009; Bradley et al.,
2015). One of the approaches to deal with this problem is to simulate and correct the
complex terrain errors of lidars using flow models of different complexities (Bingöl et al.,
2009; Bradley, 2012; Bradley et al., 2012; Behrens et al., 2012). However, validation
from lidar-mast inter-comparisons is scarce. Also, the performance difference among
models of different complexity has not been evaluated, yet. Moreover, the sensitivity
of the modelled complex terrain error to parameters like roughness length or forest
cover remains largely unknown. The experimental investigations and modelling results
presented in Klaas et al. (2015, Appendix B) aim at closing this gap.

One of the downsides of the lack of experience is the largely unknown uncertainty of
lidar measurements in complex terrain and their corrections. In practical applications
the restrictions on the application of lidars in complex terrain vary among different
standards. The German guideline on resource assessment (FGW, 2014) is relatively
progressive and allows the use of corrected lidar measurements in moderately complex
terrain. The more international Measnet standard (Measnet, 2016) only allows the
application of a lidar in complex terrain in conjunction with a measurement mast
on site. The standard of the International Electrical Commission on power curve
measurements (IEC, 2016) is even more restricted and prohibits the application of
lidars in complex terrain.

An alternative to the correction of classical profiling lidar measurements for their
complex terrain errors is the reconstruction of the wind vector from multiple mea-
surements within a single confined location. This technique avoids the measurement
errors in complex terrain by using the beams of multiple lidars which cross in a single
measurement point to reconstruct the wind vector. This multi-lidar (ML) technique
has shown promising results in flat and homogeneous terrain for comparisons of short
time series with measurement masts (Fuertes et al., 2014; Vasiljevic, 2014; Berg et al.,
2015). The use of a multi-static lidar with one lidar source and multiple receivers is

2



1.1. Motivation and background

also possible (e.g. Harris et al., 2001), but its technical development in wind energy
applications is still in the prototype phase (Eggert et al., 2014) and many technical
issues like eye safety and reliability remain unsolved.

Despite the simplicity of the idea, no experimental results demonstrating the poten-
tials of the ML technique to improve measurement accuracy of the mean wind speed in
complex terrain have been published previous to this work. One of the reasons might be
the absence of sophisticated methods and protocols to precisely align and synchronise
multiple lidar devices. With the recent development of the WindScanner technology
(Vasiljevic, 2014; Vasiljevic et al., 2016) such a system has recently become available.
Some results of bi-static sodar measurements, which rely on a similar principle, have
been published in Bradley et al. (2015). However, due to the relatively large scatter in
the data the results can only serve as limited evidence in this context. The measure-
ments presented in Pauscher et al. (2016, Appendix C), thus, are the first experimental
results demonstrating the improvements in accuracy which can be achieved with the
ML technique in complex terrain.

Besides the errors in complex terrain, the largest drawback of the currently available
commercial lidar technology for the wind energy community is its inability to accurately
measure turbulence (Sathe and Mann, 2013; Sathe et al., 2015). For this reason the
question of turbulence measurements with ground based lidars is a very active research
topic within the wind energy community. For a current overview of its status in wind
energy applications see e.g. the review report by Sathe et al. (2015), which is listed as
one of the additional publications at the beginning of this dissertation.

For the site suitability analysis of a wind turbine the turbulence environment needs
to be known to simulate the loads which will occur during the lifetime of a wind
turbine at the selected site (IEC, 2005a). Usually, this is done by feeding the measured
variance of the horizontal wind speed or the wind vector components into a stochastic
wind field model which is based on Fourier simulation (Veers, 1988; Mann, 1994, 1998).
Especially classical, conically scanning lidars suffer from significant errors measuring
turbulence (Sathe et al., 2011). A promising way forward in this context is again
the ML technique. However, experimental results evaluating the ML-technique are
scarce and the few existing studies, which have a reliable reference measurement, only
cover a few half-hour periods (Mann et al., 2009; Fuertes et al., 2014). The second
part of the analysis presented in Pauscher et al. (2016, Appendix C) focuses on this
topic and experimentally evaluates the potentials of the ML technique to improve the
measurements of the variance of the wind vector components.

An alternative to the variance of the wind vector components in the simulation of
turbulent wind fields is the dissipation rate of turbulent kinetic energy (ε). Due to
its well-known relation to the spectral density in the inertial sub-range (Kolmogorov,
1941), ε makes an excellent parameter to model turbulence spectra. In fact, the descrip-
tion of spectral models in boundary layer meteorology is usually done using ε rather
than the variance of the wind component (e.g. Kaimal and Finnigan, 1994). The orig-
inal formulation of the model in Mann (1994) is also based on ε. It was later adapted

3



1. Introduction

to use the variance of the wind velocity in the direction of the mean stream-lines σ2
u

for load simulations in the respective IEC standard (IEC, 2005a), as this is easier to
measure with a cup anemometer.

Due to its importance for turbulence modelling, several publications have proposed
methods to estimate ε from lidar measurements (Kunkel et al., 1980; Banakh et al.,
1995, 1999, 2010; Frehlich et al., 1998; Dobrinski et al., 2000; Frehlich, 2001; Frehlich
and Cornman, 2002; Smalikho et al., 2005; Frehlich et al., 2006; Kristensen et al., 2011,
2012; O’Connor et al., 2010; Smalikho and Banakh, 2013; Borque et al., 2016). Con-
sidering this abundance of studies using lidars to derive ε, it is surprising that robust
validations of the suggested methods over longer periods or covering a wider range of
atmospheric conditions are rather scarce. Some studies are purely theoretical (Kris-
tensen et al., 2011, 2012) or only use modelling results to evaluate the proposed methods
(Frehlich and Cornman, 2002). Other studies include experimental results, but miss a
reference to evaluate the quality of the estimates of ε estimated from the lidar mea-
surements (Davies et al., 2004, 2005; Smalikho et al., 2005; Frehlich and Kelley, 2008;
Chan, 2011). Some studies use reference measurements which are themselves prone
to measurement errors such as sodars (Smalikho and Rahm, 2010), radars (Borque
et al., 2016) or sonic anemometry in conjuction with Monin-Obukhov similarity theory
(Kunkel et al., 1980). In studies, in which high quality reference measurements are
available from balloon or tower based measurements, the experimental evidence pre-
sented is limited to a few individual profiles (Banakh et al., 1999; Frehlich et al., 1998;
Frehlich, 2001; Frehlich et al., 2006, 2008; O’Connor et al., 2010) or a few selected
periods of comparisons with sonic anemometry (Banakh et al., 2010; Dobrinski et al.,
2000; Smalikho et al., 2013).

While some of the results were promising, also relatively large deviations from the
references have been reported. The quality of estimates of ε from pulsed lidar measure-
ments remains unclear. The study in Pauscher et al. (2017b, Appendix D) picks up
this point. The manuscript evaluates three different methods to estimate ε from pulsed
lidar measurements using theoretical considerations and experimental results. For one
of the methods a correction is developed to remove significant systematic errors.

If no turbulence measurements at a potential wind turbine site are available (e.g. in
the early project phase), the turbulence conditions have to be estimated using mod-
elling approaches and/or empirical values. Unfortunately, published measurements in
complex and/or forested areas reaching to the height of a modern wind turbine are
limited to a few studies (Bradley, 1980; Arnqvist et al., 2015). Our understanding of
wind flows in complex and forested terrain, therefore, still largely stems from mod-
elling exercises (e.g. Brown et al., 2001; Allen and Brown, 2002; Finnigan and Belcher,
2004; Ross and Vosper, 2005; Patton and Katul, 2009), wind tunnel studies (Ruck and
Adams, 1991; Kaimal and Finnigan, 1994; Neff and Meroney, 1998) or flume exper-
iments (Poggi and Katul, 2007, 2008). Especially for heterogeneous orography and
patchy land cover, as found in real world cases, experimental data is missing.
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1.2. Objectives of the dissertation

In this scenario one of the main influences on the turbulence environment are varying
surface characteristics within the fetch of a wind turbine. However, it is not straight
forward to identify the area influencing the turbulence statistics experienced by a wind
turbine. Recently, Foken (2013) suggested to use footprint models to improve rough-
ness estimations for resource estimation in wind energy applications. Footprint models
were originally developed and are now widely used in the flux community (for recent
reviews see Vesala et al., 2008; Leclerc and Foken, 2014). Due to the simplicity of many
approaches, they are an appealing approach to relate observed measurements to the
surface surrounding a site or to identify wind sectors within which turbulence levels
might become critical for the site suitability of a wind turbine. The last manuscript
in this dissertation (Pauscher et al., 2017a, Appendix E) presents measurements from
a complex forested hill reaching well above the hub height of a modern wind turbine.
It also employs the footprint approach to investigate the influence of surface charac-
teristics on turbulence statistics and evaluates its potential suitability for wind energy
applications.

1.2. Objectives of the dissertation

Motivated by the needs of the wind energy community this thesis aims at improving
and developing experimental and modelling tools to more accurately estimate the wind
and turbulence conditions for wind energy applications. The focus in this context is
put on wind energy applications in complex and heterogeneous terrain, although many
of the approaches are also transferable to areas with simpler surface characteristics and
one of the experiments is carried out in flat terrain.

The first focus topic of this dissertation is the investigation of the lidar technology
in the context of resource assessments. As the measurement of ’classical’ conically
scanning lidars in complex orography can be associated with systematic errors (Bingöl
et al., 2009), this dissertation evaluates two different methods to mitigate and overcome
this problem. The main questions addressed in this dissertation are:

• How large is the lidar error found at a complex and forested site in central Ger-
many?

• How do different flow models perform in reproducing and correcting this error
and what are the model sensitivities in this context?

• Can the complex terrain error be overcome by using a ML approach rather than
a conically scanning lidar?

The estimation of the turbulence characteristics is an important step in the site
assessment process for a wind farm project (IEC, 2005a; Measnet, 2016). The second
focus of the dissertation, therefore, is the estimation of turbulence quantities from lidar
measurements. Here the major points of investigation are:
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• Can errors in measurements of the variance of the wind speed be improved using
the multi-lidar approach?

• The experimental assessment of different methods to estimate dissipation rate of
turbulent kinetic energy (ε) from lidar measurements.

There is a lack of published experimental observations of turbulence statistics from
complex and forested terrain covering the height range of a modern wind turbine. Also
it is difficult for the experimentalist to relate such observations to the surrounding
terrain. In the third part of this dissertation turbulence measurements from a tall
mast at a forested hill are presented. The main questions underlying this analysis are:

• What are the turbulence charcteristics at a forested hill over a wide range of
measurements heights and what are the main influence factors on the observed
turbulence?

• Can we use the footprint-model approach, which was originally developed in
the surface flux community, in wind energy applications to relate the observed
turbulence statistics to surface characteristics?
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2. Methods

2.1. Lidar measurements

2.1.1. The principles of Doppler wind lidars

Doppler wind lidars use the optical Doppler effect to derive the wind velocity along
a laser beam emitted by the lidar device. In atmospheric measurement applications,
wavelengths which scatter at aerosols are the most popular. For typical wavelengths
used in aerosol Doppler lidars, most of the back scatter in the atmosphere is caused
by aerosol particles small enough (a few µm) to be advected with the wind speed.
These particles are, thus, an effective tracer for wind speed measurements (Huffaker
and Hardesty, 1996). The radial wind velocity vr from a Doppler lidar can be derived
using the following equation:

f = f0(1 + 2vr/c), (2.1)

where f0 is the emitted frequency, f is the frequency of the back-scattered signal and
c is the speed of light. To spatially confine the region where the received back scatter
is coming from, currently two techniques are available. One is based on pulsed laser
technology and the other one on a continuous wave (cw) laser. For the first one the
distance follows from the time of flight as

d =
c · t
2
, (2.2)

where t is the time between the pulse emission and the measurement of the back
scattered signal. This allows multiple measurements in multiple distances along a single
measurement beam. For a cw lidar the laser beam is focused in a certain distance to
confine the measurement volume and the laser is emitted continuously. Therefore, only
one measurement distance is possible. In this dissertation only pulsed lidars were used
and, thus, the further discussion will be confined to this technology.

To derive the three dimensional wind vector from a single lidar, usually measurements
in multiple locations have to be combined. The radial velocity vr can be expressed as:

vr,i = sin(φi)cos(θi)ui + sin(φi)sin(θi)v + cos(φi)wi, (2.3)

where the index i denotes the individual measurement location, φ is the elevation
angle and θ is the angle between the mean wind direction and the beam pointing
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Figure 2.1. Schematic comparing the multi-lidar (ML) and the Doppler-beam-swinging
(DBS) techniques; figure taken from Pauscher et al. (2016, Appendix C).

direction of the lidar. u, v and w are the along wind, lateral and vertical components
of the wind vector. If the wind field is assumed to be constant across the different
measurement points, i.e. u, v and w are independent of i, a combination of at least
three beams can be used to derive the wind vector. This restricts measurements with
a single profiling lidar to homogeneous flows and in turbulent conditions also to long
enough averaging periods. If multiple lidars are used and focused in a single point
(ML technique), obviously this limitation does not apply. There are multiple ways to
derive the wind speed from a measurement using a single lidar. In this dissertation the
so-called Doppler-beam-swinging (DBS) technique is used, which scans the wind field
in multiple locations and then directly solves Equation 2.3. A comparison of the ML
and DBS techniques is shown in Figure 2.1.

2.1.2. Lidar measurements in complex terrain

As discussed in section 2.1.1, the perquisite to solving Equation 2.3 is flow homogeneity
across the different sampling locations which are scanned. In complex terrain, however,
the flow can vary across the different sampling points. This can introduce considerable
errors in conically scanning lidars (Bingöl et al., 2009; Bradley et al., 2015) such as the
DBS lidar.

The most important factor for the deviations from a co-located point measurement in
complex terrain is the variation of the flow angle across the different scanning locations
which can be induced by the shape of the terrain (Bingöl et al., 2009). To better
understand the phenomenon the problem is simplified to the two dimensional case - i.e.
a lidar measurement of a two dimensional flow with two beams. Moreover, the beams
are assumed to have the same elevation angle and the flow angles from the horizontal at
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2.1. Lidar measurements

Table 2.1. Overview of the differnt models used to estimate the complex terrain error
of the DBS lidar.

Name Model type Forest model Reference
Meteodyn WT RANS porous medium METEODYN (2014)
WindSim RANS porous medium Castro (2007)
WAsP Engineering linear displacement height Mann et al. (2002)

beam one and beam two are related as β1 = −β2 - i.e. the flow is symmetric above the
lidar. The influence of the flow angle on the lidar measurement can then be simplified
to (Bradley et al., 2015):

ǔ = u
(
cos(β) +

tan(β)

tan(90− Φ)

)
, (2.4)

where β is the angle between the flow and the horizontal at the beam locations, Φ is
the angle between the lidar beam and the horizontal plane and ǔ is the wind speed
measured by the vector reconstruction from the lidar; positive β indicate downwards
flows and negative β upwards flows at the first beam location. Equation 2.4 implies,
that concave flow regimes such as at a hill top cause an underestimation of u and
convex flow as e.g. found in an escarpment causes an overestimation of u.

A potential flow model in conjunction with Equation 2.4 can provide a first estimation
of the expected lidar error (Bradley, 2012; Bradley et al., 2012). However, in most real
world situations the flow will be much more complex. Therefore, a more complex
approach to model the lidar error in complex terrain is chosen for the work in this
dissertation (Klaas et al., 2015, Appendix B).

Rather than making simplification about the flow geometry the investigations in
this dissertation use terrain data obtained from overflights in conjunction with three-
dimensional flow models of varying complexity. The different components of the wind
vector at each measurement location of the lidar scan ui, vi and wi are derived from
the flow simulations. They are then inserted into Equation 2.3 directly to compute ǔ.
Three different flow models were used to simulate the lidar error. One is a linear model.
The other two are simulations based on the Reynolds-averaged Navier-Stokes equations
(RANS). All models are commercially available software packages and widely used in
the wind energy community. Table 2.1 summarises the key features of the different
models. For more details about the flow models and their parametrisation the reader
is referred to Klaas et al. (2015, Appendix B).

The following lidar error definition is used in Klaas et al. (2015, Appendix B) and
Pauscher et al. (2016, Appendix C):

elidar =
VL − VM
VM

, (2.5)
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where VL is the horizontal wind speed measured by the lidar and VM is the horizontal
wind speed measured by an anemometer mounted on a mast placed on top of the
lidar location. This comparison against a point measurement is done as the point
measurement provides the well established reference in the wind energy industry. The
result of this modelling exercise can then be used to correct for unwanted biases in the
wind speed measured by the lidar.

The second approach taken in this work to deal with the difficulties of lidar measure-
ments in complex terrain is to avoid them a priory using a modified scanning approach
(Pauscher et al., 2016, Appendix C). As pointed out in Section 2.1.1, crossing multiple
lidar beams (Figure 2.1) in the same measurement point does not need the homoge-
neous flow assumption across a large scanning volume. The averaging volume of the
lidar along the beam (compare also Section 2.1.3) can usually be neglected in this
context.

2.1.3. Turbulence measurements using lidars

Two of the articles in this dissertation (Pauscher et al. (2016, Appendix C) and
Pauscher et al. (2017b, Appendix D)) investigate turbulence measurements with li-
dars. They both use the same theoretical framework, which is shortly summarised
here.

The design of pulsed lidars as used in this work makes spatial averaging inherent
in the measurement of the radial velocity vr. In this context, the width of the beam
is usually much smaller than the averaging in the along beam direction and can be
neglected. The spatial averaging of the lidar can then be written as (Mann et al.,
2009):

vr(x) =
∫ ∞

−∞
ϕ(s)n ·V(ns+ x)ds, (2.6)

where x is the location of the measurement beam, n is the unit vector in the direction
of the lidar beam and V is the three dimensional velocity field. The spatial averaging
ϕ(s) is caused by the pulse length and the internal signal processing. The length
(full-width-half-max) of the pulse is usually in the order of a few hundred ns. The
internal signal processing often uses some kind of tapering window before performing
the Fourier transform of the received back scatter signal. In case of the Leosphere
lidars (used in this study) a Gaussian window with adjustable length is used (Carriou,
2016). The spatial averaging can then be described by the convolution of the pulse
intensity and the tapering window sometimes also called gating function. Figure 2.2
displays the measured pulse intensity and its convolution with the Gaussian gating
function with a standard deviation of σg = 9.5 m. Also shown is the convolution of a
Gaussian pulse shape with the same gating function, as this is sometimes also given
as an approximation (Carriou, 2016) and easier to treat analytically. Note that when
transforming from the pulse length to the spatial extend of the averaging window the
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Figure 2.2. Left: Measurement of the pulse intensity for one of the WindScanner
devices which was used during the ε-Experiment (Section 2.3.3) for a pulse setting
of 200 ns; right: comparison of the convolution between the pulse intensity and a
Gaussian tapering window with σg = 9.5 m and the convolution of a Gaussian pulse
intensity with σp = 12.8 m; during the Kassel Experiment 2014 (Section 2.3.2) pulse
length and gating function were twice as long; figures taken from Pauscher et al.
(2017b, Appendix D)

factor 1/2 needs to be applied, as the light travels from the lidar to the measurement
point and back. The spatial averaging as displayed in Figure 2.2 was used in the ε-
Experiment (Section 2.3.3). For the Kassel 2014 Experiment (Section 2.3.2) σg = 19.1 m
and the pulse length was twice of that shown in Figure 2.2. Another measure, which
is often given to characterise the spatial averaging, is the full width at half maximum
(FWHM ) of the window function. This is more intuitive as it is a good measure for
the physical length of the pulse. The FWHM is related to the standard deviations the
windowing functions as:

FWHM = 2
√

2 ln 2
√
σ2
g + σ2

p. (2.7)

For the ε-experiment (Pauscher et al., 2017b, Appendix D) the FWHM is 37.5 m;
for the Kassel-Experiment (Pauscher et al., 2016, Appendix C) the FWHM is 75.2 m.

The Fourier transform of Equation 2.6 can be written as:

v̂r(k) = ϕ(n · k)V̂(k), (2.8)

whereˆdenotes the Fourier transform. If the turbulence field is assumed to be homo-
geneous, e.g. the one point spectrum of the radial velocity can be expressed as Mann
et al. (2009)

Svr(k1) = ninj

∫ ∞

−∞

∫ ∞

−∞
|ϕ(n · k)|2Φij(k)dk2dk3, (2.9)
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where Φ is the spectral velocity tensor of turbulence and repeated summation of i and
j is assumed. If one is interested in deriving statistics from multiple points such as in
the DBS measurement (Section 2.1.1) or for the derivation of structure function, the
location of the measurement points also becomes important and a phase shift needs to
be added to Equation 2.8:

v̂r,m(k) = e−ik·dmϕ(n · k)V̂(k), (2.10)

where d denotes the location of the measurement and m is the index for the measure-
ment location. The detailed implications for the variance and spectral estimates of the
wind vector components for the DBS and the ML method are discussed in Pauscher
et al. (2016, Appendix C).

Since small scale turbulence is most strongly affected by the spatial averaging of the
lidar, Pauscher et al. (2017b, Appendix D) investigate the measurement of fine-scale
turbulence with lidars. For this purpose three approaches to estimate the dissipation
rate of turbulent kinetic energy ε are evaluated experimentally, which are based on the
theoretical framework in Equations 2.6 - 2.10.

The first relies on the power spectral density in the inertial sub-range (Champagne
et al., 1977; Smalikho, 1997; Banakh et al., 2010). The second one is based on the
approach presented by Bouniol et al. (2003) and O’Connor et al. (2010), which relies
on the calculation of short-term variances by cutting a longer time series into shorter
pieces. A correction is developed to this method in this dissertation to remove sig-
nificant systematic errors, which were present before. Both approaches use temporal
statistics at a single measurement location. The third approach relies on the relation-
ship between the spatial structure function and ε in the inertial sub-range. In contrast
to the first two methods the spatial statistics rather than the temporal ones are used. It
is the first experimental evaluation of an approach theoretically derived by Kristensen
et al. (2011). For a definition of the structure function and a discussion of its relation-
ship to the power spectral density see e.g. Monin and Yaglom (1975). The derivation of
the individual methods is quite lengthy and the reader is therefore referred to Pauscher
et al. (2017b, Appendix D) for a detailed explanation.

2.2. Fetch characterisation for wind turbines

2.2.1. Footprint modelling

Turbulence characteristics are strongly influenced by surface characteristics. To iden-
tify the area which influences the observed turbulence statistics a footprint modelling
approach is used in this dissertation (Pauscher et al., 2017a, Appendix E). One of the
biggest advantages of this approach over more complex flow models is its simplicity.
Therefore, footprint approaches based on complex flow models using e.g. large eddy
simulations (e.g. Steinfeld et al., 2008) do not seem reasonable in this context. If an
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LES of the site is done, the turbulence statistics from the flow simulation can be used
directly.

For this work the footprint model proposed by Kljun et al. (2015) is used as it is easy
to apply and is also valid for elevated measurements heights and shows good agreement
with more complex models. In general, the footprint is the transfer function between
the source of passive scalar at the surface and its flux (or concentration) at a point in
the atmosphere. The footprint equation can be formulated as (Horst and Weil, 1992):

F (xm, ym, zm) =
∫ −∞

−∞

∫ −∞

−∞
Q(xm−x′, ym− y′, z = z0)f(xm−x′, ym− y′, zm− z0)dxdy,

(2.11)
where F is the flux, Q is the source function and f is the footprint function. The index
m indicates the measurement location.

When transferring this approach to turbulence quantities, it can be seen that the for-
mulation in Equation 2.11 is a rather crude simplification as turbulence is not ’released’
within a source area and not conserved during its transport through the atmosphere.
Sink and source terms (production and dissipation of turbulent kinetic energy) are dis-
tributed in 3D-space and turbulence does not behave as a passive/conservative quantity.
Nevertheless, surface roughness and surface ruggedness (the most important turbulence
creating surface properties) can be be related to a surface area. The footprint model
concept is thus seen as a proxy to the area of influence for the turbulence statistics
measured at the measurement location. This assumption has also been been made for
the estimation of the effective roughness for footprint modelling of flux measurements
(Göckede et al., 2004, 2006) and wind turbines (Foken, 2013).

Some evidence for the appropriateness of the assumption that the footprint of a
scalar and that of turbulence quantities are similar can be found in the fact that
the vertical length scales of the footprint concept and the blending height concept as
well as the internal boundary-layer concept are very similar (Horst, 2000). Moreover,
a convection-diffusion equation for shear stress in analogy to passive scalars can be
derived and assuming the equality eddy diffusivity and eddy viscosity, the blending
height of scalar fluxes and shear stress are very similar (Philip, 1997).

2.2.2. Terrain classification

While widely used in the wind energy community, a standard definition the term ’com-
plex terrain’ or a measure for terrain complexity is still missing. One of the reasons
might be the different needs for different applications. In the IEC standards for power
performance (IEC, 2016) and turbine design terrain (IEC, 2005a) complexity is classi-
fied by fitting planes through the base of the turbine tower and the terrain. The first
is more conservative and defines critical slopes between 0.03 and 0.1, the latter one as
approx. 0.17. The German technical guideline TR6 (FGW, 2014) adopts the second
approach. The international Measnet standard (Measnet, 2016) uses a photograph of
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a sample site and the hint that slopes exceeding 0.3 are indicative for the definition of
complex sites.

Here, also a critical slope is used as a measure for terrain complexity. The method is
a slight modification of the ruggedness index as originally defined for resource assess-
ment purposes (Bowen and Mortensen, 1996; Mortensen and Petersen, 1997). Areas
exhibiting a slope greater than 0.3 are classified as rugged. This roughly corresponds to
the slope at which flow separation occurs (Wood, 1995). In contrast to the definition by
Bowen and Mortensen (1996) this includes any direction and not only the flow direction
towards the mast/turbine. The ruggedness rs is then defined as the percentage of the
footprint area exhibiting a slope greater than 0.3 (Pauscher et al., 2017a, Appendix E):

rs =
Ars

Aeffect

, (2.12)

where Ars is the area with slopes greater than 0.3 and Aeffect is the area influencing
the measurement location. In Pauscher et al. (2017a, Appendix E) the 80-%-effect area
of the footprint is used in this context.

The concept of describing roughness using the roughness lengths is one of the key
principles of boundary-layer meteorology and thus much better investigated. For pur-
poses of roughness averaging in the footprint area a simple logarithmic averaging (Tay-
lor, 1987) is used in the work for this dissertation.

2.3. Experiments

Since this dissertation is heavily based on experimental data, the experiments play a
key role. For the work presented here two different experimental sites were used. The
first is the measurement site at Rödeser Berg, which is run by Fraunhofer IWES and,
within the institute, the central experimental facility to investigate wind conditions and
measurement technology in complex terrain. The second one is the wind turbine test
station at Høvsøre which is operated by the Technical University of Denmark (Peña
et al., 2016).

2.3.1. The 200-m-mast at Rödeser Berg

The complex terrain test station at Rödeser Berg is located close to Kassel in the center
of Germany (51◦ 21’ 46” N, 9◦ 11’ 43”E). The area around the site is typical for low
mountain ranges in Germany. It is characterised by a hilly orography and a patchy
landscape. The hill tops are often covered by forests while the lower elevations are
mainly used for agricultural purposes. The region surrounding Rödeser Berg has seen
substantial wind energy developments in recent years. Detailed information on the
terrain surrounding the area can be found in Pauscher et al. (2017a, Appendix E). On
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top of the ridge of Rödeser Berg a 200 m tall measurement mast was erected in 2012
and forms the core piece of the experimental infrastructure.

The mast is heavily equipped with sensors between heights of 2 m and 200 m. To
accurately sense the wind profile, cup and sonic anemometers are installed between
10 m and 200 m. All cup anemometers were calibrated according to Measnet stan-
dards (Measnet, 2009) on a yearly cycle and classified according to (IEC, 2005b). Cup
anemometers used in this study are of type Thies first class advanced. Sonic anemome-
ters are of the type Gill HS50 and Thies 3D. To ensure minimal flow disturbance by
the mast structure the anemometers were mounted on booms with a length of 5.4 m.
Booms were additionally guyed to the mast and stabilised with a metal tube to ensure
minimal boom vibration effects. The sensors, which were used in the analysis in Klaas
et al. (2015, Appendix B), Pauscher et al. (2016, Appendix C) and Pauscher et al.
(2017a, Appendix E), are listed in Table 2.2

2.3.2. Kassel 2014 Experiment

The measurement mast at Rödeser Berg also forms the reference measurement for
the evaluation of the mutli-lidar measurements presented in Pauscher et al. (2016,
Appendix C) during the Kassel Experiment 2014. The measurement campaign in 2014
served as a preparatory experiment to the extensive use of multi-lidar measurements
during the complex terrain experiment in the New European Wind Atlas (Mann et al.,
2017).

To successfully and accurately perform the multi-lidar measurements the experiment
relied on the WindScanner technology (Vasiljevic, 2014; Vasiljevic et al., 2016). The
WindScanner technology is basically a software package which allows the operation of
multiple scanning lidars from a master computer and permits temporally and spatially
synchronised measurements.
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Table 2.2. Overview of the anemometers used in the analysis in Klaas et al. (2015,
Appendix B), Pauscher et al. (2016, Appendix C) and Pauscher et al. (2017a, Ap-
pendix E); ? indicates sensors used in Klaas et al. (2015, Appendix B); ∪ indicates sen-
sors used in Pauscher et al. (2016, Appendix C); † indicates sensors used in Pauscher
et al. (2017a, Appendix E).

height (m) sensor type sampling frequency (Hz) orientation (◦)

60†? Thies First Class Advanced
Cup Anemometer

1 321

80? Thies First Class Advanced
Cup Anemometer

1 140

80†? Thies Ultrasonic Anemome-
ter 3D

20 320

120? Thies First Class Advanced
Cup Anemometer

1 139

120†? Thies First Class Advanced
Cup Anemometer

1 319

135† Gill HS50 Ultrasonic
Anemometer

50 319

160? Thies First Class Advanced
Cup Anemometer

1 136

160? Thies First Class Advanced
Cup Anemometer

1 317

188∪† Gill HS50 Ultrasonic
Anemometer

50 316

191† Thies First Class Advanced
Cup Anemometer

1 316

200? Thies First Class Advanced
Cup Anemometer

1 mast top

16



2.3. Experiments

Figure 2.3. Left: locations of the WindScanner devices during the Kassel 2014 Experi-
ment; the black dots indicate positions of WindScanners which were analysed; right:
terrain (data source: Shuttle Radar Topography Mission version 2.1) and trajectories
of the intersecting lidar beams for the ML measurement. The windcube v2 is also
located at the MA position; figure taken from Pauscher et al. (2016, Appendix C).

As Doppler lidars rely on the back scatter of light, a clear line of sight to the target
location needs to be ensured. In complex terrain, however, vision can often be ob-
structed by terrain or vegetation. During the planing phase of the experiment, maps
of the area were derived from geographical data to identify regions from which the
reference mast could be seen. The WindScanners were then set up using differential
GPS and hard target returns to ensure a high pointing accuracy (Vasiljevic, 2014).
Positions and angles were validated using hard target returns from the mast.

2.3.3. The ε-Experiment at Høvsøre test station

Like the Kassel Experiment 2014 the ε-Experiment was relying on the WindScanner
technology. However, it only uses a single lidar staring at a reference sonic anemometer
(Metek USA1 F2901A) mounted at a height of 100 m at a measurement mast (Figure
2.4). The lidar beam during the measurement only had an elevation angle of 3.58◦ and,
thus, is almost horizontal. This ensures that multiple measurement distances at almost
the same height could be probed.

The configuration of the lidar was chosen to suit the needs for turbulence measure-
ments. With an accumulation time of approx. 0.5 s the sampling rate is chosen at the
upper limit to have a reliable operation of the WindScanner system (Lea, 2016). Also
the spatial separation of the individual range gate was chosen very small (1 m). In
fact, the physically possible resolution of the range gates is limited to 0.6 m, due to the
internal signal processing (Carriou, 2016). The pulse duration was set to 200 ns and
the internal signal processing used a gating function with σg = 9.5 m which corresponds
to using 64 points in the Fourier transform when analysing the Doppler spectrum. For
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Figure 2.4. Satellite image of the measurement site during the ε-Experiment; red
crosses indicate the positions of the lidar and the mast; the distance between the two
is approx 1.6 km; figure taken from Pauscher et al. (2017b, Appendix D).

this configuration the WindScanners provide good measurements. If both the size of
the gating window or the pulse lengths are further reduced, previous experience has
shown worse measurement quality (Lea, 2016).
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3.1. Lidar measurements of the mean wind speed in
complex terrain

The first part of this work evaluates different approaches towards improving measure-
ments of the mean wind speed in complex terrain using lidar technology. The first step
was the quantification of the error of a conically scanning DBS lidar at a typical com-
plex site for wind energy developments in the German lower mountain ranges (Klaas
et al., 2015, Appendix B). The observed deviation (Figure 3.1) clearly reflects the shape
of the orography of the terrain at Rödeser Berg. Flow which is directed perpendicular
to the ridge of the hill (30◦ - 90◦ and 210◦ - 270◦) exhibits a clear underestimation of
the mast-based cup anemometer measurement. These directions are associated with
convex terrain profile and most likely convex flow. As outlined in Section 2.1.2 a neg-
ative bias would also be expected in the horizontal wind speed in this situation from
theoretical considerations. In contrast, the mean wind speed of the lidar for flow along
the ridge (140◦ - 180◦ and 300◦ - 20◦) of the hill is similar and for the second sector
slightly higher than the reference mast. The interpretation of the observations for these
sectors is more difficult but might correspond to the fact that the mast and lidar are
placed a few hundred meters from the highest point of the ridge and the ridge shows a
slightly concave shape.

While all investigated flow models seem to be able to reproduce the general pat-
tern of the lidar-mast deviations, there are large differences in the magnitude of the
modelled deviations (Figure 3.1a). Interestingly, the linear model (WAsP Engineer-
ing) significantly overestimates the lidar-mast deviations. In contrast, given the right
parametrisation, the two more complex RANS models show a good agreement with the
observations.

In addition to the more complex model type both RANS models also have a forest
model implemented. In the linear model forest can only be represented by using a
displacement height approach. A sensitivity analysis of one of the RANS models is
shown in Figure 3.1b. In general, the most complex forest model (dissipative) gives
the best results. Adding ’more’ forest (higher trees and higher density) also reduces
the error and improves the model estimations. In fact, turning the forest model off
during the simulations produces some of the worst results (blue line in Figure 3.1b).
The real forest is in many places relatively dense and with tree heights of apporox.
30 m relatively high.
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(a)

(b)

Figure 3.1. (a) Measured lidar-mast deviation of the horizontal wind speed V at
Rödeser Berg for a measurement height of 120 m in comparison to the complex terrain
error as simulated using different models; (b) sensitivity of the modelled complex
terrain error of the lidar for different forest parametrisations in one of the RANS
models (Meteodyn WT); note that the scales on the y-axis are different between
the two figures; the error bars indicate the confidence intervals; only wind speeds
≥4 m s−1 are considered; figures taken from Klaas et al. (2015, Appendix B).
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A likely explanation for this observation is that over forested hills flow separation will
generally occur earlier and be stronger (Finnigan and Belcher, 2004). The occurrence
of flow separation will in turn also reduce the flow inclination angles of the stream lines
and will, thus, reduce the complex terrain error of the lidar. WAsP Engineering does
not have a forest model (Mann et al., 2002) and therefore cannot reproduce this effect.
An introduction of a forest model might improve the results for WAsP engineering.
However, it should also be noted that linear models generally perform worse than
more complex RANS models in reproducing the flow in complex situations, where flow
separation occurs (Palma et al., 2008).

A key point when modelling the lidar error in complex terrain seems to be the
accurate representation of the surface cover - especially forest. Existing studies so far
only focused on proving the existence of the complex terrain error and to some degree on
quantifying its magnitude using experimental results and modelling (e.g. Bingöl et al.,
2009; Bradley, 2012; Bradley et al., 2012, 2015). This study, in contrast, demonstrates
the sensitivity of the complex terrain error to surface cover. Moreover, it provides
a comparison of different modelling approaches of different degrees of sophistication
and, gives a first indication of the range of their applicability. Creating an error map
from the flow model as done in Klaas et al. (2015, Appendix B) during the experiment
design can provide useful guidance on where to place the the conically scanning lidar
to minimise the error.

An alternative to the application of flow models is to avoid the complex terrain
error in the experimental setup. If multiple lidar devices are available their beams can
be crossed in a single point (Section 2.1.1). The advantage is that the homogeneous
flow assumption over a large scan volume is not necessary. The first experimental
evaluation of this ML approach in complex terrain is performed in Pauscher et al.
(2016, Appendix C). Figure 3.2 shows the comparison between a reference Sonic (Gill
HS50) and the triple- (Figure 3.2a) and dual-Doppler (Figure 3.2b) lidar as well as a
DBS lidar (Figure 3.2c). The agreement is excellent for both multi-lidar systems. The
DBS-system shows a slightly worse agreement to the reference sonic. Especially for
smaller wind speeds the scatter is larger.

The comparison between the dual- and triple-Doppler lidar shows no significant
difference. A dual-Doppler system, thus, seems to be an appropriate tool to accurately
measure the horizontal wind speed at a complex site. It should be noted, however,
that the elevation angles of the lidars were relatively small (3.5◦ and 6◦) and the angle
between the two lidar beams was close to 90◦, which is ideal for this setup. Investigation
of other WindScanner combinations (not shown here) indicated slightly worse results
for smaller angles between the lidars. For a full comparison of the different multi-lidar
setups see Pauscher et al. (2016, Appendix C).

A directional analysis reveals that also the directional variation of the mean deviation
from the mast measurements is reduced for the multi-lidar approach (Figure 3.3). The
DBS lidar again shows the typical terrain-following pattern as in Figure 3.1. The DBS
lidar shows slightly higher values when compared to the reference. The reasons for this
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(a) (b)

(c)

Figure 3.2. Scatter plots of the comparison between the sonic at 188 m and the (a)
multi-lidar measurements using three WindScanners (SE, SW and EE in Figure 2.3);
(b) multi-lidar measurements using two WindScanners (SE and SW in Figure 2.3);
w = 0 m s−1 is assumed; (c) windcube v2 measuring in DBS mode (WC in Figure
2.3); the red line indicates the linear regression; figures taken from Pauscher et al.
(2016, Appendix C).
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3.1. Lidar measurements of the mean wind speed in complex terrain

Figure 3.3. Comparison of the directional deviation of the horizontal wind speed V h of
different lidar measurements from the reference sonic (Gill HS50) at 188 m; SW SE
indicates the dual-Doppler, SW SE EE the triple-Doppler and WC the DBS mea-
surement; only wind speeds ≥4 m s−1 are considered; figure modified after Pauscher
et al. (2016, Appendix C).

behaviour are not entirely clear. Some of the difference to the experiment shown in
Figure 3.1 might be caused by the lower wind speeds during the ML experiment. Also
two different DBS lidars were used in the two experiments. The reference was a sonic
while in Figure 3.1 a cup anemometer provides the reference.

Some directional variation still remains for the ML-measurements, but is to be ex-
pected. An analysis of cup anemometers mounted on opposing booms at 191 m (not
shown) revealed a directional dependence of the difference of up to 1.5 % between the
two cup anemometers even outside of the direct mast shadow. This is slightly higher
as the estimation according to IEC (2016) would suggest (less than 0.5 %; compare
also Klaas et al. (2015, Appendix B)). In fact, the directional pattern in Figure 3.3 is
in line with the observed differences between the cups, where smaller wind speeds are
observed if the anemometer is in front of the mast. This direction corresponds to the
sector around 320◦, where the ML measurements are higher than the reference sonic.
Also, differences in the accuracy which might be present between the different Wind-
Scanners can cause direction-dependent deviations between the ML measurements and
the reference sonic.
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3. Results

3.2. Turbulence measurements using lidars

3.2.1. Variance measurements from ML-measurements

Pauscher et al. (2016, Appendix C) report on an experimental comparison of different
lidar measurement techniques to estimate turbulence quantities in complex terrain. The
first focus of the analysis is put on the evaluation of the variances of the radial wind
velocity measured v′2r by the WindScanner systems. In comparison to the respective
wind component derived from the sonic anemometer by coordinate rotation a clear
underestimation can be observed for the WindScanners surrounding the measurement
mast. Most of this can be attributed to a relatively large probe volume (the pulse length
was set to 400 ns and σp = 19.5 m) and to a lesser degree the temporal averaging (2
s). In contrast,a vertically pointing WindScanner, which was placed next to the mast
showed no significant underestimation of v′2r , when compared to the reference sonic.
For this WindScanner the pulse length was chosen as 100 ns and σg = 6.4 m.

Scatter plots comparing the variance of the u-component (u′2) between different
lidar setups and the reference sonic are shown in Figure 3.4. For ML combinations
with favourable angles (SW/SE/EE and SW/SE in Figure 2.3) the reduced variances
are also propagated into the variances of the horizontal components of the wind vector
(Figure 3.4a&b). The dual-Doppler combination SW/EE shows a worse correlation
and increased scatter (Figure 3.4c). Here, also the slope of the linear regression is
higher. A very similar behaviour can be observed for SE/EE (not shown here, see
Pauscher et al. (2016, Appendix C)). One of the possible reasons is a contamination of
the observed horizontal component by the vertical component, caused by the relatively
large elevation angle of the EE-scanner (22.3◦). The assumption that w does not
contribute to the observed radial variance in EE is a rather crude approximation.
Another reason might be the smaller angle between the lidar beams, which can lead to
a stronger error propagation of errors in the radial variances (Stawiarski et al., 2013).
The angles for the SW/EE and SE/EE combinations are significantly smaller than
for SW/SE (Figure 2.3). The DBS lidar shows the worst agreement with the sonic
(Figure 3.4d). The likely reason for this is a cross-contamination of u′2 by the other
components of the Reynolds-stress tensor (Sathe et al., 2011; Sathe and Mann, 2012).
The results for v′2 are very similar for those of u′2 (for details see Pauscher et al. (2016,
Appendix C)).

The processes influencing u′2 are also clearly reflected in the spectra of the different
lidar setups. For the ML measurements a clear underestimation for the high wave-
number range can be observed (Figure 3.5a&b). This reflects the spatial averaging
caused by the relatively large probe volume of the WindScanners. The spectra of the
DBS lidar show a much more complex pattern. The effects of the cross-contamination
(Sathe and Mann, 2012) are reflected in the bumpy shape of the spectra (Figure 3.5c).
The flat section at the high wave number end corresponds to the fact that the DBS
only generates a new independent value every approx 5-6 s (Canadillas et al., 2010).
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3.2. Turbulence measurements using lidars

(a) (b)

(c) (d)

Figure 3.4. Scatter plots for u′2 of the comparison between the sonic at 188 m and the
(a) multi-lidar measurements using three WindScanners (SE, SW and EE in Fig-
ure 2.3); (b) ML measurements using two WindScanners (SE and SW in Figure 2.3);
w = 0 m s−1 is assumed; (c) ML measurements using two WindScanners (SW and
EE in Figure 2.3); w = 0 m s−1 is assumed; (d) the windcube v2 measuring in DBS
mode (MA in Figure 2.3); the red line indicates the linear regression; figures taken
from Pauscher et al. (2016, Appendix C).
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Figure 3.5. Composite spectra (a) multi-lidar measurements using three WindScanners
(SE, SW and EE in Figure 2.3); (b) multi-lidar measurements using two WindScan-
ners (SE, SW in Figure 2.3); (c) the windcube v2 measuring in DBS mode (WC
in Figure 2.3); solid lines are the sonic spectra; dashed lines are the lidar spectra;
sonic time series have been aggregated to 0.5 Hz (a & b) and 0.89 Hz (c); before
calculation of the spectra; only periods with usonic > 4 m s−1 and u′2sonic > 0.2 m2

s−2 were used in the spectral averaging; u∗ is the friction velocity computed from the
sonic anemometer measurements; the black line indicates the theoretical -2/3-slope
in the inertial sub-range; figures taken from Pauscher et al. (2016, Appendix C).
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3.2. Turbulence measurements using lidars

The findings in Pauscher et al. (2016, Appendix C) reiterate the complexity of mea-
suring turbulence using lidars. The DBS lidar is prone to errors when measuring the
variance of the wind vector components. Other studies have reported overestimation
(Sathe et al., 2011; Newman et al., 2016) and underestimations (Sathe et al., 2011) of
u′2 and v′2 by DBS lidar depending on measurement setup and atmospheric conditions.

The results from the ML measurements indicate that, given a careful setup, the
ML approach is a promising way forward for measuring turbulence with lidars. The
unsolved problem which remains is the attenuation of the turbulent fluctuations at
high wave numbers - i.e. the fine-scale turbulence. Some investigations concerning this
topic were conducted in Pauscher et al. (2017b, Appendix D) and to a lesser extend
also in Pauscher et al. (2016, Appendix C) and are presented in the following section.

3.2.2. Fine-scale turbulence measurements with a pulsed lidar

The observations in Pauscher et al. (2016, Appendix C) motivate a more detailed inves-
tigation of fine-scale turbulence measurements using lidars. This analysis is presented
in Pauscher et al. (2017b, Appendix D) and Pauscher et al. (2016, Appendix C). As
outlined in Section 2.1.3, knowledge of the spatial averaging is key to a derivation
of small-scale turbulence from lidar measurements. Figure 3.6 compares the spectral
transfer function ϕ2(k) derived from theoretical consideration to the observations ob-
tained from measurements.

The theoretical averaging functions in Figure 2.2a show a good agreement with the
experimentally determined ϕ2(k) from the cross-spectral method (for details on the
method see Pauscher et al. (2017b, Appendix D)). The difference between the measured
pulse and the assumption of a Gaussian pulse shape is rather small, if σl = 15.8 m is
chosen. In contrast, ϕ2(k) obtained from the spectral method shows a much slower
drop-off. It roughly corresponds to σl = 9 m, which is significantly smaller than the
theoretical considerations. An observation which was also made by Angelou et al.
(2012) for a continuous wave lidar and is consistent with the observations in Pauscher
et al. (2016, Appendix C) (see Erratum).

Due to its relation to the spectral density in the inertial sub-range, the dissipation
rate of turbulent kinetic energy ε is well suited to model and characterise small scale
turbulence. Pauscher et al. (2017b, Appendix D), therefore, focus on the estimation of
ε from a pulsed lidar. Three methods are investigated in detail. First and as a baseline
scenario, the ’classical’ spectral method exploiting the -5/3-slope of the spectrum in the
inertial sub-range is applied. For the second method an approach originally proposed
by Bouniol et al. (2003) and O’Connor et al. (2010) based on short term variances
was improved and corrected for the contribution of larger turbulence scales. Compared
to the original formulation a significant bias towards an overestimation of ε could be
removed. The third method is based on the spatial structure function (Kristensen
et al., 2011) and is the first experimental evaluation of this method. For details of the
individual approaches the reader is referred to Pauscher et al. (2017b, Appendix D).
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3. Results

Figure 3.6. Comparison of ϕ2(k) obtained from theory in comparison to the experi-
mentally determined values during the ε-Experiment; only wind directions ±5◦ the
beam direction of the lidar were used; the theoretical functions (dashed blue and
orange lines) correspond to the spatial averaging functions in Figure 2.2.

In general, all methods produce acceptable results and εlidar shows a good correlation
to the measurements from the reference sonic (Figure 3.7). The analysis of the statis-
tical error in Pauscher et al. (2017b, Appendix D) showed that the statistical random
errors in the different methods are also similar and is between approx. 10-30 %. The
majority of the scatter in the comparison in Figure 3.7 is thus likely to stem from the
noise in the measurements. For all methods an average underestimation of the εsonic
by εlidar which is in the order of magnitude of the random error can be observed. For
the spectral method this underestimation a first order correction using |ϕ(k)|3 (see also
Equation 2.9) can be applied. For the wave-number interval k = 0.0454 - 0.1 m−1 the
median underestimation can be reduced from 39 % to 2 % applying this correction.
For the short term variance method the underestimation is likely to be caused by the
fact that scales outside the inertial sub-range contribute to the short term variances.
In case of the structure function method the underestimation (19 %) might be related
to uncertainties in ϕ(k) and correlated noise along the measurement beam. For the
structure-function and the short-term variance method a removal of the noise for small
ε, which are connected to week turbulence, is important.

From Figure 3.7 it is difficult to make a judgement, which of the methods is the best
to estimate ε from lidar measurements. The differences between the individual methods
rather lie in their applicability to different measurement scenarios. The spectral as well
as the short term variance method require a fast sampling rate at the same point to
allow for the calculation of the temporal statistics at wave number intervals which
lie within the inertial sub-range. Currently available pulsed lidar technology requires
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(a) (b)

(c)

Figure 3.7. Comparison of ε as estimated from the reference sonic and the lidar mea-
surements for (a) the spectral method; the colors indicate two different wave number
intervals (given in the legend) which were used for the estimation of εlidar; for the
red line εlidar is corrected using |ϕ(k)|3 (b) εlidar based on short term variances; blue:
noise was removed using the auto covariance method (Frehlich, 2001); red: no noise
removal; (c) εlidar based on the structure function method; color code see (b); darker
markers and dashed line indicate the binned median values.
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(a) (b)

Figure 3.8. (a) median ε derived from the reference sonic and the lidar during the
ε-Experiment using the spectral method for different wave-number intervals; (b)
influence of the choice of the separation distances (r) on the median εlidar derived
from the structure-function method for the theoretically derived ϕ(k) (σl = 15.8 m)
and the experimentally determined ϕ(k) (σl = 9 m); the black line indicates the
median value derived from the sonic measurements using the spectral method; figures
taken from Pauscher et al. (2017b, Appendix D).

accumulation times of at least in the order of 0.5 - 1 s. Moreover, currently available
scanner heads usually have a maximum speed of approx 30◦ s−1. The spectral and short-
term variance method are mainly suitable for staring configurations and, thus, primarily
interesting for research applications. The short-term variance method should only be
applied in the corrected version presented in Pauscher et al. (2017b, Appendix D). The
downside of the corrected method is, that the equations become more complex and it
looses some of the previous appeal, which was its simplicity.

One of the advantages of the spectral method is, that the spectral analysis of the
measurement data allows a better judgement, whether the scales used to derive ε are
contained within the inertial sub-range and at which scale noise will become dominant.
An example of such an analysis is shown in Figure 3.8a. The first minimum in lidar
measurements (black crosses) is reassuring that the signal at high wave numbers is not
dominated by noise.

The structure function method exploits the capability of a pulsed lidar to sample
multiple points of the atmosphere along the measurement beam quasi-simultaneously.
This reduces the need for a high sampling rate at the same point. It is, thus, more
suitable for more complex scan patterns like DBS, plane-position indicator or range-
height indicator scans and presents the most flexible option. One thing to keep in mind
when applying the structure function method is the increased sensitivity of the estimate
of ε to uncertainties in ϕ(k) with decreasing r (Figure 3.8b). This consideration needs
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to be balanced against the need to measure at scales which are small enough to lie in
the inertial sub-range.

It should be noted here, that the experimental results in Pauscher et al. (2017b,
Appendix D) were obtained at a height of 100 m above ground. At lower heights the
results might get worse as turbulent scales get smaller. For the short-term variance
this might lead to the situation that at high wind speeds the time interval gets too
small to reliably calculate the variance. Here again the structure function method is
advantageous as pulsed lidars allow for a relatively fine resolution of the measurement
distances. Moreover, Figure 3.8a indicates that the measurement of ε is still possible
at small separation distances. Given an appropriate noise removal the scatter for r =
5 m (not shown) is similar as for r = 35 m.

Generally, the methods are also transferable to more complex sites. It should be
noted, however, that the spatial heterogeneity can affect the performance of the struc-
ture function method. In this context small separation distances are again advanta-
geous. Also the distance along the beam over which the structure function is averaged
is limited in this situation.

3.3. Turbulence characteristics at Rödeser Berg

While the work in Sections 3.1 and 3.2 focused on different methods to improve mea-
surements of wind statistics, the last part of this dissertation deals with the interpre-
tation of measured wind statistics. For this purpose a detailed investigation of the
turbulence statistics at the 200-m-mast at Rödeser Berg (Section 2.3.1) is presented.
The experimental results in Pauscher et al. (2017a, Appendix E) are the first published
field observations of high quality turbulence statistics from a forested hill covering the
height range of a modern wind turbine.

Figure 3.9 displays the directional behaviour of turbulence statistics for the u- com-
ponent of the wind vector by wind direction. This wind component is chosen here as
it is the most important for load calculations in wind turbine design. Details for the
other wind-vector components can be found in Pauscher et al. (2017a, Appendix E).
The observed values of σu/u∗ are smaller than σu/u∗ = 2.4, which is usually assumed
for flat and homogeneous terrain (Panofsky and Dutton, 1984), but for most sectors
slightly higher than those observed at a tall mast over a homogeneous forest in Sweden
(Arnqvist et al., 2015). It should be pointed out that the statistics in 3.9 were de-
rived using 10-minute intervals, which is common practice in wind energy applications.
In many other micrometeorological applications a 30-minute interval is the standard
interval (Aubinet et al., 2012). The average σu/u∗ (and σu/u∗) increases by approx.
7 - 13 % depending measurement on height. The shorter interval can thus explain some
of the deviations from flat terrain.

A clear directional dependence of Iu is visible with the strongest variation found at
the lowest investigated height (80 m). As only neutral conditions are considered, the
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(a) (b)

Figure 3.9. Turbulence statistics under neutral conditions as measured by sonic
anemometers at different heights of the mast at Rödeser Berg; blue 80 m, red 135 m
and black 188 m; (a) integral turbulence statistic of of the wind along the mean
stream lines σu/u∗; (b) turbulence intensity of the wind along the mean stream lines
Iu = σu/u; the schaded areas denote the 95-%-confidence-intervals derived using
student’s t-statistics; figures taken from Pauscher et al. (2017a, Appendix E).

patterns are likely to stem from the surface characteristics in the upstream area of the
measurement. Indeed, the observed patterns correlate with the terrain characteristics
of the surrounding terrain. All heights show the maximum turbulence intensity for
wind directions between approx. 280◦ and 340◦. A forested ridge with a relatively high
terrain ruggedness forms the first few km in this direction. For the sector 360◦ to 60◦

the terrain is much more open and also turbulence intensities are lower.

This (intuitive) qualitative observation motivated a further investigation of the rela-
tion between terrain characteristics and the observed turbulence statistics in Pauscher
et al. (2017a, Appendix E). The analysis requires two steps to be taken. Firstly, the
area of effect (i.e. the area of the surface which is influencing the measurement) has
to be identified. Secondly, the surface characteristics have to be quantified. Especially
for orography effects, there is a lack of established simple methods for the second task.

The work in Pauscher et al. (2017a, Appendix E) proposes a new combination of
different existing methods to tackle these problems. Footprint modelling, which is
usually used to model the source area for scalar fluxes, is applied to identify the relevant
surface area. The transfer of the footprint modelling approach has been suggested for
resource estimation problems before (Foken, 2013), but has not been evaluated to
interpret turbulence statistics in a wind energy context. For the quantification of the
terrain ruggedness a variation of a method originally developed for resource estimation
(Bowen and Mortensen, 1996; Mortensen and Petersen, 1997) is used (see also Section
2.2.2).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10. Scatter plots of second-order turbulence statistics in relation to surface
properties within the 80-%-effect-area of the footprint climatologies for neutral con-
ditions (|L| >500 m); left column: normalised turbulence quantities vs the index
for ruggedness rs; right column: normalised turbulence quantities vs the effective
roughness z0,eff ; (a,b) σuU

−1
191 (c,d) u∗U

−1
191 and (e,f) σwU

−1
191; calculations are based

on 10◦ bins; diamonds indicate bins which lie within 60− 100◦; periods when U120 >
4 m s−1 are excluded from the analysis; for colour coding see Figure 3.9; figures taken
from Pauscher et al. (2017a, Appendix E).
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Figure 3.10 shows the relation of the normalised second order turbulence statistics
with the ruggedness (left) and roughness (right) within the modelled footprint of the
measurement. The normalisation of the turbulence statistics is done with a common
measurement height (191 m) to improve the comparability among the different heights.
For σuU

−1
191 (Figure 3.10a) a good correlation to the surface characteristics within the

footprint can be found and observations more or less cluster around a linear relationship.
This applies for the ruggedness of the terrain as well as for the logarithm of the effective
roughness derived from the land cover inside the footprint area z0,eff . The linear
correlation coefficient is r = 0.62 for rs and r = 0.60 for ln(z0,eff ). However, for
the sector between 60 − 100◦ some outliers can be observed. It is interesting to note
that these outliers are directed towards high turbulence and low values of rs and z0,eff ,
respectively. In the aforementioned direction several hills which are higher than Rödeser
Berg are found in a few km distance. These terrain features might not be appropriately
captured by the footprint modeling and/or the definition of rs.

For u∗U
−1
191 the correlation is worse than for σuU

−1
191. r is 0.43 and 0.26 for rs and

ln(z0,eff ), respectively. For σwU
−1
191 r further drops to 0.28 and 0.12, respectively. This

indicates that the predictive power of the modelled footprint is better for the turbulence
statistics of the u-component than for the w-component.

In particular for the u-component, the footprint modelling approach in combination
with the terrain classification scheme seems to be a promising way forward when relat-
ing surface characteristics to observed turbulence intensities. For the site at Rödeser
Berg terrain ruggedness and forest cover (high roughness) are closely related as the
hill tops are mainly forested and the lower areas are primarily used for agriculture.
Therefore, it is difficult to differentiate between the effect of the two..

In wind energy siting applications, turbulence intensity is usually described as a func-
tion of wind speed. For turbine design according to standard turbulence classes this is
done using the empirical normal turbulence model (NTM) (IEC, 2005a). The NTM is
then compared against the representative turbulence intensity (90-%-percentile) mea-
sured on site. Figure 3.11 shows the comparison of the representative turbulence inten-
sity and the NTM for the three standard turbulence classes defined in IEC (2005a). To
make the different heights comparable among each other they are all normalised on the
wind speed at 120 m (U120), which is a typical hub height of a modern wind turbine.
The observation which catches the eye is the large difference in σu accross the different
heights. Especially the difference between 60 m and 180 m is exceeding the difference
between the different turbine classes. This is likely to be related to the heterogeneity
of the terrain. In the investigated sector the closer surroundings are characterised by
forested and orographically complex terrain. The further distance is comparatively flat
and homogeneous (compare also Figure 1 in Pauscher et al. (2017a, Appendix E)).

When compared to the shape of the NTM, the representative turbulence shows a
trough-like behaviour for wind speeds between approx. 6-12 m s−1 with a minimum
at approx. 9 m s−1. The occurrence of stable atmospheric stratification shows a
maximum within this wind speed range as well suggesting that the damping effect of
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(a) (b)

Figure 3.11. (a) 90-%-percentile of σuxU
−1
120 for the sector 180-210◦ in comparison to the

normal turbulence model for different turbulence classes as defined in IEC (2005a);
solid lines indicate all wind speeds; dashed lines are only neutral conditions; (b)
stability distribution as measured by the sonic at 135 m; dark blue: very stable,
light blue: stable, green: neutral; orange: unstable, yellow: very unstable; figure
taken from Pauscher et al. (2017a, Appendix E).

the stable stratification reduces the turbulence intensity. In fact, if only neutral cases
are considered, the trough-like behaviour disappears.

The stable stratification can induce different processes which explain the occurrence
of relatively high wind speeds during stable conditions. One is the reduction of the
frictional forces in stable stratification, which causes a speed up of the wind at elevated
heights and can result in the formation of a low level jet (LLJ) (Blackadar, 1957).
The LLJ has also been suggested to influence the wind resource in northern Germany
(Emeis, 2014; Lampert et al., 2016) and has been shown to frequently occur in forested
low mountain ranges in Germany (Serafimovich et al., 2017). Atmospheric stability
also influences the interaction of the flow with the terrain. The speed-up over hills
can be significantly increased in stable conditions (Carruthers and Choularton, 1982;
Bradley, 1983). Moreover, streamlines can be diverged around the hill (Snyder et al.,
1985). This can elevate the hilltop measurements in the atmospheric boundary-layer or
even place them above the atmospheric boundary-layer. A combination of these effects
at Rödeser Berg is likely.

From the perspective of wind energy the observations are important because in a
wind climate as found at Rödeser Berg the wind turbine will produce most of its
power output between 6-12 m s−1. Therefore, the majority of the fatigue loads will
occur within this wind-speed interval. Fatigue loads, in turn, are strongly influenced
by turbulence intensity. Lower turbulence intensity is usually related to lower fatigue
loads.
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4. Conclusions

The work in this dissertation was motivated by the demand for refined measurement
techniques for resource and site assessment applications in wind energy and the need
for an improved understanding of these measurements in complex and heterogeneous
terrain. The presented dissertation addresses these issues in three steps: First, the
investigations focus on improving pulsed Doppler-lidar measurements in complex ter-
rain. Second, methods are developed and experimentally investigated to perform tur-
bulence measurements using Doppler-lidar. Third, measured turbulence characteristics
are analysed and their relation to surface properties is investigated. Progress has been
made in all three points and the main conclusions are summarised in the following.

The first part of the dissertation focuses on errors, which can be induced in conically
scanning Doppler-lidar measurements in complex terrain due to the inhomogeneous
flow across the scanning volume. The simulation of the problem shows that the sur-
face cover has a significant influence on the errors. Forest cover reduced the error in
the simulations. The reason for this result is thought to lie in the stronger flow sep-
aration, which is present in the forest case. These findings are also supported by the
experimental results presented in this dissertation. Given the choice of an appropriate
model and parametrisation, flow modelling can provide a good estimation of the effects
of complex flow on conically scanning lidar measurements. In practical applications,
like wind resource estimation, it can also serve as a first correction to the measured
horizontal wind speed and are valuable in the experiment design. An inappropriate
model can lead to a gross overcorrection of the lidar measurements.

The modelling exercise is, however, associated with additional uncertainties. The
ML-technique provides an alternative and allows to overcome the complex terrain error
by changing the measurement design. While previously suggested theoretically (e.g.
Bradley et al., 2015), the work in this dissertation for the first time demonstrates
experimentally the improved accuracy of the ML-technique when measuring in complex
terrain. Given an appropriate setup, two scanning lidars are enough to make accurate
measurements of the horizontal wind speed. These findings are especially valuable as
scanning lidars can also be used to probe the flow at multiple locations. This untaps
the full potential of the flexibility of the instruments. ML-measurements also form
a corner stone of the complex terrain experiments in the New European Wind Atlas
(Mann et al., 2017), which is one of the key research projects in site and resource
assessment in Europe at the moment.

One of the largest drawbacks of the lidar technology in wind energy applications
is its current inability to measure turbulence accurately enough for site assessment
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applications. The experimental results in this dissertation confirm this for a conically
scanning DBS-lidar. The evaluation of the ML-measurements clearly demonstrates the
advantages of the ML-technique to measure the variance of the horizontal wind vector
components and suggests that they are a promising way forward to solve this problem.
The spectral analysis, however, shows, that at small scales turbulence is attenuated by
the probe volume averaging. This leads to an underestimation of the variances of the
reference by the ML-method.

Motivated by these observations, the capability of lidar measurements to capture
fine-scale turbulence was investigated. Analysis of the spectral transfer function re-
vealed that a theoretical derivation from instrument parameters overestimated the ex-
perimentally determined effect of the spectral averaging on the lidar spectra. When
evaluating the radial velocity spectra of the lidar against the sonic measurements, the
attenuation of the turbulence signal only started at wave numbers higher than the the-
oretical prediction. Interestingly, this effect could not be found for the cross-spectral
method, which agreed well with the theoretical prediction. While a similar observation
has been made before for continuous wave lidars (Angelou et al., 2012), the reasons
remain unclear and should be further investigated.

The analysis of three methods to derive the dissipation rate of turbulent kinetic en-
ergy ε from lidar measurements demonstrated that pulsed lidars can be used to measure
this parameter over a wide range of values spanning several decades. A prerequisite,
however, is, that the spatial averaging characteristics of the lidar are known from e.g. a
measurement using a reference sonic as done here. For the short-term variance method
it should be stressed again that the corrected method developed in Pauscher et al.
(2017b, Appendix D) needs to be applied. Otherwise, a large overestimation of ε can
result.

All three approaches yielded similar results when compared to the sonic anemometer
measurements and are generally suitable to derive ε from lidar measurements. The
difference between the methods lies in their range of applications. The spectral and the
short-term variance method rely on temporal statistics and thus need a high sampling
frequency. In contrast, the structure-function method exploits the capability of a pulsed
lidar to sample multiple distances along the laser beam quasi-synchronously and uses
spatial statistics. This makes it more suitable for more complex scan patterns such as
DBS, PPI or RHI scans, where the same locations are probed more intermittently. Also
the fact that good results could be achieved at very small scales makes it potentially
suitable at lower measurement heights. While the experiment was carried out in flat
terrain, the findings are transferable to complex terrain as well. For the structure-
function method, it should be noted that the spatial heterogeneity will introduce some
additional uncertainty in the method. Small separation distances become even more
important in this context.

Besides the methodological work on lidar measurements, also turbulence statistics
from a tall mast at a complex and forested site were analysed. An approach to re-
late observed turbulence characteristics to surface characteristics was developed. It is
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4. Conclusions

based on a simple footprint model combined with a description of the area within the
footprint by ruggedness and roughness. Especially the turbulence intensity of the hor-
izontal wind speed, which is the most important in wind energy applications, showed
a good correlation with the surface characteristics inside the modelled footprints. The
results indicated that, despite the simplicity of the approach, it can provide a useful
tool to interpret turbulence measurements in complex terrain. Further experimental
validations and comparison with more complex models - e.g. large eddy simulations -
could also develop the footprint modelling approach into a tool to perform a first site
characterisation in site assessment applications.

When compared to the currently used standards for wind turbine design (IEC,
2005a), the observed turbulence characteristics at Rödeser Berg showed some distinc-
tive differences to the assumptions which are usually made. The turbulence intensity
was significantly reduced in the wind speed range between 6 - 12 m s−1. This is espe-
cially interesting, because the majority of the energy output from a wind turbine, which
would be typically installed at the investigated site, would stem from this wind speed
range. The reduced turbulence intensity could be related to the frequent occurrence of
stable conditions between 6 - 12 m s−1. In site assessment usually neutral conditions
are assumed. The results indicate that the inclusion of stability can improve turbine
design and potentially save costs. Besides the stability effects, the variance of the wind
components normalised on a common height were strongly dependent on height. This
suggests that the assumption of a constant variance across the whole rotor area, as
usually done in load modelling for wind turbines, might not be adequate for a com-
plex site. The discrepancy between the observed turbulence characteristics and the
current standard for turbine design also reiterate the advantage the wind energy com-
munity gains from improvements in turbulence measurements using lidars - especially
for complex terrain sites.
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Smalikho, I., Köpp, F., and Rahm, S.: Measurement of atmospheric turbulence by
2-m doppler lidar, Journal of Atmospheric and Oceanic Technology, 22, 1733–1747,
doi:10.1175/JTECH1815.1, 2005.

Smalikho, I. N. and Banakh, V. A.: Accuracy of estimation of the turbulent energy
dissipation rate from wind measurements with a conically scanning pulsed coherent
Doppler lidar. Part I. Algorithm of data processing, Atmospheric and Oceanic Optics,
26, 404–410, doi:10.1134/S102485601305014X, 2013.

Smalikho, I. N. and Rahm, S.: Lidar investigations of the effects of wind and atmo-
spheric turbulence on an aircraft wake vortex, Atmospheric and Oceanic Optics, 23,
137–146, doi:10.1134/S1024856010020107, 2010.

47



References

Smalikho, I. N., Banakh, V. A., Pichugina, E. L., and Brewer, A.: Accuracy of es-
timation of the turbulent energy dissipation rate from wind measurements with
a conically scanning pulsed coherent Doppler lidar. Part II. Numerical and atmo-
spheric experiments, Atmospheric and Oceanic Optics, 26, 411–416, doi:10.1134/
S1024856013050151, 2013.

Smalikho, J.: Accuracy of the turbulent energy dissipation rate estimation from the
temporal spectrum of wind velocity fluctuations, Atmospheric and Oceanic Optics
C/C of Optika Atmosphery i Okeana, 10, 559–563, 1997.

Smith, D. A., Harris, M., and Coffey, A. S.: Wind lidar evaluation at the danish wind
test site in Høvsøre, Wind Energy, 9, 87–93, doi:10.1002/we.193, 2006.

Snyder, W. H., Thompson, R. S., Eskridge, R. E., Lawson, R. E., Castro, I. P., Lee,
J. T., Hunt, J. C. R., and Ogawa, Y.: The structure of strongly stratified flow
over hills: dividing-streamline concept, Journal of Fluid Mechanics, 152, 249–288,
doi:10.1017/S0022112085000684, 1985.
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Abstract
LiDARs (Light Detection and Ranging) are becoming important tools for wind resource assessments in
all kinds of terrain. Compared to mast measurements, mobility and flexibility are their greatest benefits.
However, care needs to be taken when setting up a measurement campaign. The influence of complex
terrain on the wind leads to inhomogeneous flow. This can cause considerable errors in ground based mono-
static LiDAR measurements due to their measurement principle and simplifying assumptions.Within this
work, wind measurements from Fraunhofer IWES’s 200 m research mast in complex terrain at “Rödeser
Berg” in Kassel, Germany, and a pulsed Doppler LiDAR (Leosphere windcube), located at the mast, are
compared. The relative deviation between the measurements of the horizontal wind speed by the LiDAR
and the mast (LiDAR-mast deviations) varies with wind direction and height. It ranges from about −4 %
underestimation to +2.5 % overestimation by the LiDAR - for heights between 120 and 200 m. Two steady-
state Reynolds-Averaged-Navier-Stokes (RANS) Computational Fluid Dynamics (CFD)-models and a model
based on linearized Navier-Stokes Equations were used to estimate the LiDAR error from a flow simulation.
Model results were evaluated depending on model parameterisation such as forest height and density. Given
the right parameterisations – especially for the forest model – the CFD-models showed a good performance
when compared to the observed LiDAR-mast deviations. These simulations can thus be used to correct the
LiDAR error induced by the complex flow.

To demonstrate variations of LiDAR errors due to choice of measurement location, one of the models
was run to calculate the wind flow in an area of 2 × 2 km2 around the 200 m measurement mast. This allows
the visualization of the estimated LiDAR errors to characterize measurement locations. Results showed the
significant variation of measurement errors due to the location.

Keywords: lidar, wind measurements, complex terrain, flow modelling, forest, remote sensing, wind energy

1 Introduction

Over recent years, there has been significant progress
towards accurate and reliable wind profile measure-
ments using LiDAR (Light Detection And Ranging)
technology (Emeis et al., 2007, Courtney et al. 2008;
Gottschall et al., 2011). This progress in the devel-
opment of LiDAR systems is predicated on the need
for high quality wind measurements for resource assess-
ments and power performance tests. Wind turbine size
has considerably increased within the last years, with
hub heights of up to 150 m and large rotor diameters of
more than 130 m. For many wind energy applications it
is desirable or even mandatory to measure wind speed at
hub height. The ability to measure up to great heights,
their flexibility, mobility and ease of deployment has
made LiDARs an appealing alternative to expensive and
immobile met masts.

In the past, several studies showed the high accu-
racy of commercially available LiDARs in comparison
to meteorological masts equipped with cup anemome-
ters in flat terrain (e.g. Antoniou, 2004; Smith et al.,
2006; Kindler, 2007; Albers and Janssen, 2008),

∗Corresponding author: Tobias Klaas, Fraunhofer IWES, Königstor 59,
34119 Kassel, Germany, Tobias.Klaas@iwes.fraunhofer.de

qualifying these devices for real world applications. As
a consequence, their use in wind energy applications
will be standardised in the new revision of the Inter-
national Electrotechnical Commission (IEC) standard
for power performance measurements of wind turbines
(IEC, 2013).

Ground based mono-static remote sensing measure-
ments of the horizontal wind speed can suffer from con-
siderable errors in complex terrain due to their measure-
ment principle and simplifying assumptions. For coni-
cally scanning LiDARs the most important simplifica-
tion in the wind speed retrieval algorithm is that flow
conditions across the different sampling volumes are ho-
mogeneous (Clive, 2008). In complex terrain this as-
sumption is often violated and systematic errors in the
derived wind speeds can occur (Emeis, 2007; Bradley,
2008; Bingöl et al., 2009).

Bingöl et al. (2009) uses a simplified model of two
dimensional flow over an idealized hill to describe the
influence of a linear variation of the vertical wind speed
on the LiDAR error, respectively. In most real world
measurement applications the terrain is more complex
and different models of different complexities have been
used to estimate the LiDAR error (Bingöl et al. (2009);
Bradley et al., 2012). Since recently, also commer-

© 2015 The authors
DOI 10.1127/metz/2015/0637 Gebrüder Borntraeger Science Publishers, Stuttgart, www.borntraeger-cramer.com
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Figure 1: Orography (left) and satellite picture (right) of the location of the mast-LiDAR inter-comparison (marked with black dot)
(geographical data from (HVGB 2010), modified by T. Klaas). LiDAR and mast measurements are located on top of a ridge that is oriented
from north-west to south-east. Most significant inclinations are to the west and south-west (10–15 °) (approx. main wind direction) and
the north-east (10 °). In terms of roughness, the measurements are located within a small clearing surrounded by forest. To the west and
south-west the ground is covered with mixed forest up to approx. 2 km distance.

cially available Computational Fluid Dynamics (CFD)
tools offer a ‘LiDAR-correction module’ (e.g. Meteo-
dyn WT and WindSim) for complex terrain. Leosphere
also developed an on-board real-time correction algo-
rithm for their windcube v2. As the underlying algo-
rithm is proprietary and thus secret, an objective eval-
uation is difficult (Wagner and Bejdic, 2014). A cur-
rent review over the most relevant correction approaches
for LiDAR measurements in complex terrain can also be
found in Bradley et al. (2015).

However, experimental data remains scarce and typ-
ical magnitudes of the LiDAR-mast deviations and their
dependency on e.g. surface cover and atmospheric con-
ditions remain unclear. Also, the performance and lim-
itations of different modelling approaches are not well
understood. For a successful application and acceptance
of LiDAR technology in complex terrain (including a
correction) in applications where high precision hori-
zontal wind speed measurements are needed (e.g. wind
engineering) there is a need for independent assess-
ments.

This paper gives a detailed analysis of LiDAR-mast
deviations at a complex, forested site at “Rödeser Berg”
close to Kassel in central Germany. LiDAR measure-
ments are compared to cup anemometry at a high quality
200 m mast measurement. Subsequently, three different
flow models are used to estimate the LiDAR error. The
aim of this paper is to evaluate the performance of differ-
ent flow models in reproducing the LiDAR error due to
complex terrain and reveal their sensitivities to parame-

terisation. It is also sketched out how the simulations can
be used in pre-campaign modelling to assess different
locations for the LiDAR measurement. This information
can be used to optimise a measurement campaign and
reduce the LiDAR error.

2 Measurement sites, instrumentation
and experiments

The data presented in this paper was collected at the
Fraunhofer IWES complex terrain test site at Rödeser
Berg about 30 km north-west of Kassel in central
Germany (51 ° 21 ′ 46 ′′ N, 9 ° 11 ′43 ′′ E). A Leosphere
windcube v1 LiDAR was placed next (distance ∼ 4 m)
to the 200 m tall met mast on the crest of a forested
hill (Fig. 1). The mast and the LiDAR were located on
a small clearing, which is surrounded by trees with an
approximate height of 20–30 m. While the closer sur-
roundings of the measurement site are forested with
varying tree heights and small clearings, the wider sur-
roundings of Rödeser Berg are characterised by a patchy
landscape with a mixture of agricultural land use, small
villages and patches of forests (mainly on the hill tops).
Within the main wind direction (210 °) the forest extends
about 2 km. The most significant inclinations (approx.
10–15 °) are in the west/south-west sectors (210–270 °)
and in east/north-east sectors (60–90 °). For these sec-
tors inclinations are larger for the closer proximity of
the measurement site (approx. 15 °). The hill then flat-
tens out in the wider area.
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Table 1: Overview of the wind sensors used within this work. All cup anemometers are Thies Clima “first class” advanced. For 60 m there
is only one cup anemometer. For 80 m there is an Ultrasonic anemometer at one side of the mast. The top anemometer at 200 m height is
placed on a vertical pole and is only influenced by a lightning rod in the south-eastern sector.

Height [m] Sensor 1 Orientation [°] Sensor 2 Orientation [°]

60 – – Cup anemometer – “first class” advanced,
Thies Clima

321

80 Cup anemometer “first class” advanced,
Thies Clima

140 Ultrasonic Anemometer 3D, Thies Clima 320

120 Cup anemometer “first class” advanced,
Thies Clima

139 Cup anemometer “first class” advanced,
Thies Clima

319

160 Cup anemometer “first class” advanced,
Thies Clima

136 Cup anemometer “first class” advanced,
Thies Clima

317

200 Cup anemometer “first class” advanced,
Thies Clima

Mast top – –

The measurement mast is a rectangular lattice tower
with a side length of 1.05 m and a solidity of 0.220 and
0.204 below and above 100 m, respectively. The mast
is equipped with opposing boom pairs with a length
of 5.40 m (diameter 50 mm). The sensors are mounted
on a pole at a height of 1 m above the end of the
boom. These mountings result in a wind speed deficit
of approx. 99.5 % (i.e. effects due to flow distortion are
0.5 %) according to IEC 61400–12–1 (IEC 2013) for the
anemometer being directly upwind of the mast. For all
other wind directions in the 180 ° upwind sector the in-
fluence of the mast can be assumed to be smaller as
stated in IEC 61400-12-1 (IEC 2013). The mast LiDAR
comparison was then carried out using data from the
180 ° upstream sectors of the two opposite anemometers
at each height.

The mast is equipped with a dense array of anemome-
ters and meteorological sensors. An overview of the
sonic and cup anemometers that were used for the
inter-comparison can be found in Table 1. In addition
to the sensors mentioned in Table 1, there are sev-
eral temperature, humidity, pressure sensors mounted at
different heights on the mast. Also, several Gill HS-
50 sonic anemometers and fully heated Vaisala Cup
anemometers are installed on the mast. However, due
to technical problems with the Gill HS-50 sonics, they
were not used in the data analysis. The fully heated
Vaisala Cups are used for the detection of icing in the
unheated/bearing-heated cup anemometers. Their wind
speed measurements are not part of the instrument-
inter-comparison as their measurement behaviour dif-
fered from the unheated/bearing-heated cup anemome-
ters and the sonic anemometers. Also, fully heated cup
anemometers are reported to be less accurate in liter-
ature (Fikke et al., 2007; Ronsten et al., 2012). All
mast mounted anemometers used in this study were cal-
ibrated according to IEC61400-12-1:2005 and MEAS-
NET guidelines (IEC 2013; MEASNET, 2009).

The analysis in this paper is based on 10 minute in-
tervals. The collected mast data was filtered for peri-
ods of icing by visually comparing the time series to
the fully heated cup sensors. In addition to that, peri-

ods with sensor failures and malfunction were removed.
For the measurement at the mast top (200 m) the sector
with an influence of the lightning rod was excluded. At
60 m height only one Thies cup anemometer is available
for the sector 60–220°. The opposing sensor is a fully
heated Vaisala cup (see above). For the comparison the
wind speed data was binned by wind direction (10 de-
gree bins). For most wind direction bins there are more
than 50 data points available for all presented heights.
Bins from 10–40 ° and from 90–120 ° contain less than
50 data points for at least one height. At the height used
in the simulations (120 m) there are still 26 to 146 within
these sectors – except for the 100 ° sector with only 13
data points (Fig. 2).

The LiDAR (Leosphere windcube v1) used in this
experiment is a pulsed Doppler LiDAR. It uses a
conically scanning laser and relies on the Doppler
beam swinging technique. For more detailed informa-
tion about LiDARs in general the reader is referred to
e.g. (Emeis, 2007). Four beam directions with angles of
90 ° between them and a fixed half cone angle of about
28 ° are emitted (Fig. 3). The three components of the
wind vector are then reconstructed from trigonometric
relations using the radial beam directions of the individ-
ual scans. In case of the windcube v1, they read:

uL =
vr4 − vr2

2 sin ϕ sin θ
(2.1)

vL =
vr3 − vr1

2 sin ϕ cos θ
(2.2)

wL =
−vr1 + vr2 − vr3 + vr4

4 cos ϕ
(2.3)

With uL, vL and wL being the x, y, and z vector
components of the wind speed, ϕ the half cone angle,
θ the azimuth angle (from north), vr1, vr2, vr3, vr4 the
north, east, south and west measured radial wind speeds.
This study uses the following convention for the three
components of the wind vector: u, v and w as u positive
from west to east, v positive from south to north and
w positive upwards. Radial wind speeds are defined
positive, if oriented towards, and negative, if oriented
away from the LiDAR.
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Figure 2: Number of data points per wind direction bin for different heights. The values indicate the number of 10 min periods for which
both LiDAR and mast data was available after the filter criteria described in the text were applied.

1 

2 

3 

N 

E 

S 

W 

 

 

  
 4 

Figure 3: Beam directions (1–4) of the LiDAR and definition of
the half cone angle ϕ as well as the azimuth angle θ. The wind
vector components u, v, and w are also shown with regards to
their orientation to North (N), East (E), South (S) and West (W)
directions.

After that, the horizontal wind speed is derived and
averaged to 10 minutes. The windcube v1 allows mea-
surements at up to 10 different heights that are taken si-
multaneously. The constant pulse length of the laser re-
sults in a measurement volume of about ±10 m around
the individual height (Pauliac, 2009). LiDAR data was
filtered for an availability of 80 % – i.e. 80 % of the indi-
vidual scans had to be available in specific 10 minute in-
terval. Moreover, periods when the wiper of the LiDAR
was active, were removed since this indicates rain which
might influence the measurement accuracy of the Li-
DAR.

3 Theory and method

3.1 LiDAR errors in complex terrain

Equations (2.1) to (2.3) underlie the assumption that
the flow among all beams is homogeneous (constant u,
v, w). While this is true in flat terrain over sufficiently
long measurement periods, the wind flow in complex
terrain is considerably influenced by local orography
and vegetation (e.g. forests). Hence, the homogeneous
flow assumption is violated – i.e. components of the
wind vector become dependent on the position of the
LiDAR beam:

vri = ui sin(ϕ) sin(θ) + vi sin(ϕ) cos(θ) + wi cos(ϕ) (3.1)

with ui, vi and wi being the wind vector components at
the measurement locations i = 1 to 4.

Following (Bingöl et al., 2009), especially the influ-
ence of the w component/the flow angle is important
in this context. A concave shape of the flow (e.g. val-
leys) results in an overestimation in the LiDAR wind
speed when compared to the ‘true’ wind speed. A con-
vex shape (e.g. hills) in contrast causes an underesti-
mation. Bingöl et al. (2009) also demonstrates that the
LiDAR errors are independent of half cone angle if the w
component is assumed to change linearly with distance.

Here, the LiDAR error is presented as the relative
deviation of the horizontal wind speed VL from the
LiDAR in comparison to the wind speed from a co-
located reference mast VM.
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3.2 Estimation of LiDAR error

The method used here to estimate the LiDAR error is
based on flow model results. It is generally applicable
to all kinds of three dimensional wind fields, regardless
of the flow model. A LiDAR measurement is virtually
placed at the measurement site. The different LiDAR
measurement points (radial measurements) are calcu-
lated in a global coordinate system following simple
trigonometric functions:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi

yi

zi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xL

yL

zL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin(θ + 1
2π(i − 1)) tan ϕhj

cos(θ + 1
2π(i − 1)) tan ϕhj

h j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.2)

with xi, yi, zi denoting the individual measurement loca-
tion coordinates, xL, yL, zL the LiDAR location, hj the
measurement height above ground and i the beam num-
ber (1 to 4).

For each simulated wind direction, the wind vector
components for each beam (ui, vi and wi) are extracted
from the model results using linear interpolation within
the three dimensional grid. They are then projected on
the particular beam direction:

vri = −−→e0 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ui

vi

wi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with −→e0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin(θ + 1
2π(i − 1)) sin ϕ

cos(θ + 1
2π(i − 1)) sin ϕ

cos ϕ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.3)

Following equations (2.1) to (2.2) the wind vector com-
ponents as measured by a LiDAR are then computed.
The ‘true’ wind speed from a mast measurement (uM
and vM) is extracted from the model results as well. The
estimated LiDAR error for the individual wind direction
is defined as follows:

Elidar =

√
u2

L + v2
L −

√
u2

M + v2
M

√
u2

M + v2
M

=
VL − VM

VM
(3.4)

All estimated LiDAR errors in this paper have been cal-
culated using this approach. Built-in approaches of the
flow models are not included in this paper as (unknown)
methodological differences might lead to unwanted dif-
ferences in the results.

By extending this method to multiple LiDAR loca-
tions, a map of LiDAR errors at a pre-defined area of
interest can by generated.

3.3 Flow models

To account for the complexity of real world terrain, three
dimensional flow models can be used to simulate the

flow between the different LiDAR beams at the site
of interest. The modelled wind vectors in the different
beams can then be used to simulate the LiDAR error as
described above. A comparison to the simulated wind
speed at the mast position (equation (3.4)) then allows
a calculation of a direction dependent LiDAR error. The
models used within the study are briefly presented in the
following.

A commonly used model for wind energy applica-
tions is WAsP Engineerning (Mann et al., 2002). The
flow model underlying the flow simulations is based on
LINCOM. It is based on the Linearized Navier Stokes
Equations and was initially published by (Jackson and
Hunt, 1975). Since then there have been several further
developments (e.g. Troen, 1990; Mann et al., 2000).
The influences of the terrain on the boundary-layer flow
are treated as perturbations on a constant horizontal
flow. The developers define the range of application as
flat and moderately complex terrain without steep in-
clinations causing flow separation (Mann et al., 2000).
WAsP Engineering (WEng) does not have a dedicated
forest model. In this study the forest is therefore param-
eterised using a displacement height of zd = 20 m and
increased roughness length (Dellwik et al., 2006). For
details about the model, refer to (Mann et al., 2002).

Originally, the model was intended for site assess-
ment applications in wind energy. However, Bingöl
et al. (2009) developed a method to extract the modelled
radial velocities and estimate the LiDAR error in com-
plex flow. For this paper the Visual Basic Script provided
with the publication was adapted to match the method
described above.

In recent times, models based on the Reynolds av-
eraged Navier-Stokes equations (RANS models) have
become more and more popular in engineering applica-
tions that require modelling atmospheric boundary layer
flows. In contrast to the linearized model, they are capa-
ble of resolving e.g. flow separation that often occurs in
complex terrain (Landberg et al., 2003). With current
computer technology they can now be run on desktop
PCs within a reasonable time (Landberg et al., 2003;
Palma et al., 2008). For this study, the two commer-
cially available RANS codes Meteodyn WT and Wind-
Sim were used. Both models are used to perform steady-
state simulations.

WindSim is based on the CFD Code “PHOENICS”
(Open-Source) using standard steady-state RANS equa-
tions for incompressible flow. Details on the parame-
ters of the used k-ε turbulence closure can be found in
(Gravdahl, 1998).

For Meteodyn WT all relevant model equations and
additional information can be found in a technical note
on the developers’ website (METEODYN, 2007). Me-
teodyn WT also uses standard steady-state RANS equa-
tions for incompressible flow. For turbulence closure a
K closure scheme is used (Hurley, 1997).

Since the RANS codes are commercial products, the
degrees of freedom in the parameterisation are limited.
In this study only the influence of the forest model
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settings is investigated. Both RANS models allow a
variation of the forest density (respectively porosity)
and height, which are the most important parameters
to vary in terms of the forest model. The model is also
offering the possibility to include atmospheric stability
in its simulations. This was not done in this study as it
caused numerical instabilities and simulations often did
not converge.

The presented results mainly focus on the parameter-
isation of the forest model of Meteodyn WT. Therefore
a short summary of the Meteodyn WT forest model and
its parameterisation is presented below.

In Meteodyn WT the local roughness length is di-
rectly related to the tree-height-to-roughness-length-
ratio A:

A =
ht

z0
(3.5)

Meteodyn WT suggests a value of A = 20, but it can be
changed by the user in order to increase the tree height
resulting from local roughness values (METEODYN,
2014).

The forest model then changes several parameters of
the turbulence model below the canopy’s height. For cal-
culation of the dissipation term ε the following equation
is used (Wilson et al., 1998):

ε = max(εcc, ε f d) with

⎧⎪⎪⎨⎪⎪⎩
εcc = Cμ

νT

L2
T

k

ε f d = Cd |U|k
(3.6)

with U being the wind vector, vT the turbulent viscosity,
LT the turbulent length scale and k the turbulent kinetic
energy. Cμ is a term, which is dependent on the Richard-
son number, while the drag force coefficient Cd was em-
pirically determined by the software developer based on
a field study (METEODYN, 2007). For more detailed
information on the two different definitions for the dis-
sipation rate of the turbulent kinetic energy εcc and ε f d
refer to (Wilson et al., 1998).

There are two choices in forest models for Meteodyn
WT, the “robust” and the “dissipative” model. Accord-
ing to the developer, the latter gives better results on tur-
bulence intensity caused by the forest, while the former
is more stable in terms of convergence (METEODYN,
2014).

For the robust forest model, the mixing length l is
kept constant within the canopy, following (Ross and
Vosper, 2005):

1
l

=

⎧⎪⎪⎨⎪⎪⎩
1
l0

+ 1
κz for z > ht

1
l0

+ 1
κht

for z ≤ ht
(3.7)

with ht being the canopy’s height (tree height) and z the
height above ground, κ the von-Karman constant and
l0 = 100 m an empirical coefficient chosen after Arritt
1987 (METEODYN, 2007).

The dissipative forest model additionally introduces
a dissipative zone above the forest, and the mixing
length becomes (METEODYN, 2014):

1
l

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2 for z < ht

(1− ∝) 1
2 + ∝ ( 1

l0
+ 1

κz ) for ht < z ≤ ht + 15 m
with ∝=

z−ht
15 m

1
l0

+ 1
κd for z > ht + 15 m

(3.8)
For the RANS equations, an additional volumetric sink
term is applied for the computational cells that are lo-
cated within the canopy:

FV = −ρCdU|U| (3.9)

The drag force coefficient Cd can be changed by the
user as the forest density from the default setting “nor-
mal” to either “low” or “high”, which means decreas-
ing or increasing the drag force coefficient for the model
(METEODYN, 2014, Ross and Vosper, 2005).

WindSim uses a slightly different forest model with
five parameters to describe the canopy layer as a porous
medium. The model is triggered by a user-defined
roughness length within the roughness map. The for-
est is then modelled by adding an additional sink term
to the RANS equations. Porosity and tree height can be
changed by the user. For details of the WindSim forest
model, refer to (Crasto, 2007).

Both, Meteodyn WT and WindSim, have Add-On
modules to estimate the LiDAR error for a given mea-
surement site. As these are commercial tools, the under-
lying equations are not published. For this paper these
built-in options were not used. Instead the flow fields
were extracted from the model runs and the LiDAR er-
ror was calculated according to the method presented in
Section 3.2.

4 Results and discussion

4.1 Observed LiDAR-mast deviations

To analyse overall accuracy of the LiDAR measurement
versus the mast, a two parametric linear regression was
fitted to the results, exemplarily shown for 80 and 200 m
height (Fig. 4). At both heights, the correlation is very
good with a slope and R2 close to 1 and only small offset
values. The mean wind speed is slightly underestimated
by the LiDAR by about 1.5 and 1.1 % for 80 and 200 m
height (Table 2). In comparison to a flat terrain case,
the scatter is higher (compare e.g. Gottschall et al.,
2011). Detailed results for other heights are presented in
Table 2.

When looking at the direction dependent deviations
between the LiDAR measurement and the reference
mast (Fig. 5) a clear double sine wave pattern, with max-
ima/minima at 150 and 330/60 and 240 ° wind direction,
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Table 2: Results of the linear regression at measurement heights 80, 120, 160 and 200 m. R2 denotes the coefficient of determination of the
linear fit. Only wind speeds V ≥ 4 ms−1 were considered for the fit. No. valid data points and data availability refer to the number of data
pairs used to compare LiDAR and mast measurements after filtering the total time series of 22,752 data points.

Height [m] Slope Offset R2 Mean relative error
[%]

Mean absolute error
[m/s]

No. valid data points Data availability [%]

80 0,973 0,091 0,989 −1,49 −0,095 8026 35,4
120 0,976 0,104 0,992 −0,84 −0,058 9938 43,9
160 0,982 0,075 0,992 −0,88 −0,058 8895 39,5
200 0,974 0,118 0,992 −1,12 −0,076 7097 31,6
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Figure 4: Scatter plot and linear regression between the horizontal wind speed V at the mast and the LiDAR at 80 m (left) and 200 m (right)
measurement height; R2 denotes the coefficient of determination of the linear fit.

can be observed. This behaviour is present for all anal-
ysed heights. For heights between 120 and 200 m there
is neither significant difference in pattern nor magnitude
in the LiDAR-mast deviations. To put this into context it
is helpful to remember that Rödeser Berg has an altitude
of about 100–170 m above the surrounding terrain.

The maximum underestimation for 240 ° wind direc-
tion – which is very close to the main wind direction
at this site – reaches about 4.0 %. Similar values occur
for the opposing wind direction (60 °). For wind direc-
tions orthogonal to these there is an overestimation of
the LiDAR versus the mast of about 2 % for northern
and north-western (300–10 °) winds and about 1 % for a
small sector of the opposing wind direction (130–170 °).

At 60 and 80 m the LiDAR-mast deviations differ
slightly from those observed at higher altitudes. This
might be caused by a stronger influence of the proximity
of the ground and the canopy. Especially for the south-
western sector (240–270 °) it does significantly increase
at 80 m height up to −5 %. At 60 m height, LiDAR-
mast deviations are also increased for 150–220 ° and the
observed pattern slightly changes.

The shape of these curves resembles the orography at
Rödeser Berg: For the two sectors 240 and 60 ° the maxi-
mum slopes are comparable and reach values of 10–15 °.
The terrain has a clearly convex shape in the directions
of the flow. In this situation the observed underestima-
tion of the mean horizontal wind speed can be expected.
For wind directions along the ridge the LiDAR-mast de-
viations are smaller. While for flows from the sector
of approx. 120–200 °, the LiDAR and the mast mea-
surements are very similar for heights between 80 and
200 m, an overestimation of the mast measurements by
the LiDAR can be observed for northerly and north-
westerly (320–10 °) flows. The sector of the overestima-
tion is somewhat smaller for the measurement height of
80 m. This behaviour might be connected to the slightly
concave shape of the ridge at the mast location. How-
ever, the flow is very complex in this situation and it is
difficult to identify the dominating terrain or flow fea-
tures. When averaging LiDAR-mast deviations over all
wind directions, some of these positive and negative de-
viations cancel out (Table 3). No dependence of LiDAR-
mast deviations on the wind speed was observed.
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Figure 5: Mean relative deviation in the horizontal wind speed V between LiDAR and mast measurements versus wind direction at
five different heights (60, 80, 120, 160, 200 m). For 60 m height only the sectors from 60 to 220 ° (upwind direction for the Thies Cup
Anemometer) are shown. Deviations are binned in sectors of 10 °. Confidence intervals are not shown for reasons of readability. Only
V ≥ 4 ms−1 were used.

Table 3: Statistics for LiDAR error estimation by different models and parameterisations. The error of the model is defined as the mean of
the absolute deviations between modelled and measured complex terrain error of the LiDAR. All statistics were calculated from 10 ° bins of
the wind directions and are given in percent. *1) For WindSim, forest porosity and tree height are constant 0.3 (standard value) and 30 m.
*2) Ratio of Forest Height to Roughness.

Meteodyn WT WindSim WEng

Forest Model dissipative robust none standard none
Forest density low normal high low normal high – *1) –

A–ratio *2) 30 30 20 30 40 30 30 20 30 40 – *1) –
Mean deviation [%] 2,46 1,46 1,69 1,16 0,88 2,81 1,96 1,89 1,61 1,33 3,54 2,33 4,35
Maximum deviation [%] 5,18 3,91 3,94 3,23 2,14 5,14 3,77 4,06 3,03 2,89 5,89 4,08 8,35
Minimum deviation [%] 0,41 0,03 0,18 0,23 0,02 0,21 0,73 0,30 0,15 0,09 0,38 0,22 0,31
Standard deviation [%] 1,12 0,86 0,86 0,66 0,60 1,12 0,67 0,84 0,78 0,66 1,37 1,28 2,70

LiDAR-mast deviations found in this study are rel-
atively small when compared to experimental results
from other studies in more complex terrain. (Bingöl
et al., 2009) found deviations of 4–7 % between a
LiDAR and a co-located mast, dependent on wind direc-
tion. However, terrain slopes at the two investigated sites
were significantly higher. (Bradley et al., 2012) ana-
lysed LiDAR-mast deviations for a Scottish Site (Myres
Hill) of moderate complexity. In relation to the co-
located met mast there also was a slight underestimation
that decreased with increasing measurement height. Re-
garding the magnitude of the mean deviations, the errors
found there are comparable to those at Rödeser Berg.
Yet, there is no significant decrease in regression slope
with increasing measurement height for the 200 m met
mast site as it was found at Myres Hill (Bradley et al.,
2012).

4.2 Modelling the LiDAR error

As described in Section 3.2 and 3.3 the LiDAR error was
estimated using three different flow models. The results
for 120 m measurement height in comparison to the ob-
served LiDAR-mast deviations are shown in Fig. 6 (up-
per plot). In general, all models capture the pattern of the
double sine wave in the observations. However, WEng
strongly over-estimates the LiDAR error for directions
with steep terrain inclinations.

In contrast both RANS-models perform better and
capture the magnitude as well as the pattern of the
LiDAR error. The RANS results are especially promis-
ing when compared to typical uncertainties assumed
for mast based cup anemometer measurements of about
1–2 %. Fig. 6 (upper plot) model runs were performed
using parameterisations estimated based on the observa-
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Figure 6: Mean relative deviation between LiDAR and mast measurements versus wind direction at 120 m height compared to estimated
LiDAR error for different models (upper plot) and model spread caused by different parameterisations of Meteodyn WT (lower plot).
For both, the dissipative and the robust forest model, the forest density and forest-height-to-roughness-ratio are varied. Only wind speeds
V ≥ 4 ms−1 are considered. For this height, the number of data points per wind direction bin varies from 17 to 773. The errors bars indicate
the confidence intervals.

tions during site visits and on the recommendations from
the software manuals of Meteodyn WT and WindSim.

It is interesting to note that for sectors with steep ter-
rain inclination angles and long forest fetch the differ-
ences between WEng and the RANS models is largest.
For flow along the ridge the results from all three models
are similar.

By extending the methodology to compute the
LiDAR error, the effect of different terrain features on
the measurement behaviour of the LiDAR can be illus-
trated. Fig. 7 shows an example for the spatial distribu-
tion of the simulated LiDAR error in the hilly landscape
of Rödeser Berg for the wind direction of 240 °.
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Figure 7: Map of estimated LiDAR errors around Rödeser Berg for 240 ° wind direction. The LiDAR errors are modelled with Meteodyn
WT by using the above explained methodology. The map has a resolution of 10 m. Blue colour marks areas of underestimation, while yellow
/ red colour marks overestimation of the ‘true’ wind by a LiDAR measurement. Green areas are close to zero deviation. Black lines are 10 m
height contour lines. The red dot marks the approximate LiDAR and mast location.

It is clearly visible that the ridge and hill top locations
of Rödeser Berg show high underestimations of the hor-
izontal wind speed by the LiDAR. The valleys upstream
of the hill exhibit a positive LiDAR error. The overes-
timation at the right edge of the graph is caused by a
small hill, which is located outside of the domain shown
in this graph (compare Fig. 1).

To better understand the performance of the mod-
els, it is crucial to understand the sensitivity to their pa-
rameterisations. One of the biggest challenges in mod-
elling atmospheric boundary layer flows is the represen-
tation of forests (e.g. Finnigan and Belcher, 2004).
Therefore, the influence and parameterisation of the for-
est model of Meteodyn WT is more closely investigated
here.

Table 3 and Fig. 6 (lower plot) depict the results
of a series of Meteodyn WT runs using different for-
est parameterisations. It is obvious that the spread of
the results is large – especially for flow with steep ter-
rain inclination angles. Differences between the differ-
ent model parameterisations reach up to 5 % in esti-
mated LiDAR error.

It is also intriguing to note that a reduction of forest
height and density results in larger deviations between
the observed LiDAR-mast deviations and the estimated

LiDAR error. The worst model performance is achieved
when removing the forest model from the simulations.
Note also that the modelling results can be slightly im-
proved when the tree height is increased to an unrealis-
tic value of 40 m. In general, the sensitivity of the mod-
elling results to the parameterisation of the forest is in
accordance to other studies investigating flow simula-
tions in forested areas (e.g. Dellwik et al., 2006; Finni-
gan and Belcher, 2004; Crasto, 2007). Over forested
hills Finnigan and Belcher (2004) concluded that in-
cluding the forest canopy model had important effect on
streamlines and profiles of the flow. It underlines the
need for a careful choice and parameterisation of the
forest model. Moreover, the importance of the forest pa-
rameterisation in the estimations of the LiDAR error in-
dicates that the forest representation in the model is not
only important for an accurate horizontal and vertical
extrapolation of the wind speed, but also for the simula-
tion of the flow angles in complex orography. As pointed
out in Section 3.1 the flow angle in the LiDAR beams is
expected to have the strongest influence on the LiDAR
error.

For WEng the forest is modelled using a roughness
length of z0 = 1.0 m and a displacement height of d =
20 m (Table 4). There was no significant influence on
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the results regarding the LiDAR error estimation from
WEng when increasing z0 to 2.0 m. In contrast to the
RANS models in WEng, there is no forest model imple-
mented. This might partly explain some of the large de-
viations between the observed LiDAR-mast deviations
and estimated LiDAR errors. However, the RANS sim-
ulation without a forest model achieved slightly better
results than WEng indicating an improved performance
to represent the complexity of the flow due to the orog-
raphy (Table 3).

5 Conclusion and outlook

At Rödeser Berg a LiDAR-mast inter-comparison in
complex terrain was carried out using high quality
equipment. While the averaged LiDAR-mast deviations
over all wind directions was relatively small, terrain in-
duced errors in the LiDAR were significantly larger for
individual sectors. The double sine wave curve of the
LiDAR-mast deviations can be directly linked to the
shape of the terrain. For the measurement location at
Rödeser Berg the mean wind speed is underestimated
by about 0.8 to 1.5 % for all relevant heights. Regardless
of this very good result, it is important to point out that
the shape and orientation of ridges and hills in relation
to the wind direction distribution at the particular site do
heavily influence the resulting mean deviation. In aver-
age, deviations in individual directions might cancel out.
But for certain configurations, with wind mostly com-
ing from sectors with highest LiDAR errors, the mean
wind speed measurement could be considerably biased.
This stresses that careful consideration needs to be given
to the LiDAR error due to complex terrain – especially
when high precision wind speed measurements are re-
quired.

The inter-comparison of the different flow models
revealed large differences between individual models
and parameterisations. The results emphasize the impor-
tance of an appropriate representation of the forest in
the flow simulations to reproduce the LiDAR errors to a
sufficient degree of accuracy. Also the results from the
model runs without a forest model indicating that the
RANS models perform slightly better compared to the
linear model without a forest model.

Given the right parameterisation and model choice,
flow simulations can be a valuable tool to post-process
LiDAR-measurements in complex terrain.

If simulations are performed in advance of a mea-
surement campaign the expected errors can be estimated
a priori and the experiment design can be adapted to the
local conditions. An important fact to bear in mind, here,
is that the uncertainty in the estimated LiDAR error and,
thus, the wind speeds derived from the LiDAR, will de-
pend on the performance of the model. This is likely to
decrease with the complexity of the terrain and, there-
fore, the magnitude of the estimated error. This is espe-
cially important when economic decisions are based on
the outcome of the measurements – e.g. in wind resource
assessments.
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Abstract: Wind measurements using classical profiling lidars suffer from systematic measurement
errors in complex terrain. Moreover, their ability to measure turbulence quantities is unsatisfactory
for wind-energy applications. This paper presents results from a measurement campaign during
which multiple WindScanners were focused on one point next to a reference mast in complex terrain.
This multi-lidar (ML) technique is also compared to a profiling lidar using the Doppler beam swinging
(DBS) method. First- and second-order statistics of the radial wind velocities from the individual
instruments and the horizontal wind components of several ML combinations are analysed in
comparison to sonic anemometry and DBS measurements. The results for the wind speed show
significantly reduced scatter and directional error for the ML method in comparison to the DBS lidar.
The analysis of the second-order statistics also reveals a significantly better correlation for the ML
technique than for the DBS lidar, when compared to the sonic. However, the probe volume averaging
of the lidars leads to an attenuation of the turbulence at high wave numbers. Also the configuration
(i.e., angles) of the WindScanners in the ML method seems to be more important for turbulence
measurements. In summary, the results clearly show the advantages of the ML technique in complex
terrain and indicate that it has the potential to achieve significantly higher accuracy in measuring
turbulence quantities for wind-energy applications than classical profiling lidars.

Keywords: multi-lidar; WindScanner; complex terrain; turbulence; wind energy

1. Introduction

Over recent years, lidar (light detection and ranging) technology has quickly penetrated
wind-energy applications. Especially in resource assessment, Doppler lidars are now widely used for
wind measurements to predict the annual energy production of windfarms. In flat and homogeneous
terrain, classical profiling lidars using the Doppler beam swinging (DBS) or velocity azimuth display
(VAD) techniques achieve high accuracy [1]. Therefore, in recent years, their use has been adopted into
national and international standards and guidelines [2,3].

Remote Sens. 2016, 8, 782; doi:10.3390/rs8090782 www.mdpi.com/journal/remotesensing
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The application of Doppler lidars in complex terrain, however, remains difficult and is often
associated with systematic errors in mean wind-speed estimations [4,5]. If the flow is complex,
the homogeneity assumption underlying the DBS and VAD techniques is often violated.
First comparison studies have shown promising results in the capabilities of flow models in correcting
this complex terrain error at individual sites [4,6]. However, they also indicated a high sensitivity
to model parameterisations [6] and remain limited to moderately complex terrain. Moreover,
the application of corrections leads to an increased uncertainty.

Another disadvantage of profiling lidars compared to mast-based measurements is that the
estimation of turbulence characteristics, which are, e.g., relevant for wind-turbine loads, is not
possible with the desired accuracy [7–9]. Most prominently, the estimation of the variance of the
wind-vector components and the respective spectra suffer from systematic errors due to the effects of
cross-contamination and volume averaging [9,10]. Newman and co-workers showed that some of the
cross-contamination effect can be mitigated by applying a correction based on the measurement of the
vertical variance [11]. However, their experimental results indicated that even after the application of
the correction, a large deviation between lidar and mast-based measurements can remain. In general,
a turbulence correction is difficult since it depends not just on lidar technology and measurement
configuration but also the three-dimensional structure of the turbulence itself and, as a consequence,
on atmospheric conditions [8,9]. New scanning strategies thus need to be developed. A promising
example is the six-beam method [12,13], where turbulence parameters are directly derived from the
radial velocity variances. Although the first encouraging experimental results have been reported
in [12], other experiments indicated mixed results [11]. In complex terrain, the six-beam method might
also be affected by an inhomogeneous turbulence field.

Probably the most intuitive solution to reduce the potential errors in lidar measurements is to
set up multiple lidars such that the various lidar beams intersect at a single point from different
directions (muti-lidar technique or ML). This strongly reduces the need for flow homogeneity in lidar
measurements. Moreover, intersecting lidar beams probably offer the best approach to derive highly
resolved time series of the three-dimensional wind-vector and turbulence statistics [14].

In flat and homogeneous terrain, first experimental results intersecting three lidar beams
next to a sonic anemometer showed encouraging results for mean wind speeds [15–17] and
turbulence statistics [14,16]. Mann and co-authors showed good agreement between second-order
turbulence statistics of the radial wind velocities from multiple lidar systems and a sonic anemometer
measurement [14] which was corrected using the spectral tensor model of [18]. Fuertes and co-authors
achieved good agreement in second-order turbulence statistics between three intersecting lidars and a
sonic anemometer to which they applied a simpler, pseudo-spatial filtering approach [16]. However,
both studies were performed under idealised conditions in flat and homogeneous terrain and only
report on very limited sample sizes. Newman and co-workers have also used three lidar beams
intersected in a single point to derive turbulence statistics [19], but no adequate reference was available
to assess the accuracy of their measurements.

This paper presents measurements performed during the Kassel 2014 Experiment. The aim of
the Kassel 2014 Experiment was to experimentally explore and demonstrate the advantages of ML
measurements under conditions which are realistic for wind-energy applications in complex terrain.
The experiment also served as a test bed for the complex terrain experiments in the New European
Wind Atlas which will heavily rely on ML measurements [20]. Here, we present measurements and
comparisons of four long-range WindScanners, which intersected at one point, a DBS lidar, and a sonic
anemometer at a reference mast at a complex forested site. An analysis of the radial velocity statistics
is used to examine the measurement accuracy of the individual instruments as well as the accuracy
of the setup process. It is also used to provide insight into the path-averaging effect on turbulence
measurements with the WindScanners. An analysis of the first- and second-order statistics of the
horizontal wind speed contrasts error sources for the different lidar techniques.
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The ML-DBS-mast inter-comparison is especially valuable to analyse and quantify the benefits
of the ML technique over the standard DBS lidar and experimentally compare their measurement
behaviour in complex terrain. The WindScanners were located at distances ranging from directly next
to the mast to 3740 m from the reference mast; they reflect a measurement scenario which is “realistic”
in windfarm development scenarios in complex terrain.

2. Materials and Methods

2.1. Wind Vector Reconstruction and Scanning Strategies

Doppler lidars provide an estimate of reflectivity-weighted, radial velocities of aerosol particles.
This velocity was applied as a good approximation for the radial wind velocity. In the context of
wind profilers, the difference between Doppler velocity and real-wind velocity has been addressed
by [21]. For Doppler lidars, the assumption seems justified as most of the backscattering for optical
wavelengths is from particles which are small enough to be advected with the wind (e.g., [22]).
Moreover, a homogeneous aerosol concentration within the probe volume needs to be assumed at this
point. The measured radial velocity (vr i) is thus a projection of the three-dimensional wind vector (v)
onto the lidar beam

vr i = vi·ni, (1)

where ni is the unit vector in the direction of the lidar beam and i denotes the individual beam and its
location. In meteorological applications, it is convenient to write this equation as:

vr i = uicos(θi)cos (φi) + vicos (θi) sin (φi) + wisin (θi), (2)

where u is directed into the mean wind direction during the averaging interval, v is perpendicular to u
in the horizontal and w is the vertical component of the wind vector. The projection onto the radial is
defined by the elevation angle θ in addition to the angle between the mean wind direction and the
beam φ. The azimuth angle (ψ) or beam-pointing angle is often used instead of φ in the literature to
define (2). However, in this paper, the use of φmakes the notation in the later chapters more consistent.

Assuming homogeneous flow (i.e., vi = v) between the measurement locations or—as is the case
for ML configurations—the intersection of the beams in a single location, multiple measurements can
be combined to derive v using matrix inversion

v = M−1·vr, (3)

where M = {n1, n2, . . .}. For a reconstruction of all components of v, at least three beams need
to be combined.

The horizontal wind speed (Vh) is then defined as:

Vh =
√

u2 + v2. (4)

Classical profiling wind lidars usually rely on a scanning strategy, which employs a conical
scan above the instrument and measures vr i at a fixed height and at different azimuth angles.
The wind profiler lidar (manufacturer Leosphere, type Windcube v2), which is used as a reference
instrument in this study, scans in DBS mode and uses four beams (with θ = 62◦), which are
arranged in two perpendicular planes (Figure 1). An additional vertical beam is used to measure w
directly. The resulting separation between two opposing beams in this setup is roughly equal to the
measurement height.

Especially in complex terrain, the assumption of homogeneous flow across the different beams
of a profiling lidar is often violated; significant, direction-dependent errors in the estimation of the
mean can be introduced [4,5]. The main reason for the observed errors is thought to be the difference
in w (the overbar denotes the mean) across the different beam locations [4,5]. Differences in the other
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components will of course also introduce an error. For the site of the current experiment, a deviation
to mast-bound cup anemometer measurements of approx. −4% to +2% in Vh has previously been
reported [6]. Also the scatter in the inter-comparison was higher than in comparable experiments in
flat and homogeneous terrain [1].
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In contrast to profiling lidars, the ML-technique uses a combination of multiple lidars, which are
located around the measurement location and focus their laser beams to intersect in a single location
(Figure 1). Since multiple independent measurements of the radial velocity are made at the point
of interest, the assumption of horizontal homogeneity of the mean flow among the different beam
locations is not needed. The effect of a potential inhomogeneity within the probe volume of the ML
measurement is expected to be much smaller and the beam separation problem inherent in a profiling
lidar measurement is potentially overcome.

2.2. Second-Order Statistics of vr

One of the characteristics of wind-speed measurements from Doppler lidars is that, due to the
measurement principle, vr is retrieved from a measurement within a probe volume. The width of the
laser beam is usually negligible compared to the length of the probe volume along the path. The effect
of the measurement volume on vr lidar can thus be simplified to line averaging along the direction of
the lidar beam. This can be expressed as

vr lidar =
∞w

−∞

ϕ (s) n·V (r + ns) ds, (5)

where ϕ (s) is the weighting function along the probe volume, r is the centre of the probe volume and
V is the three-dimensional velocity field. Depending on the signal processing and shape of the emitted
laser pulse, ϕ (s) will vary and different forms have been suggested (e.g., [23,24]). Here we follow the
concept that the weighting function can be estimated from a convolution of the form of the laser pulse
ϕp (s) and the gate-weighting function ϕg (s), which results from the size and shape of the sampling
gate—i.e., the internal signal processing [25]. Since the effects of line averaging depend on the scale of
the turbulent eddies, it is convenient to express the problem in Fourier space. The Fourier transform
of (5) can be written as [14,26]:

v̂r lidar (k) = ϕ̂ (k·n) n·V̂ (k), (6)
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where k is the wave vector (k1, k2, k3) and ˆ denotes the Fourier transform. For the WLS 200s (a scanning
lidar manufactured by Leosphere) used in this study, both weighting functions can be approximated
by a Gaussian function [27]. ϕ̂ (k) can thus be approximated by

ϕ̂ (k) = ϕ̂p (k) ϕ̂g (k) = e−k2σ2
p e−k2σ2

g , (7)

where σp is the standard deviation of ϕp (s) and σg is the standard deviation of ϕg (s).
In practice, pulsed lidars use an accumulation time to derive the radial wind speed. We thus

need to account for the temporal averaging. This can be done by adding the additional term
ζ̂ (k1) = sinc (k1·t·u/2), where t is the averaging time [14]. Assuming a homogeneous turbulence
field along the probe volume and Taylor’s hypothesis of frozen turbulence, we can express the line
averaging in (6) on the measured turbulence spectrum, Fvr (k1), using the spectral density tensor
Φij (k) = V̂ (k) V̂∗ (k) as [14,26]

Fvr (k1) = ninj
∣∣ζ̂ (k1)

∣∣2
x

ϕ̂ (k·n) ϕ̂∗ (k·n)Φij (k) dk2dk3 , (8)

where * denotes the complex conjugate. Summation over repeated indices is assumed. In analogy
to what Kaimal and co-workers [26] suggested for sonic anemometers, we can now define a spectral
transfer function between the spectrum measured by the lidar and a point measurement as

Tvr (k1) =
Fvr lidar (k1)

Fvr point (k1)
=

ninj
∣∣ζ̂ (k1)

∣∣2 s
ϕ̂ (k·n) ϕ̂∗ (k·n)Φij (k) dk2dk3

ninj
s

Φij (k) dk2dk3
. (9)

The attenuation in vr lidar can then be calculated by integrating the spectra over k1. One of the
difficulties with (9) is that a model for Φij (k) [18,26] is needed to estimate Tvr (k1). If n is in the direction
of x1, ϕ̂(k·n) becomes independent of k2 and k3 and they can be removed from the integral [26]. In this
case, the effect of line averaging can be expressed as

Tvr (k1) = |ϕ̂ (k1)|2
∣∣ζ̂ (k1)

∣∣2. (10)

This special case has the advantage of removing the need for a model of Φij (k). The line averaging
effect can now be modelled by applying the theoretical formulation in (10) to a point measurement.
If the centre of the lidar range gate and the point measurement are co-located, the only assumption
that we have to make is Taylor’s frozen turbulence hypothesis along the probe volume of the lidar
and the form of ϕ̂ (k). In field measurements, the lidar beam will rarely be exactly parallel to the
streamlines. In fact, during the Kassel Experiment 2014, the beams of all WindScanner devices were
pointed upwards into the atmosphere to some degree. Therefore, (9) would be the exact expression.
However, in the later analysis, we assume that (10) is still a good approximation if the angle between
the mean streamlines is small.

2.3. Second-Order Statistics from Multiple Lidar (ML) Beams

In wind-energy applications V′h
2 or u′2 and, in more complex terrain, also v′2 and w′2 are of key

interest in a site suitability analysis [28]. The respective spectra are also important as they directly feed
into models commonly used for load simulation in the design process of wind turbines [29,30].

In case the lidar beam is not pointing exactly in the direction of the wind component of
interest, we need to use a combination of multiple beams (Section 2.1). In this situation, in addition
to the line averaging, the location of the different lidar beams to each other becomes important.
For a mathematical formulation of the effect of beam separation, it is convenient to define the distance
of the lidar measurement from the point for which the measurement is assumed to be representative of
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(x0). In case of the conical scan of a profiling (DBS) lidar this would be the centre of the circle of the
lidar scan:

d = x− x0, (11)

where x is the location of the centre of the averaging path. Adding the measurement location to (6)
and including the temporal averaging, v̂r lidar can now be rewritten as [26]

v̂r lidar (k, d) = ζ̂ (k1) eik·d ϕ̂ (k·n)n·V̂ (k). (12)

The term eik·d basically decorrelates the wind field which is sensed at the different measurement
locations for high wavenumbers by introducing a phase shift. By combining (3) and (12), a matrix N
can now be defined, which accounts for the effects of line averaging and path separation in the vector
reconstruction. The entries of N are

Nab (k) = Mab ζ̂ (k1) eik·db ϕ̂ (k·nb) (13)

and its inverse J = N−1. The vector reconstruction in the Fourier domain then becomes

v̂ (k) = J (k) ·V̂ (k) (14)

The spectrum of e.g., the u component derived from three lidar beams can be written as

Fu (k1) =
x

∑ 3
b=1 J1b (k) J∗1b (k)Φij (k) dk2dk3 , (15)

where again the summation for repeating indices i and j is assumed. Sathe and co-workers call J
“weighting factors,” because they define how Φij (k) is weighted in the vector reconstruction [9].
The effect of the beam separation on the time series-derived wind vector is twofold. The decorrelation
leads to a damping of the contribution of the spectral tensor, Φij (k), in the direction of the desired
component (e.g., i = j = 1 for u) for high wavenumbers. However, the decorrelation effect is also
present for the other components of Φij (k). As a result, some of the spectral energy of these components
is folded onto Fu (k1). This effect is often referred to as cross-contamination in the literature [9,26],
because the desired spectrum is contaminated by the other terms of Φij (k). As explained in Section 2.2.
the effect of the probe volume averaging is mainly attenuation at small wavenumbers.

Using the spectral tensor model of [18], this effect for two different conically scanning lidars
was investigated [9,10]. It was shown that the combined effects of beam separation and line
averaging strongly depend on the beam configuration and the probe volume, which define J,
but also the atmospheric conditions i.e., Φij (k). Experimental evidence confirms these results and an
underestimation as well as an overestimation of u′2 and v′2 has been reported [8,9,11,12]. It should
also be noted that, in complex terrain, the assumption of a statistically homogeneous turbulence field
implicitly inherent in (15) is likely to be violated and additional errors might be introduced into the
turbulence measurement.

If the range gates which are used for the wind-vector reconstruction intersect at the same location,
eik·d = 1 and the effect of beam separation vanishes. Also, the distance for which a homogeneous
turbulence needs to be assumed is greatly reduced. It is interesting to note that the line averaging
still introduces some cross-contamination. The effect is small compared to the spectral probe-volume
averaging, but may be increased if the probe volume differs between the beams.

In general, the same principles concerning the line averaging and path separation apply for
a sonic anemometer as well. However, the sonic anemometer used in this study uses intersecting
measurement paths which are 2–3 orders of magnitude smaller than the path averaging of the lidars.
Thus these effects are neglected and the sonic anemometer is treated as an approximation of a point
measurement in the analysis in this study.
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2.4. Experimental Setup: The Kassel 2014 Experiment

The data presented in this paper was collected during the Kassel 2014 Experiment at Rödeser
Berg—a hill in central Germany close to Kassel—during summer 2014 (3 July–17 August 2014).
Five long-range WindScanners (scanning lidars based on the Windcube WLS200s) were set up around
the hill (EE, SE, SW, WW, NN in Figure 2). A sixth scanner (MA) was placed on the ridge of the hill
directly next to a 200 m high meteorological mast. An additional Windcube v2 (DBS lidar) was operated
at a few meters’ distance from the mast. The measurements from a sonic anemometer mounted on the
mast serve as a reference in this study.
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Figure 2. Instrumental setup during the measurement campaign. Left: aerial photograph (data source:
published with kind permission of ©Hessische Verwaltung für Bodenmanagement und Geoinformation
(HVBG)) with circles indicating the locations of the lidar and the met mast; the locations which are used
in this study are indicated in black. Right: terrain (data source: Shuttle Radar Topography Mission [31]
version 2.1) and trajectories of the intersecting lidar beams for the ML measurement. The windcube v2
(WC) is also located at the MA position.

The reference mast is erected on a small clearance within a forest which, depending on direction,
stretches from 0.4 to 2.5 km around the mast. The wider surroundings are characterised by a patchy
landscape of mainly agricultural land use, villages and forested hills (Figure 2). The height of the hill
above the surrounding terrain is approx. 100–200 m depending on direction. More details about the
measurement site can be found in [6].

During the deployment of the WindScanners the procedures for calibration of the home position,
levelling, and sensing range as outlined in [15] were applied. For the purpose of these procedures
around each WindScanner, with the exception of the MA WindScanner, at distances of approx. 100 m,
three 2 cm thick surveying stakes were installed, separated by 120◦ in azimuth. The absolute positions
of the WindScanners, stakes, and reference mast top were surveyed using a differential GPS and a
theodolite. These positions were acquired with cm accuracy. The stakes were then mapped using the
CNR-Mapper [15]. After the calibration, the reference mast top was mapped by each WindScanner
to validate the setup procedure, and the static laser beam pointing accuracy and the sensing range
accuracy were estimated to be 0.05◦ and 1 m, respectively.

Due to the terrain configuration, reference mast structure and surrounding vegetation, the
deployment steps, which are described above, could not be applied completely to the MA
WindScanner. Hence, a single surveying stake and the branch of a tree nearby were used for the
CNR mapping. Both hard targets were located about 50 m from the WindScanner and separated
by 180◦ in azimuth. However, since the MA system was located directly next to the reference mast,
the static pointing accuracy and sensing range accuracy could not be validated by mapping the
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mast top. The WindScanners were coordinated and synchronized by a remote master computer [15],
which communicated with the WindScanners using a 3G network [32].

This paper analyses data from measurements when all WindScanners were staring at a single
point close to a Gill HS50 sonic anemometer mounted on the reference mast at a height of 188 m (agl).

The reference anemometer is mounted on a foldable boom with a length of 5.4 m to minimise the
effects of the mast structure. The wind sector 100◦–160◦ is excluded from the analysis to remove data
which is affected by the mast shadow. According to [2], the influence of the mast structure is estimated
to be less than 0.5%. In a wind tunnel test the directional deviation of the Gill HS50 is well below ±1%.
The inclinometer accuracy is given as ±0.15◦. The direction-dependent error of the measurement
of the horizontal wind speed is thus estimated to be below ±1%. The sampling frequency of
the Gill HS50 was set to 50 Hz.

Although there is data from six available WindScanners, we restrict the analysis to four locations
(EE, SW, SE and MA). These locations have the advantage that they have the longest time series in the
analysed scanning mode. Details about the setup of the four scanners can be found in Table 1.

Table 1. Overview of the lidar devices and locations which were used in this study.
Coordinates are given in UTM Zone 32U. Pulse length and gate length are given as full width at
half maximum (FWHM).

MA EE SE SW WC

Instrument type WLS 200S V2 WLS 200S WLS 200S WLS 200S V2 WINDCUBE WLS7 V2

Altitude (m) 387.7 294.6 346.6 258.3 387.7
Latitude (m) 5,690,182.6 5,690,409.1 5,688,371.9 5,687,503.8 5,690,181.2

Longitude (m) 513,590.5 514,213.3 516,843.2 512,185.9 513,593.1
θ (◦) 90 23.3 3.5 6.0 62, 90
ψ (◦) - 250.6 299.3 27.4 8, 98, 188, 278, -

Dist. to mast (m) 2 732 3740 3047 3
Pulse length FWHM (ns) 100 400 400 400 175
Gate length FWHM (ns) 74 150 150 150 58

σp (m) 6.4 25.5 25.5 25.5 11.1
σg (m) 9.5 19.1 19.1 19.1 7.4

Accumulation time (s) 2 2 2 2 ~1.12 (~5.62 for full
circle)

2.5. Data Treatment, Quality Control and Coordinate Systems

Quality control of lidar data is usually done by using a lower carrier-to-noise ratio (CNR) threshold
to identify periods when not enough backscatter is received to derive a reliable wind-speed estimate.
If a structure is present close to the measurement volume, returns from this hard target can also
contaminate the signal. Often this leads to an increased CNR and/or to an increased scatter in the
observed CNR values. Careful analysis of the WindScanner data, which was collected during the
presented experiment, however, showed that also periods during which the CNR fell into the expected
CNR range (here −27.5 and −5 dB were used) and had a “normal” variability sometimes exhibited
spurious radial wind-speed statistics. Therefore, two additional filter criteria were imposed on the
WindScanner data.

The first sorts the radial wind velocities of each averaging interval according to their magnitude.
Outliers are then removed if the gap between them and the rest of the data exceeds 1 m·s−1. This
method is useful in situations with a relatively high radial velocity which is contaminated with
hard target returns, as these are often characterised by a radial wind speed close to zero. The filter,
however, becomes ineffective if the mean radial wind speed is close to zero—i.e., winds perpendicular
to the lidar beam or low wind speeds. The second filter criterion therefore checks the time series
during the averaging interval for its temporal consistency. If the time series after the application of
the first filter still exhibits a difference between two adjacent measurements which exceeds 1 m·s−1,
the respective period is removed completely from further analysis. This threshold seems justified
because of the relatively high sampling frequency (0.5 Hz) and the damping effect of the lidar probe
volume on small-scale turbulence. The exact reason for the problems with the hard targets could
not fully be clarified. At the beginning of the experiment, the WindScanners were focused within
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approx. 1 m above the reference sonic. The following points may then have led to interference
with the mast structure: instability of the WindScanner systems (sinking into soil after installation,
vibration of the systems due to e.g., wind), switching of the staring mode to other patterns inducing
pointing error due to backlash of the internal gearing, and/or movement of the mast structure. For
future inter-comparison experiments, it is thus recommended to increase the distance to the reference
instrument/mast. The problem with the hard targets was not present in the data of the Windcube v2
and only a CNR filter was applied. The values (−22 and −5 dB) slightly differ from the WindScanners
as the system configuration is different.

The analysis in this paper is based on 10 min averaging intervals, which is the standard in
wind-energy applications. Before the analysis of the wind-vector components, a rotation into the
mean wind direction (v = 0 m·s−1) is performed. A second rotation forcing w = 0 m·s−1 as done in
many other micrometeorological studies (cf. [33]) is not carried out as the aim of the study is mainly a
comparison of the different measurement techniques. For this same reason, corrections which are often
applied to eddy-covariance measurements (cf. [34]), such as correcting for high- and low-frequency
loss, are not applied to the sonic anemometer measurements. In a previous study, Mauder and
co-authors reported deviations between a Gill HS and other sonic anemometers, which was attributed
to the Gill HS [35]. However, in their study, the internal correction/calibration was turned off,
which removes the sensor head correction and the instrument-dependent calibration. In the present
study, the internal corrections were turned on and the problems reported in [35] are assumed to not to
be present in the collected data.

3. Results and Discussion

3.1. Radial Velocity Components

In a first step, the radial components of the individual WindScanners (vr lidar) are compared to
the projection of the sonic measurement on the respective WindScanner beam (vr sonic). This allows an
evaluation of the performance of the individual instruments and the accuracy of the setup process.
Moreover, some of the complexities in the inter-comparison of the second-order moments, which arise
from the combination of multiple lidar beams in three-dimensional space, can be simplified when the
radial components of the sonic and lidar wind speed are compared directly. In Section 3.2., we then
turn to the wind statistics which are derived from the combination of multiple WindScanner devices.

3.1.1. First-Order Statistics

The inter-comparison of the mean radial components reveals an excellent agreement between the
sonic and all WindScanner devices. A two-parametric linear regression between the WindScanners
located around the mast and the reference sonic produces slopes (m) and intersects (b) which are very
close to 1 and 0 m·s−1 (Table 2). The goodness of fit for the linear regression for these instruments
is R2 ≥ 0.998. The linear-regression statistics for MA are slightly worse. However, this instrument
is pointing vertically into the atmosphere and w is usually small in the atmospheric boundary layer.
In fact, vr MA only varied between approx. ±1 m·s−1 and the root-mean-square deviation (RMSD) is
comparable to the other WindScanners.

The availability of all WindScanners is affected by hard targeting (mast structure, boom or guying).
As a result, the number of valid measurement periods, especially for the MA location, is relatively low.
A conclusion on how the measurement range affects the data availability is therefore unfortunately
not possible.
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Table 2. Summary of the inter-comparison of the radial velocities of the WindScanners and the sonic
anemometer at 188 m; RMSD indicates the root-mean-square deviation; R2 is the goodness of the fit, m
is the slope and b the intersect of the of the linear regression.

MA EE SE SW

No 10 min
periods 503 2592 1419 1278

Mean vr

m 1.045 0.992 1.005 0.993
b (m·s−1) 0.056 −0.036 0.018 0.055

R2 0.858 0.999 0.998 1.000
RMSD (m·s−1) 0.087 0.104 0.116 0.079

Variance v′2
r

m 0.970 0.829 0.836 0.819
b (m·s−1) 0.017 −0.025 −0.018 0.001

R2 0.969 0.968 0.952 0.970

3.1.2. Second-Order Statistics

For the locations SE, SW and EE, the linear-regression statistics between v′2r lidar (measured by
the WindScanners) and the respective variance derived from the projection of the sonic measurement

onto the direction of the respective WindScanner beam (v′2r sonic) are very similar (Table 2). The slope

indicates a significant underestimation of v′2r sonic by the WindScanner measurements. This is likely to
be due to the relatively large probe volume. In contrast, the slope of the linear regression for the MA
system is significantly closer to 1. Here, the smaller range gate size seems to more than compensate
for the smaller turbulent length scales which are usually found for w. R2 is similar for all systems.
The values are slightly worse than for the first-order statistics, except for the MA location, where R2

is slightly higher. The reduced values in R2 are probably partly caused by the reduced range of the
observed variances when compared to the mean values. Another reason for the increased scatter
is due to the fact that line averaging does not necessarily scale linearly with the observed variance.
It is rather direction dependent on and selective of small wavenumbers. This makes the attenuation
dependent on the form of Φij (k) (9), which varies with atmospheric conditions—i.e., under stable
conditions, a larger portion of the variance will be contained in small eddies as opposed to under
unstable conditions. Also, since a finite time interval is used (10 min), some scatter will be introduced
by the stochastic distribution of the eddy sizes in the individual period. To further investigate the

probe-volume averaging effect on v′2r lidar periods with wind directions close to parallel (±15◦) to the
azimuth angle of the individual WindScanner beams, SE, SW and EE were selected. The spectral filter
function defined by (7) and (10) was applied to vr sonic (Figure 3). The application of the filter function

to the sonic data brings the slope of the linear regression between v′2r sonic and v′2r lidar closer to unity
and slightly improves R2 for all systems. Interestingly, this improvement is also observed for the EE
system, which has quite a large inclination angle into the atmosphere (θ = 22.3◦).

A comparison of the average spectra of vr of the sonic and WindScanner measurements reveals
a clear spectral attenuation for SE, SW and EE spectra from approx. k1 > 10−2 m−1 (Figure 4a–c).
This corresponds nicely to what we would expect for the spectral transfer function (Tvr ) from theoretical
considerations using the parameters in Table 1 and Equations (7) and (10) (Figure 4e). In contrast to
the other systems, the spectrum of MA does not exhibit a clear spectral attenuation, which again is
likely to be due to the smaller probe volume. Instead, the spectral energy at the high wavenumber
tail for MA is actually higher than for the reference sonic. This behaviour can also be observed for
the SW system (Figure 4c). Also Tvr starts to increase and deviate from its theoretical form at appox.
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k1 > 10−1 m−1 for all systems (Figure 4d). This effect becomes worse if measurements with small
variances are included (data not shown) and is likely to be attributed to instrumental noise.
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Up until now, only a few experimental studies investigating v′2r lidar and its spectrum against
reference measurements have been undertaken. Most interesting in regards to pulsed lidars, Mann and
co-authors reported a similar agreement between the observed and theoretical forms of Tvr . However,
in contrast to this study, they only used five selected periods and the lidars were set up in the direct
vicinity of the reference mast. As this leads to large elevation angles, they had to use a spectral tensor
model to derive Tvr . Also, they used a simpler, triangular-shaped weighting function. The influence of
measurement noise at the high-wave-number end of the spectra has also been reported for continuous
wave lidars [36,37] and deserves further investigation for the WindScanner systems. Figure 4e indicates
that the concept of line averaging (9 and 10) can be used to explain the majority of the differences in
the observed second-order statistics between the sonic and the WindScanners.

3.2. Horizontal Wind-Speed Statistics from the ML and Doppler Beam Swinging (DBS) Technique

3.2.1. First-Order Statistics of the Horizontal Wind Speed

For resource estimation in the wind industry, it is standard to use the scalar horizontal velocity
(Vh). This approach is also followed here. Although in many remote sensing applications it is common
practice to work with the vector average of the wind velocity, publications concerning the accuracy
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of lidars in complex terrain often use the scalar mean [4,6]. While vector averaging produces slightly
different numbers, the general patterns that can be observed remain the same and the differences are
very small.

The comparison of Vh measurements of the ML combination using three lidars and the sonic
reveals an excellent agreement between the two techniques as would be expected from the comparison
of vr (Figure 5a). Also, the ML technique using two lidars and neglecting the vertical component
in the vector reconstruction only produces marginally different results for the scanner combination
SE/SW (Figure 5b). For the SW/EE combination, the scatter slightly increases and we can see a few
points which significantly deviate from the linear relationship (Figure 5d). The observed differences
between the different dual-lidar configurations are likely to be at least partly caused by the setup of
the instruments.

One characteristic which sets the different dual-lidar measurements apart is the difference in
azimuth angle between the WindScanner beams. For SW/EE, the angle is smallest (43◦) which
causes the strongest error propagation from the radial wind speed onto the wind vector when solving
Equation (3) (cf. [38]). The angle for SE/EE is slightly larger (49◦) and the SE/SW combination has an
angle difference of 88◦, which is close to the ideal 90◦.

The DBS measurement with the Windcube v2 exhibits more scatter and the linear regression
significantly deviates from 1:1 when compared to the sonic (Figure 5e). Especially for low wind speeds,
an overestimation of the Vhsonic by the DBS lidar can be observed.

In general, the linear-regression statistics for the DBS lidar are similar to what has been reported
at Rödeser Berg in earlier measurement campaigns [6] and are similar to what has been reported
from other lidar-mast inter-comparisons in complex terrain [39] albeit significantly worse than in flat
terrain (e.g., [1]). In contrast, the statistics for the ML combinations are similar to the results which we
regularly observe during DBS lidar calibrations in flat and homogeneous terrain. The “bump” in the
DBS data at low wind speeds might be associated with turbulence effects which are more important
for low wind speeds. Moreover, thermal effects on the flow might create increased vertical velocities
(relative to the horizontal wind speed) which are likely to spatially vary in the complex surroundings
at Rödeser Berg. In combination with the large scanning volume of the DBS lidar at 188 m this would
introduce an increased complex terrain error.

To our knowledge no statistics from a comparably long-term data set for assessing the performance
of ML measurements to derive the mean wind speeds have been published so far. Previously published
results of mast-lidar inter-comparisons either focused on the evaluation of individual measurement
periods [16] or employed scanning strategies that focused more on assessing the spatial heterogeneity
of the wind field than on evaluating ML measurements against a reference [17,40]. The ML-mast
inter-comparison in the latter two references is slightly worse, but due to the different focus of the
scanning strategy, is likely to not be directly comparable. A recently published study by Newman only
compares co-located DBS and ML measurements [19]. The sonic anemometer used in this study only
measures at significantly lower altitudes than the lidars and is only used to give an indication of the
wind field below the lidar measurements. This precludes a quantification of the advantages of either
of the techniques over the other in their study or a comparison to the results presented.

One of the typical observations for profiling lidars in complex terrain is that the deviation in Vh
between the lidar and the mast measurements varies with the shape of the terrain and thus wind
direction [4,6]. This behaviour can also be observed for the DBS data collected during the Kassel
Experiment 2014 (Figure 6). The pattern clearly reflects the shape of the terrain and is very similar to
what has been observed in earlier inter-comparisons between cup anemometers and a DBS lidar at
Rödeser Berg [6]. If the flow is directed across the ridge of the hill (aprox. 50◦–100◦ and 200◦–270◦),
the DBS lidar underestimates Vh. This is a typical observation for convex flow as observed over
e.g., ridges or hilltops [4,5]. In contrast, the sectors showing an overestimation of Vh by the DBS
lidar (approx. 290◦–20◦ and 160◦–180◦) correspond to along the ridge flow. Here, the mast is located
on the slope in front of/behind the highest point on the ridge and the terrain is slightly concave.
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This might also cause a concave flow pattern which results in an overestimation of the horizontal wind
speed by the DBS lidar. Some evidence for this can be found in the change of sign of the flow angle
measured by the sonic between 290◦–20◦ and 160◦–180◦. Whereas for the first sector (mast in front of
the hill top) the median flow angle is 1.7◦ (directed upwards), it is −2.2◦ (directed downwards) for
the second sector (mast behind the hill top). It should be noted, however, that the real flow might be
more complex than this simplified explanation. A more detailed discussion and modelling results of
directional errors of DBS lidar measurements at Rödeser Berg can be found in [6].
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Figure 5. Scatter plots of Vh from different lidar configurations against the reference sonic
at 188 m; (a) SE/SW/EE; (b) SE/SW; (c) SE/EE; (d) SW/EE; (e) Windcube v2 next to the mast;
(a–d) are measurements from WindScanners in ML mode; the Windcube in (e) is operated in DBS mode.
For ML combinations with only two beams, w = 0 m·s−1 is assumed in the wind-vector reconstruction;
n indicates the number of value pairs displayed in the individual scatter plots.
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Figure 6. (a) mean of the directional deviation in Vh between the sonic and the different lidar
configurations; (b) same as (a) but for the SE/EE combination with and without the correction for w;
see text for details; periods during which Vh sonic < 4 m·s−1 were excluded from the comparison to
increase the comparability to other complex terrain measurements reported in the literature. Also, bins
with n < 5 are not displayed; error bars denote ± one standard deviation.

On average, the DBS-mast deviations are slightly shifted (1%–2%) towards an increased Vhlidar
(relative to Vhsonic) when compared to the earlier inter-comparison to cup anemometry. This might be
caused by the different reference anemometers or the different DBS instruments used in the present
study, although the reason could not be fully clarified.

The deviation between Vhlidar and Vhmast for the ML measurements is smaller than for the DBS
system for most sectors and WindScanner combinations (Figure 6). Especially for the WindScanner
combinations SW/SE/EE and SE/SW, the differences are small for all directions and only vary
between approx. −2% and 2%. For the SE/EE combination, a relatively large positive deviation of
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the ML system in comparison to the sonic wind speed can be observed between approx. 350 and 25◦,
which even exceeds the DBS-sonic deviations. This is likely due to the fact that within this range,
the angle between the mean wind direction and the beam directions of SE and EE are large and
the difference in beam directions is small (cf. [38]). This configuration leads to an increased error
propagation in the estimation of u that largely dominates Vhlidar—i.e., the azimuth angles and flow
direction are unfavourable for the retrieval of Vhlidar. For flow angles which are directed in a more
parallel manner to the orientation of the lidar beams, the error propagation for v is expected to be large.
The effect on Vhlidar, however, is then much smaller.

A second effect which can affect the quality of the measurements of SE/EE combination is
the relatively large elevation angle of the EE system compared to the other systems (Table 1).
The assumption, w = 0 m·s−1, thus results in a contamination of Vhlidar by w. Due to the low
availability, an inclusion of the MA system which could correct for the influence of w in the directional
analysis was not possible. Therefore, a direction-dependent correction factor was calculated using
wsonic. Equation (3) is first solved using vr SE, vr EE and wsonic. In a second step, (3) is solved only
using vr SE and vr EE. The ratio of the two results is then applied as a correction factor to Vhlidar.
The correction reduces the deviations in the 350◦–25◦ sector. The effect is, however, relatively small.
Therefore, the assumption w = 0 m·s−1 does not seem to be the main cause of the observed deviations.
Some of the deviations between the sonic and the lidar measurements might also be caused by the
flow distortion of the mast. However, we estimate this effect to be small (c.f. Section 2.4.).

3.2.2. Second-Order Statistics of the Horizontal Wind Vector Components

This section presents the second-order statistics (variances and spectra) of the horizontal wind
components u and v. The second-order statics for the w component can be found in Section 3.1.2.
(MA WindScanner). Figure 7 displays the scatter plots and linear-regression statistics for the different
ML combinations and the DBS lidar when compared to the sonic measurements. The differences
between the DBS and ML, but also among the different ML combinations, are quite large. Almost
identical linear-regression statistics can be observed for the SW/SE/EE and SW/SE combinations

(Figure 7a,b). The R2 values of the linear regression for u′2 and v′2 are similar to the statistics of v′2r
(Table 2 and Figure 3). Also the slope indicates a similar underestimation of u′2 (and v′2) of about 20%.
Looking at the spectra of SW/SE/EE and SW/SE, one can clearly see the effects of line averaging
which causes the reduction in u′2 and v′2 (Figure 8a,b). As for vr, an attenuation in the spectral density
from approx. k1 = 10−2 m−1 for u and v can be observed. The line averaging effect thus also causes
the reduced u′2 and v′2 in SW/SE/EE and SW/SE.

The scatter in the inter-comparison between the SW/EE and SE/EE is larger than for SW/SE/EE
and SW/SE and the slope of the linear regression shifts close to 1. One of the reasons for the increased
scatter in the ML combinations using two WindScanners including the EE system might be that the
EE system has an inclination angle which is not close to 0◦. In the wind-vector reconstruction for
two scanners, the w component is assumed to be 0 m·s−1. Some of w′2 will thus contaminate the
measurement of u′2 and v′2. Moreover, as discussed earlier, the direction of the flow in relation to the
beam directions will also influence the error propagation for the individual components, especially if
the angle between the beams is small [38]. In the experimental setup it is, however, difficult to separate
these effects as they are likely to be correlated.

This observation suggests that for the ML method, an adequate positioning of the lidar devices is
even more important for measuring turbulence quantities than for the mean wind speed.

In general, random measurement errors in the time series will always lead to an increased
variance. Therefore, both the contamination by the w component and the unfavourable angles in the
lidar combination lead to increased u′2 and v′2 in the lidar measurement. The slope values close to the
1:1 line are thus likely a result of the combination of these measurement errors and the line averaging,
which act in opposing directions.
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Figure 7. Scatter plots of u′2 from different lidar configurations against the reference sonic
at 188 m; (a) SE, SW and EE; (b) SE and SW; (c) SE and EE; (d) SW and EE; (e) Windcube v2 next to the
mast; (a–d) are measurements from WindScanners in ML mode; the Wincube is operated in DBS mode.
For ML combinations with only two beams, w = 0 m·s−1 is assumed in the wind-vector reconstruction;
n indicates the number of value pairs displayed in the individual scatter plots.
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Figure 8. Normalised spectra of u and v . For (a) SW/SE/EE, (b) SW/SE and (c) Windcube v2 next
to the mast; solid lines are the sonic spectra; dashed lines are the lidar spectra; sonic time series have
been aggregated to 0.5 Hz (a and b) and 0.89 Hz before calculation of the spectra; only periods with
usonic > 4 m·s−1 and u′2sonic > 0.2 m2·s−2 were used in the spectral averaging; u∗ is the friction
velocity computed from the sonic anemometer measurements; the black line indicates the theoretical
−2/3 slope in the inertial subrange; n indicates the number of periods used for averaging.

The comparison between the DBS system and the sonic indicates a clear overestimation of u′2

and v′2 by the DBS system (Figure 7e and Table 3). Also, the R2 values are lower than for all ML
combinations. The spectra of the DBS system show a significant contamination of the variance
measurements across almost the whole wavenumber range. Only for very large k1 are the spectra for
the u component of the DBS lidar and the sonic close together. For the u component, a local maximum
can be observed around approx. k1 = 10−1.8 m−1. The v spectrum of the DBS lidar is higher than the
sonic spectrum for the whole wave number range and a (smaller) second maximum can be observed
around k1 = 10−1.4 m−1. For higher wave numbers, the spectra then quickly drop off.

The exact shape of the measured spectra of a Windcube does not only depend on the atmospheric
conditions and measurement heights, but will also vary with the flow direction towards the scanning
geometry of the Windcube [10]. It is thus difficult to explain all features of the measured spectra.

The strong positive deviations from the sonic spectra in this range are likely to be caused by the
cross-contamination effects between u′2, v′2 and especially by the contamination of the horizontal
variances by w′2. The short region where the spectra are almost horizontal at the high wavenumber
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end is likely to be caused by the algorithm which derives the wind vector from the measurements of vr.
In analogy with the internal software of the Windcube v2, in this paper the wind vector was calculated
whenever a new measurement of vr was available—i.e., at a frequency of approx. 0.89 Hz. One full
rotation, however, takes five measurements of vr and thus acts similarly to a moving average filter [41].

Table 3. Summary of the linear-regression statistics for u′2 and v′2 for different lidar configurations;
values in brackets are statistics for which periods with usonic < 4 m·s−1 have been excluded; R2 is the
goodness of the fit, m is the slope and b the intersect of the of the linear regression.

SE SW EE SW SE SE EE SW EE WC

u′2

m 0.796 (0.829) 0.790 (0.816) 1.008 (1.026) 0.990 (0.916) 1.651 (1.531)
b (m·s−1) 0.008 (0.006) 0.008 (0.009) −0.006 (-0.011) 0.008 (0.006) 0.104 (0.070)

R2 0.951 (0.963) 0.954 (0.967) 0.887 (0.896) 0.782 (0.865) 0.678 (0.796)

v′2

m 0.825 (0.800) 0.822 (0.800) 0.884 (0.861) 0.883 (0.890) 1.822 (1.731)
b (m·s−1) 0.003 (0.008) 0.004 (0.009) -0.006 (-0.007) 0.020 (0.018) 0.076 (0.038)

R2 0.962 (0.963) 0.966 (0.966) 0.903 (0.930) 0.861 (0.901) 0.689 (0.737)

The relatively strong overestimation in the measured variances by the Windcube compared to
some other studies using similar instruments (Windcube v1 and v2) [9,19] is likely to be related to the
great measurement height (188 m) and thus the large distance between the different beams. In parts,
it might also be caused by a dominance of unstable conditions which are more frequent during the
summer season and the inhomogeneous flow caused by the terrain complexity.

In Table 3, we also provide the statistics for periods when usonic > 4 m·s−1, as this filter criterion
is often used in applications and studies in the wind-energy sector, thereby allowing a more direct
comparison to other experiments. For the ML combinations SW/SE/EE, SW/SE and SE/EE, there is
only a small change in the linear-regression statistics. For the Windcube v2 and the SW/EE, which
have lower R2 values, R2 significantly improves after the application of the usonic > 4 m·s−1 criterion.

4. Conclusions

Two of the biggest challenges for ground-based remote sensing in wind energy are the systematic
errors in the mean wind speed which can be introduced by complex flow in complex terrain and the
inability of traditional profiling devices to accurately measure turbulence. This paper experimentally
explores the improvements in these two areas which can be made using the multi-lidar (ML) technique.
For this purpose, results from the Kassel 2014 Experiment are presented, during which multiple
WindScanners and a Doppler beam swinging (DBS) lidar were operated surrounding a reference
mast in complex terrain.

The comparison of the radial wind velocities between the WindScanner measurements and a
reference sonic shows that, given an accurate setup, an excellent agreement with the reference sonic
could be achieved for individual systems, even if they are positioned several kilometres from the
mast. Combination of multiple lidars to an ML measurement demonstrate that this also holds true
for the derivation of the horizontal wind speed. ML wind speeds were considerably closer to the
mast reference than the DBS lidar at this complex terrain site. The significantly reduced scatter and
the smaller directional deviation in comparison with the reference sonic clearly demonstrate the
advantages of focusing multiple lidar beams at one point over the classical DBS-profiling method.
Correction methods (based on e.g., flow models) can be avoided, which can significantly reduce
the uncertainty in applications like wind resource assessments or site calibrations. Exploiting the
flexibility of the WindScanner technology, the measurements presented here could be extended to
a scan of multiple measurement locations within a planned windfarm site. Especially in complex
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terrain this could significantly reduce the uncertainty associated with the horizontal extrapolation of
the wind resource. For research applications like flow model validation, the ML technique removes
the constraints of a mast measurement for an accurate measurement of the horizontal wind speed.

The ML measurements of v′2r , u′2 and v′2 (for SW/SE/EE and SW/SE) showed a high correlation
to the reference sonic. However, while larger scale turbulence was accurately captured, due to the
relatively large measurement volume and the associated path averaging, attenuation for higher wave
numbers could be observed. This results in an overall underestimation of the variances. An obvious
way forward would be to reduce the measurement volume. With currently available lidar technology,
however, this comes at the cost of a reduced measurement range and, therefore, reduces the flexibility
of ML measurements. An alternative is to develop correction methods for the variance which is lost
due to the line averaging. The good agreement between observed and theoretical spectral transfer
functions is encouraging for this approach. First-order corrections could be based on model spectra
as often done for eddy-covariance measurements (e.g., [42]). Alternatively, the correction could be
based on an extrapolation of the spectra in the inertial sub-range [43,44]. This, however, requires that a
part of the inertial sub-range is not affected by line averaging. More sophisticated approaches could
exploit e.g., the spectral broadening of the received backscatter [25,45,46]. The results for the variance
measurements of the DBS lidar clearly illustrate the errors introduced by cross-contamination in this
technique and reiterate the unreliability of turbulence measurements from profiling lidars.

From a practical perspective, it is interesting that the good results of the ML method could
also be maintained if only two lidars were used. This reduces the additional costs, which are one
of the disadvantages of the ML method, when compared to the DBS lidar (or other profiling lidar).
Differences between the different dual-lidar ML systems are likely to be mainly caused by the setup or,
more precisely, the different angles between the WindScanners. While the mean wind speed is only
slightly affected, the variances of the horizontal wind-speed components seem to be more sensitive
to an unfavourable setup of the WindScanners. A detailed analysis of the effect of the setup on the
accuracy of ML measurements is part of ongoing investigations.
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The authors would like to correct the following errors in [1]. In the original article [1], there is
a typo in Equation (7) and the theoretical function in Figure 4e in the original publication is wrong.
The correct form of Equation (7) should read:

ϕ̂(k) = ϕ̂p(k)ϕ̂g(k) = e−k2σp/2e−k2σg/2 (7)

The corrected version of Figure 4e is displayed in the following:

Figure 4. (e) Spectral transfer function
∣∣ζ̂
∣∣−2 Tvr derived from the average of the normalised spectra.

The correction to Figure 4e increases the deviations between the observations and theoretical
considerations. The sentence “The good agreement between observed and theoretical spectral transfer functions
is encouraging for this approach.” in the conclusion of [1] not longer seems appropriate in this context.
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We apologise for any inconvenience this might have caused to the readers. The manuscript will
be updated and the original will remain online on the article webpage.
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ABSTRACT

Three different methods to derive the dissipation rate of turbulent kinetic

energy ε from a staring lidar are evaluated by comparison to sonic anemom-

etry. The first method uses the behaviour of the temporal power spectra of

the radial velocity in the inertial sub-range. The second method is based on

the calculation of short-term variances by chopping the lidar time series into

smaller pieces. This method is a correction to an approach suggested earlier

(Bouniol et al. 2003; O’Connor et al. 2010). The third approach exploits the

spatial structure function along the lidar beam. All methods produce good re-

sults in estimating ε given the spectral transfer function of the lidar is known.

Care needs to be taken here as the experimentally derived spectral transfer

function from the lidar and sonic spectra showed discrepancies to the one

obtained from theoretical considerations. For the method based on short-term

variances it is important to apply the corrected version suggested in this paper,

otherwise a gross overestimation of ε can result. While all methods yielded

similar results, the range of experimental scenarios for which they can be

used differs. The fact, that the structure-function method uses spatial statis-

tics, makes it the most flexible. While the short-term variance and the spectral

method are mainly applicable to staring configurations, the structure-function

method can also be used in more complex scan patterns.
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1. Introduction31

Due to the needs of the growing wind energy sector the estimation of turbulence parameters32

using lidars has come into the focus of recent research efforts. Reviews can be found in Sathe33

and Mann (2013) and Sathe et al. (2015). One of the most difficult parameters to estimate is34

the dissipation rate of turbulent kinetic energy ε . Due to its well established relationship to the35

spectral density in the inertial sub-range, ε is readily suited to describe the spectral distribution36

of turbulent kinetic energy and is, thus, widely used in turbulence modelling (Wyngaard 2010).37

In wind engineering applications it can be used for e.g. modelling the turbulent inflow for load38

simulations of wind tubines (Mann 1994, 1998).39

Several methods have been suggested and used to derive ε from lidar measurements. For a40

staring lidar they broadly fall into three categories:41

I using the slope of the velocity spectrum in the inertial sub-range (e.g. Banakh et al. 1999;42

Davies et al. 2005; Lothon et al. 2009; O’Connor et al. 2010)43

II exploiting the behaviour of the structure function in the inertial sub-range (e.g. Banakh et al.44

1999; Smalikho et al. 2005; Davies et al. 2004; Kristensen et al. 2011) and45

III utilizing the spectral broadening of the Doppler spectra (e.g. Banakh et al. 1995; Smalikho46

et al. 2005).47

Moreover, based on the structure function approach ε can also be derived from scanning lidars48

using multiple beam locations (Banakh et al. 1999).49

While the approach using the spectral broadening has successfully been tested for continuous-50

wave lidars, the spectral broadening of a pulsed lidar depends on the pulse characteristics and51

internal signal processing of the lidar and is, thus, not straight forward. O’Connor et al. (2010)52

suggested a simplified approach of (I), which relies on the variance of short-term measurements53
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using the variance of the wind velocity rather than the spectrum directly to avoid the need to54

calculate Fourier-transforms.55

Despite the existence of multiple studies using lidars to estimate ε , experimental studies eval-56

uating measurements of ε against reference measurements are rather scarce. If reference mea-57

surements are available they are either limited to a short time period (e.g. Banakh et al. 2010;58

Smalikho and Rahm 2010) or only compare individual profile measurements (Frehlich et al. 1998,59

2006; O’Connor et al. 2010, e.g.)60

In this study we compare three different methods to derive ε from a staring pulsed lidar against61

sonic anemometer measurements. Namely, we use the spatial structure function approach follow-62

ing Kristensen et al. (2011) and the spectral energy density. Moreover, a correction to the approach63

based on the short-term variances suggested by O’Connor et al. (2010) for contributions of larger64

scale turbulence is developed. Finally, the advantages and weaknesses of the different approaches65

are discussed.66

2. Theory67

a. Estimation of ε from the spectra68

One of the most widespread approaches to estimate ε from high frequency wind speed measure-69

ments is to exploit the well defined behavior of the spectra in the inertial sub-range. In the inertial70

sub-range the velocity spectrum can be expressed as (e.g. Wyngaard 2010)71

S(k1) =
9
55

α
(

1+
1
3

sin2 β
)

ε2/3k−5/3
1 , (1)

where α ≈ 1.7 is the spectral Kolmogorov constant and k1 is the wavenumber in the direction of72

the stream lines. The term in the brackets is introduced to account for the angle between the wind73
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direction and the beam or velocity component orientation β (e.g. Banakh et al. 1999; Kristensen74

et al. 2011). Exploiting this behaviour, ε can then be estimated from the spectrum of the wind75

velocity fluctuations (e.g. Champagne et al. 1977). This is done using the maximum likelihood76

method77

ε =

[
9

55
α
(

1+
1
3

sin2 β
)]−3/2

(
1
n

n

∑
i=1

S(k1,i)k
5/3
1,i

)3/2

. (2)

The wave numbers ki, i = 1, ...,n are all in the inertial sub-range. The relative statistical error78

can then be approximated by (Smalikho 1997)79

E ≡ σ(ε)
〈ε〉 =

(
9

4n
+

c
〈
u2〉τ
〈u〉2 T

)1/2

≈ 3
2

n−1/2, (3)

where n is the number of spectral estimates used in the averaging, τ is the correlation time and T is80

the length of the measurement period. While the first term in Equation 3 describes the reduction of81

the error with increasing sample size, the second term is related to the uncertainty in the estimate82

of the mean wind speed. Equation 2 is only valid for a continuous point measurement. Due83

to its short sampling path and high sampling frequency this is usually a valid assumption for84

sonic anemometers. In case of a lidar measurement, the wind velocity is often averaged over a85

larger probe volume. Also sampling/accumulation times are usually longer. The spectra therefore86

become (e.g. Mann et al. 2009)87

S(k1) = nin j

∫∫
|ϕ(k ·n)|2|ζ (k1)|2Φi j(k)dk2dk3 (4)

where n is the unit vector in the beam direction, ϕ and ζ are the spectral transfer functions for88

the probe volume averaging and temporal averaging, respectively, and Φi j is the spectral velocity89

tensor of turbulence. The temporal averaging can be described by90
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ζ (k1) = sinc
k1 〈u〉 t

2
, (5)

where 〈u〉 is the mean wind speed in the direction of the stream lines and t is the accumulation91

time. Within the inertial sub-range, turbulence can be assumed to be isotropic and Φi j can be92

written as93

Φi j =
E(k)
4πk4

(
δi jk2− kik j

)
, (6)

with94

E(k) = αε2/3k−5/3. (7)

where k =
√

k2
1 + k2

2 + k2
3 is the length of the wave vector. In several studies in the literature the95

volume averaging effect is neglected (e.g. Lothon et al. 2009; Lenschow et al. 2012; Pruis et al.96

2013; Borque et al. 2016). The implications of the choice of ϕ or neglecting the volume averaging97

will be discussed in Section 4 .98

b. Estimation of ε from short-term variances99

The estimation of ε from short-term variances is basically a variation of the spectral method.100

For this method the time series of the radial wind velocity of the lidar is broken up into shorter101

pieces. This approach was first developed by Bouniol et al. (2003) for radar measurements and102

later applied to lidar data. O’Connor et al. (2010) suggested that if the short-term period is short103

enough to only be affected by turbulence in the inertial sub-range, the variance within the short-104

term period σ2
vl can be approximated by the integral105
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σ2
vl =

∫ kb

ka

S(k1) =
∫ kb

ka

18
55

αε2/3k−5/3
1 dk1, (8)

where ka = 2π/La and kb = 2π/Lb and the length scales are La = 〈u〉T and Lb = 〈u〉∆t. Here106

∆t is the accumulation time (which corresponds to the sampling frequency) and T is the length107

of each individual short-term period. The path averaging effect of the lidar is again neglected in108

Equation 8. From this O’Connor et al. (2010) derive109

ε = 2π
(

110
54α

)
σ3

vl

(
L2/3

a −L2/3
b

)−3/2
. (9)

Note that unlike in the original formulation (Bouniol et al. 2003; O’Connor et al. 2010) the three-110

dimensional value of the Kolmogorov constant α is used here. However, the formulation in Equa-111

tion 8 neglects the probe volume averaging of the lidar and the contribution of turbulence with112

scales larger than ka. More correctly Equation 8 should read113

σ2
vl =

∞∫∫∫

−∞

[
1− sinc2

(
k1La

2

)]
|ϕ(k ·n)|2|ζ (k1)|2nin jΦi j(k)dk1dk2dk3. (10)

This means that also scales larger than La contribute to σ2
vl . Figure 1 illustrates this effect. In114

fact, assuming Equation 1 to be valid for the whole wave number range contributing to the short-115

term variance, the contribution from scales larger than La are slightly larger than for scales smaller116

than La. The difference between Equation 8 and 10 depends on the averaging time, the wind117

speed, wind direction, accumulation time and ϕ . The effects of the spatial and temporal averaging118

will counteract the overestimation in Equation 8 to some degree. In this paper we use the mean119

short-term variances within the measurement period (e.g. 30 min)
〈
σ2

vl

〉
to estimate εlidar.120

The statistical error in this estimation of εlidar depends on the choice of the short-term interval.121

The random error also depends on the relation between T and τ . Using the framework of Lenschow122
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et al. (1993, 1994) the expected error can be estimated. Here, first Equation A5 in Lenschow et al.123

(1993) is used to to derive the relative random error σ2
2 (T/τ)/µ2

2 . σ2
2 is the variance of the second124

moment of the short-term period and µ2 is the expected value of the long-term interval. Then125

Equation A1 in Lenschow et al. (1993) is used to estimate the ratio µ2(T/τ)/µ2, where µ2(T/τ)126

is the expected value for the short-term variance. The relative random error then can be esimated127

as128

E2
vl =

σ2
2 (T/τ)

µ2
2 (T/τ)

. (11)

If the individual estimates of σ2
vl are assumed to be independent and follow a Gaussian distribution129

the uncertainty for ε follows as130

Eε =
3
2

√
〈E2

vl〉
N

, (12)

where N is the number of the short-term periods used in the estimation of
〈
σ2

vl

〉
.131

O’Connor et al. (2010) also suggest a method to remove the noise contribution from the variance132

measurements based on the instrument characteristics. However, the necessary parameters were133

not available to the authors. Therefore, the noise contribution is estimated from the measurement134

statistics. Extrapolation of the auto-covariance function to zero lag is used (Mayor et al. 1997;135

Lenschow et al. 2000). The noise is determined using the first two lags to extrapolate to zero lag136

(Frehlich 2001).137

c. Estimation of ε from the structure function138

As pulsed lidars are capable of probing the atmosphere at several locations along the beam139

synchronously, the spatial structure of turbulence can be exploited to measure ε without the need140

to invoke Taylors hypothesis. If turbulence is assumed to be isotropic and homogeneous along141
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multiple locations along the beam, the structure function of the wind velocity D can be used for142

the estimation of ε . In the inertial sub-range (Tatarski 1961)143

D(r)≡
〈
[n · (u(x)−u(x+r))]2

〉
=Cvε2/3r2/3 (13)

where Cv = 1.32α is the structure function constant and r is the distance between the measure-144

ments. Notice no dependence on β because the separation vector r is always parallel with the145

velocity component being measured. If the distances are chosen small enough this behavior can146

be exploited and ε can be estimated without the need of an estimation of the outer length scale147

(Kristensen et al. 2011).148

The field underlying the structure function along the lidar beam can be defined as149

∆vl(x,r) = vl(x)− vl(x+r), (14)

where vl ≡ n ·u is the velocity component along the beam. In Fourier space this becomes150

∆v̂l(k,r) = ϕ(k ·n)ζ (k1)û(k)
(

1− e−ik·r
)
, (15)

where û is the Fourier transform of the velocity field. To simplify the further notation, it is conve-151

nient to define152

a(r,k) = ϕ(k ·n)ζ (k1)
(

1− e−ik·r
)
. (16)

The structure function measured by the lidar D can then be expressed as153

D(r) =
∫

a(r,k)a∗(r,k)nin jΦi j(k)d3k. (17)

If r is small enough to lie within the inertial sub-range, the temporal averaging is neglected and154

ϕ(k) is assumed to be Gaussian, i.e. ϕ2(k) = e−k2σ2
l , Equation 17 can be simplified to155

D(r,σl) =
18
55

αε2/3
∫

e−k2σ2
l (1− coskr)k−5/3dk. (18)
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Scaling with the length scale of the lidar probe volume it becomes obvious that the integral in156

Equation 18 is only dependent on the ratio r/σl (Kristensen et al. 2011)157

D(r,σl) =
18
55

αε2/3σ2/3
l

∫
e−κ2(

1− cos(κr/σl)
)
κ−5/3dκ. (19)

The integral in Equation 17 can be solved analytically to give158

D(r,σl) =
54
55

αε2/3σ2/3
l Γ

(
2
3

){
1F1

(
−1

3
;
1
2

;− r2

4σ2
l

)
−1
}
, (20)

where 1F1 is the confluent hypergeometric function of the first kind and Γ is the gamma function.159

ε can then be estimated from the lidar measurements by fitting the measured structure function to160

the theoretical formulation. To remove the influence of the measurement noise the extrapolation161

of the auto-covariance function to zero lag is used (Mayor et al. 1997; Lenschow et al. 2000). D is162

estimated using the first two lags to extrapolate to zero lag (Frehlich 2001).163

To derive a statistical uncertainty for the structure function approach, first the length scale of164

the process in Equation 14 using the spectrum of the structure function (term in the integral in165

Equation 18) is estimated. For this purpose the wave number with the maximum contribution to D166

is calulated and then converted to the corresponding length scale167

L =
2π

argmax
k

e−k2σ2
l
(
1− coskr

)
k−2/3

. (21)

Equation 21 is somewhat inconvenient as the integral length scale depends on r as well as on σl .168

However, for r� σl r will dominate and vice versa (Figure 2).169

To derive the statistical uncertainty from L , again we use the framework of Lenschow et al.170

(1993, 1994). The statistical uncertainty in the estimate in D(r,σ) from a single measurement171

along the lidar beam can then be estimated using Equations A1 and A5 in Lenschow et al. (1993)172

as described for the short-term variance but using L and the length along the beam over which173

D is estimated LD instead of τ and T. This is useful for horizontally staring lidars which sample174
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over a very long distance (e.g. a few km) over homogeneous terrain as it allows an uncertainty175

estimate of quasi-instantaneous measurements of ε . Comparing L with the expected integral176

length scales of turbulence can also serve as an indication if the Equations 18 and 19 are suitable177

for the estimation of ε in the experimental setup.178

If these instantaneous estimates are averaged over a longer time period, the statistical uncertainty179

can be further reduced. In this study the scales corresponding to the temporal averaging over180

30 min LT = 〈u〉T will be dominant in the uncertainty estimation when compared to LD.181

d. Measurement of the spectral transfer function182

Since the understanding of the spectral transfer function ϕ2(k) is essential to interpreting the183

results of the measurements of ε , ϕ2(k) is is also investigated experimentally in this paper. If184

co-located measurements of the lidar and the sonic anemometer exist, there are generally two185

approaches to estimate the ϕ2(k) (Angelou et al. 2012). Probably the most intuitive way is to use186

the individual auto-spectra of the sonic and lidar measurement. If the wind is parallel to the beam187

direction the following relationship can be derived assuming Taylor’s frozen turbulence hypothesis188

(Kaimal et al. 1968; Mann et al. 2009):189

ϕ2(k1) = Su,l(k1)S−1
u,s (k1), (22)

where Su,s is the velocity spectrum of the sonic measurements and Su,l is the velocity spectrum190

of the lidar measurements. Alternatively ϕ(k) can also be measured using the real part of the191

cross-spectrum χl,s of lidar and the sonic velocities (Angelou et al. 2012):192

ϕ2(k1) = ℜ(χl,s(k1))
2S−2

u,s (k1). (23)
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This assumes the real part of the spectrum to be positive. If the noise in the two measurements193

is uncorrelated, Equation 23 has the advantage that the noise will cancel out (Angelou et al. 2012).194

3. Description of the measurements and data treatment195

MEASUREMENT SETUP196

The measurement campaign was performed at the wind turbine test station at Høvsøre, Denmark197

(Peña et al. 2016). A scanning lidar of the type WindScanner (Vasiljevic et al. 2016) was placed198

approximately 1.6 km from a reference mast and the beam was oriented in such a way that the199

laser was pointed next to a sonic anemometer at a height of 100 m mounted on a 116 m mast, see200

Figure 3. The elevation angle of the laser beam was 3.58◦ and thus very close to horizontal. In201

the further analysis the elevation angle is neglected and the beam is assumed to be horizontal. The202

instrument was operated at a pulse repetition rate of 20 kHz and the accumulation time was set203

to 0.5 s. The pulse length was 200 ns. Data was sampled at 100 range gates centered around the204

reference anemometer and with 1 m between them. Data was collected during summer 2014 (22205

August - 6 October).206

The reference anemometer is a Metek USA1 F2901A sonic which is mounted at a height of 100207

m on a triangular lattice tower. At the height of measurement the tower has a width of 1.1 m and208

the measurement boom has a length of 1.9 m (Peña et al. 2016). High frequency data from the209

sonic is collected at a sampling frequency of 20 Hz.210

DATA TREATMENT211

All statistics in this study are based on 30 minute intervals. Sonic data was despiked and gap-212

filled. Periods during which the wind direction was between 150 and 210◦ were excluded from the213

analysis to avoid effects of the mast structure on the sonic measurements.214
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Higher order statistics are more sensitive to measurement noise or random outliers in measure-215

ment data than mean wind speeds. Therefore, a two step quality control process to the lidar216

measurements is performed. Both steps are based on the carrier-to-noise-ratio (CNR). The CNR217

has the advantage to be independent of the wind statistics themselves. First, a CNR-threshold is218

applied to the data. Measurements with CNR values < −25 dB are excluded from further anal-219

ysis. After that, the median CNR is calculated for each individual 30 minute period. Within this220

period all measurements with an absolute difference of > 5 dB from the median are removed. This221

approach has proven to be useful to remove effects of hitting hard targets with the lidar beam in an222

earlier study (Pauscher et al. 2016). It can also potentially help to detect problems with the pulse223

emission or signal processing.224

The effect of the second CNR-filter is given in Figure 4. A comparison of the variances mea-225

sured by the lidar and the sonic reveals a very high correlation between the two instruments if226

the second CNR-filter is applied to the lidar data. Several outliers can be removed. Still, a clear227

underestimation of the sonic by the lidar can be observed. This is likely to stem from the effects228

of the spatial and to a lesser extend also the temporal averaging of the lidar measurement. For229

the mean wind, velocity differences between the sonic and the WindScanner are small. Also, the230

effect of the second CNR-Filter on the mean values is very small.231

4. Results and Discussion232

THE SPATIAL TRANSFER FUNCTION233

The assumption of a Gaussian shape of the lidar pulse is often used for simplicity in the literature234

(e.g. Frehlich and Cornman 2002; Banakh et al. 2010; Kristensen et al. 2011). The manufacturer235

gives the full-width-half-maximum of the pulse as 200 ns resulting in a standard deviation of the236

pulse length of σp = 12.7 m. The internal signal processing of the lidar device employed in this237
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study uses a Gaussian tapering window with σg = 9.5 m. The convolution of the two results in238

σl = 15.9 m.239

In addition to the simplified Gaussian shape of the pulse, the pulse intensity emitted by the lidar240

was also measured. The measured shape is clearly non-Gaussian and significantly skewed (Figure241

5a). This effect gets smoothed to some degree by the convolution with the gating function (Figure242

5b). However, also the theoretical weighting function using the measured pulse intensity remains243

skewed. Measurements using two other WindCube 200s devices brought very similar pulse shapes244

for all instruments.245

As outlined in Section 2, the spectral transfer function of the lidar using co-located sonic mea-246

surements can be obtained by either using the temporal spectra of the lidar and the sonic mea-247

surement or the temporal cross-spectrum of the two. Figure 5c shows the comparison of the mea-248

surements using the two methods with the theoretically derived transfer functions. The measure-249

ments using the cross-spectral method show a good agreement with the theoretical formulations in250

wavenumber space. The difference between the weighting function using the measured pulse and251

assuming a Gaussian pulse is rather small.252

In contrast to the cross-spectral method, the spectral transfer function based on the individual253

spectra of the two instruments shows an attenuation only at significantly higher wave numbers.254

For illustration purposes the theoretical transfer function for σl = 9 m is also shown in Figure 5c.255

This gives a much better fit than the theoretical weighting functions derived from the instrument256

properties. In the following analysis, therefore, σl = 9 m will be used in addition to σl = 15.9 m to257

estimate the effects of the spatial averaging.258

A faster drop-off of the spectral transfer function derived from the cross-spectrum has been259

observed by Angelou et al. (2012) for a continuous wave lidar. In their investigation the spectral260

method also showed a worse agreement to the theoretical considerations than the cross-spectral261
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method. Some of the differences can probably be explained by measurement noise, which is262

also visible in the increase for the spectra-based approach at the high wave number end. For263

pulsed lidars Pauscher et al. (2016) reported a similar observation for the spectral methods. At this264

point the reason for the difference between the spectral and cross-spectral method cannot fully be265

clarified.266

ε FROM LIDAR SPECTRA267

The first method under investigation in this paper to derive ε uses the spectral density in the268

inertial sub-range (Equation 2). This is also the method which is used to derive the dissipation269

rate from the sonic measurements εsonic which serves as the reference in this paper. To ensure an270

appropriate determination of εsonic, the wave number range which is used must be high enough271

to lie in the inertial sub-range. On the other side, measurement noise might contaminate the272

measurements at high frequencies.273

Figure 6a shows the median dissipation rate ε̃ as derived from different wave number intervals.274

For the sonic measurements a plateau can be observed between approximately 0.1 and 0.5 m−1.275

This is a good indication for the spectra showing the -5/3-slope in this range. Therefore, this276

interval to derive εsonic is an appropriate choice in this experimental setup. The u-component of277

the wind vector is chosen to derive εsonic as it usually shows inertial sub-range behaviour already278

at lower wave numbers than v and especially w.279

Unlike the sonic measurements εlidar does not show a clear plateau. It rather increases up to280

k1 ≈ 0.03m−1 and then starts to drop again (Figure 6). Here, the effects of the spatial averaging281

are clearly visible. For higher wave numbers the values increase again. This is likely to be the282

effect of measurement noise, which was also reported from other lidar measurements (e.g. Angelou283

et al. 2012; Pauscher et al. 2016). For all wave number intervals εlidar is lower than εsonic. This284
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fits well to the observation that σ2
vr,l is smaller than σ2

vr,s (Figure 4). Figure 6b also highlights285

some of the difficulties associated with an estimation of ε from the raw lidar spectra. On the one286

hand, estimates of ε should be made within the inertial sub-range. On the other hand the spatial287

averaging effects can bias the estimated value of ε towards a significant underestimation at higher288

wave numbers.289

Figure 6b displays the comparison of ε̃ by wave number interval only for flow along the lidar290

beam. This has the advantage that ϕ2(k1) is simply multiplied onto the sonic spectrum to get291

the lidar spectrum and therfore, in theory, the spectral attenuation can be annihilated by dividing292

the lidar spectrum with ϕ2(k), if this is known. However, for high wave numbers the effects of293

measurement noise quickly become dominant. This is also associated with the quick drop-off of294

ϕ2(k) at high wave numbers (Figure 5c), which makes the expected turbulent signal very small295

and the measurement prone to noise. In Figure 6b the onset of the plateau of ε̃ derived from the296

sonic measurements and the start of the noise dominated region of the lidar measurements fall very297

closely together.298

If ϕ(k) is unknown the first maximum of the lidar measurements in Figure 6a seems to be the299

natural choice to make an estimate of ε from the lidar data. Here, one can get as close to the inertial300

sub-range as possible while the effect of the spatial averaging by the lidar still is comparatively301

low. Also, the dip for higher wave numbers is reassuring that the measurements are not dominated302

by noise in this wave number range. However, in the current setup this point (0.0215 - 0.0464 m−1)303

lies only at the edge of -5/3-slope. This induces a systematic underestimation of ε̃ by the lidar.304

For a more vertically pointing beam direction the onset of the inertial sub-range is expected to be305

at higher wave numbers. Thus, the underestimation is likely to be stronger.306

Figure 7 shows the direct comparison of εsonic and εlidar derived from the wave number range307

0.0215 - 0.0464 m−1. Also shown is the comparison for the wave number range 0.0464 - 0.1308
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m−1 corrected with |ϕ(k1)|3. In general there is a good correlation between dissipation estimates309

from the sonic and the lidar for both comparisons across several orders of magnitude. As would310

be expected from Figure 6, for the uncorrected εlidar from the wave number interval (0.0215 -311

0.0464 m−1) there is an average (median) underestimation of εsonic by εlidar (apporx. 39%). For312

the corrected εlidar in the wave number interval 0.0464 - 0.1 m−1 this changes to a small overesti-313

mation (2 %).314

As outlined in Section 2 the spectral attenuation also depends on the angle between wind di-315

rection and the lidar beam direction. To make an estimate of its influence on εlidar numerical316

integration of Equation 4 using Equation 6 can be used. Due to relatively fast sampling of the lidar317

the effect of the temporal averaging is relatively small. For u = 18 m s−1 neglecting ζ (k1) leads318

to a theoretical underestimation of approximately 5 % in ε .319

In the absence of a reference measurement it might be difficult to identify the appropriate wave320

number intervals and transfer functions. Thus, choosing the first peak as shown in Figure 6 and321

acknowledging the systematic underestimation of ε might be the only practical approach method322

in some situations.323

Another consideration that should be taken into account when selecting the wave number interval324

is that the statistical random error in the estimate of S(k1) is of the order of S(k1) if no frequency325

bin averaging is applied. This is an issue, especially, if short measurement periods and/or low wave326

numbers are used for the estimation of ε . For the two wave number intervals shown in Figure 7327

the statistical random error is between approximately 13 % - 33 % and 9 % - 22 % depending on328

the wind speed.329

In practical applications the spectral method requires a relatively high sampling frequency. Oth-330

erwise an estimation of S(k1) inside the inertial sub-range is not possible. Moreover, for a disjunct331

sampling with a short integration time, aliasing effects can contaminate the spectral estimates. Due332
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to the principles of a pulsed lidar, relatively long accumulation times are needed (usually at least333

0.5 - 1 s). Moreover, the currently available scanning technology for pulsed lidars has a moving334

speed in the order of 30◦ s−1. Complex scan patterns, therefore, take too long to revisit the same335

point and the method is mainly restricted to staring configurations.336

ε from short-term variances of the lidar time series337

If ε is to be estimated from short-term variances, the length of the short-term interval has to338

be chosen. O’Connor et al. (2010) used an interval length of 40 s which corresponds to a length339

scale La= 400 m at a wind speed of 10 m s−1 but varies with wind speed. From theoretical340

considerations, however, it seems more appropriate to base the choice of the averaging interval on341

spatial scales and, thus, use a varying time period. This has the advantage that it is also easier to342

compare to the spectral method, where also a fixed spatial scale was chosen.343

In this context a compromise needs to be made. On the one hand, scales need to be large enough344

to include enough points in the short-term interval to allow for a reasonable calculation of the345

standard deviation. On the other hand, scales should be small enough so that all wave numbers346

contributing significantly to the variance in Equation 10 should be contained within the inertial347

sub-range. Based on the analysis in Figure 6a, La = 100 m (ka = 0.0628 m−1) is chosen in this348

paper.349

Figure 8 shows a comparison between εlidar estimated using La = 100 m and εsonic. In general,350

a good correlation between the lidar and the sonic measurements can be observed. However, there351

is a bias towards an underestimation of the sonic measurements by the lidar measurements. A352

likely cause for this is, that the scales contributing to σvl are not fully contained within the wave353

number range within which the -5/3-slope applies. At this point it should also be reiterated that354

the original formulation of Bouniol et al. (2003) and O’Connor et al. (2010) should not be used355
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as this can produce a significant overestimation of ε . For the setup in this study the systematic356

overestimation of ε using Equation 9 compared to Equation 10 is between approximately a factor357

of 1.6 - 3.7 depending on wind speed and direction.358

Especially at lower values of ε a significant difference between the εlidar estimated with and359

without accounting for the measurement noise can be observed. While the values for directly360

using σvl flatten out for low εsonic, the auto-covariance method shows a much better correlation361

with the sonic measurements and seems to effectively remove the measurement noise.362

Similar to the spectral method a high frequency sampling is important for a successful applica-363

tion of the method. Longer time periods between the individual samples require larger time/spatial364

scales La and Lb which conflicts with the requirement that all contributing wave numbers lie within365

the inertial sub-range. The statistical random error of the method is dependent on wind speed. As-366

suming τ = 20 s and T = 10 s (u = 10 m s−1) the Eepsilon = 10 %. For u = 5 m s−1 and (u = 15 m s−1)367

this value is 13 % and 8 %, respectively.368

As lined out in Section 2 the estimation of εlidar form the short-term variances can bee seen as a369

simplification/special case of the spectral method. However, it also has similarities to the structure370

function method as it ’integrates’ the variations over a certain wave number interval.371

ε from the spatial structure function372

Figure 9 shows the influence of the form of the spatial averaging window, which is used in the373

calculation of εlidar from D. The ratio between ϕ(k) from the measured pulse and the Gaussian374

form with σl = 15.9 m only slightly differs by distance. This indicates that for the calculation of375

εlidar the differences between the two shapes are small. The ratio between the larger (σl = 15.9 m)376

and smaller (σl = 9 m) Gaussian window is strongly dependent on r. Here, the effects of range-377
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gate overlapping between the two points and the effect of small scale turbulence attenuation which378

varies with σl can be seen.379

Motivated by the considerations about the theoretical and measured form of ϕ(k) (Figure 5)380

and their influence on the values derived for εlidar (Figure 9) two Gaussians with σl = 9 m and381

σl = 15.9 m were used to derive εlidar from the structure-function method. For σl = 9 m the median382

value of εlidar is slightly lower than the reference but relatively constant over the investigated range383

of r. In contrast, for σl = 15.9 m εlidar strongly decreases with increasing r The ratio for the two384

follows the theoretical pattern shown in Figure 9 a. This behaviour again supports that σl = 9 m is385

more appropriate than σl = 15.9 m for the investigated measurements.386

The pattern in the blue lines in Figures 9 and 10a also shows that the sensitivity of the estimates387

of εlidar to ϕ(k) decreases with increasing r. Thus, as for the method based on the short-term388

variances, there is a trade-off between small distances to ensure inertial sub-range behaviour of389

the turbulence and large distances to decrease the uncertainty due to ϕ(k1). In contrast to the390

method relying on short-term variances small separation distances can also be applied for high391

wind speeds. Especially for low measurement heights this can be advantageous. However, if there392

is uncertainty in ϕ(k) or relatively high noise levels it might be advantageous to use larger r.393

As discussed in Section 2 the statistical uncertainty for the structure function method depends394

on wind speed, σl , r and also on wind direction. Flow parallel to the lidar beam can be seen as a395

worst case scenario for the statistical uncertainty. This case is shown in Figure 10b for different σl ,396

r and u. From a statistical point of view it is advantageous to use settings with a small σl . There397

is also a dependency on r, however, at small separation distances (roughly σl > 3r) the effect is398

limited as σl dominates in Equation 21. As for the short-term variance method and the spectral399

method, there is a strong dependency of Eε on the wind speed.400

20



An interesting property of the spatial structure-function method is that the requirement for high401

frequency sampling is strongly relaxed. Indeed, applying Taylor’s concept of frozen turbulence402

and assuming u parallel to the beam, probing the same beam direction with a frequency higher than403

u/LD will not reduce the statistical uncertainty. For the current experiment with a typical u = 10404

m/s and LD = 100 m a return time to the same point ≤ 10 s would not increase Eε . One thing405

that needs to be kept in mind is that the estimation of the measurement noise from the temporal406

auto-correlation function is not adequate in this situation and other noise removal techniques such407

as from instrument characteristics (O’Connor et al. 2010) or e.g. using the odd and even pulse408

accumulation technique suggested by Frehlich (2001) need to be applied.409

The spatial structure function method is also the only method which does not require knowledge410

of the mean horizontal wind speed. This is a strong advantage in staring configuration, as in411

many cases staring configurations do not provide a measurement of the mean wind speed. For412

the spectral and short-term-variance methods additional measurements or modelled values of the413

mean wind speed are required in these cases.414

The direct comparison of the individual measurements of εlidar and εsonic shows a good corre-415

lation between the two over several orders of magnitude. This is similar to what Banakh et al.416

(2010) observed for a few selected hours using a pulsed lidar and the structure function approach,417

but also including the outer length scale in the model for the structure function. Other studies using418

the structure function approach only show the comparison of individual vertical profiles between419

lidar and a thethered system were reported by Frehlich et al. (2006) or lack a reliable reference420

measurement (Frehlich et al. 1998; Smalikho et al. 2005; Smalikho and Rahm 2010).421

21



5. Conclusion422

Three methods were investigated to estimate the dissipation rate of turbulent kinetic energy from423

a staring lidar. In general, if the appropriate ϕ(k) is applied to account for the spatial averaging424

along the beam and the noise is accounted for, all three methods yielded good results. However,425

care needs to be taken in this context, as ϕ(k) determined from measurements of the auto-spectra426

significantly differed from the theoretical considerations. The method based on the short-term427

variances should only be applied in the corrected form to account for the large scales contributing428

to the short-term variances. The corrected formulation of the method is more complex. As its429

simplicity is one of its biggest advantages, the method becomes less attractive in the corrected430

form. The advantage of the spectral method is, that the analysis of the spectra also provides431

insight into the noise in the measurement and to some degree into the spatial averaging along the432

beam.433

In many situations the method based on the structure function will be a good choice. It is at434

least as accurate as the other methods. Moreover, in contrast to the other two methods, it relies on435

spatial instead of temporal statistics. This provides a great advantage, if multiple beam directions436

are scanned by a single lidar and the sampling rate in one beam direction becomes low. Another437

advantage of the structure-function method is its independence from the mean wind speed. This is438

useful for staring configurations where no reliable estimates of the mean wind speed are available.439

Finally, pulsed lidar technology allows for the use of relative small separation distances in the440

structure function method, which is useful in case of small turbulent scales and/or high wind441

speeds.442

22



Acknowledgments. The work in this publication was funded by the projects windscanner.eu and443

New European Wind Atlas. Lukas Pauscher received funding from the IRPWIND mobility pro-444

gramme to perform the work presented in this article.445

References446
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FIG. 3. Satellite image of the measurement site; red crosses indicate the positions of the lidar and the position

of the mast; the distance between the two is approx 1.6 km.
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(a) (b)

FIG. 4. Comparison of wind velocity statistics in the direction of the lidar beam as measured by the sonic

anemometer and the lidar; (a) mean wind velocity and (b) variance of wind velocity; note that for clarity reasons

not all points without 2nd CNR-filter are shown.

600

601

602

33



(a) (b)

(c)

FIG. 5. (a) measured pulse intensity of the WindScanner (windcube 200s); (b) spatial weighting functions

of a Gaussian with σl = 15.9 m (blue line) and the measured pulse intensity (orange line); (c) comparison of

the theoretically derived spectral transfer functions with the measurements using the spectral and cross-spectral

method; wind directions ±5◦ from the beam direction were used.
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(a) (b)

FIG. 6. (a) Dissipation rate (ε) as derived from varying wave-number intervals from the sonic and the lidar

measurements using Equation 2; ˜denotes the median in the respective wave number interval over all measure-

ment periods passing the quality control; the sonic values were obtained from the u-component of the wind

vector i.e. β = 0◦ in Equation 2; (b) same as (a) but for wind directions parallel (±5◦) to the beam; the grey line

indicates the ε derived from the lidar corrected with |ϕ(k1)|3 - i.e. the individual spectra were corrected using

|ϕ(k1)|2 before calculating ε .
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FIG. 7. Comparison of εlidar as derived from the spectral method using two different wave number intervals

(0.0215 m−1 < k1 < 0.0464 m−1 and 0.0464 m−1 < k1 < 0.1 m−1) of the lidar spectra and εsonic; the spectral

density in the second interval has been corrected with |ϕ(k1)|3 (compare also Figure 6).
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FIG. 8. Comparison of εlidar using the short-term-variance method (Equation 10); La = 100 m was used; the

temporal averaging is neglected; red: without noise removal, blue: auto-covariance method has been applied.
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(a) (b)

FIG. 9. (a) Influence of ϕ(k) on εlidar as derived from D for different separation distances r; the effect of the

temporal averaging is neglected; (b) scatter plot of εsonic vs εlidar derived from D using σl = 9 m and r = 25 m;

the darker lines indicate the bin-averaged (median) values; blue: noise was removed using the autocorrelation

method; red: no noise removal.
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(a) (b)

FIG. 10. (a) εlidar as derived from D for different r using a Gaussian form of ϕ(k) with σl = 9 m and σl = 15.9

m; εsonic from the spectral method is also shown as a reference; (b) relative error of the estimates of εlidar from

the lidar data estimated using the structure function method as a function of r for different wind speeds; solid

lines u = 15 m/s, dashed lines u = 10 m/s, dotted lines u = 5 m/s; stream lines parallel to the lidar beam were

assumed.
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Abstract
This study investigates turbulence characteristics as observed at a 200 m tall mast at a hilly and complex
site. It thereby concentrates on turbulence statistics, which are important for the site suitability analysis of a
wind turbine. The directional variations in terrain are clearly reflected in the observed turbulence intensities
and drag. Integral turbulence statistics showed some variations from their typical flat terrain values. Footprint
modelling was used to model the area of effect and to relate the observed turbulence characteristics to the
ruggedness and roughness within the estimated fetch area. Among the investigated turbulence quantities, the
normalised standard deviation of the wind velocity along the streamlines showed the highest correlation with
the effective roughness and ruggedness within the footprint followed by the normalised friction velocity
and normalised standard deviation of the vertical wind speed. A differentiation between the effects of
roughness and ruggedness was not possible, as forest cover and complex orography are highly correlated
at the investigated site. An analysis of turbulence intensity by wind speed indicated a strong influence of
atmospheric stability. Stable conditions lead to an overall reduction in turbulence intensity for a wind speed
range between approx. 6-12 m s−1 when compared to neutral stratification. The variance of the horizontal
wind speed strongly varied over the height range which is typical for a modern wind turbine and was in the
order of the differences between different standard turbulence classes for wind turbines.

Keywords: wind energy, turbulence intensity, footprint, complex terrain, ruggedness, design wind conditions

1 Introduction
Today a significant part of the wind energy develop-
ment in, e.g., Germany takes place at inland sites lo-
cated relatively far from the coast (BERKHOUT et al.,
2015). New turbine technology has made sites with rel-
atively low wind speeds and/or forest cover technically
and economically viable. Due to the increased wind re-
source, hilltop locations in lower mountain ranges are
attractive for turbine siting in this context. This results
in a significant increase in complexity of orography of
the terrain when compared to many coastal sites, where
a lot of the wind energy development has taken place in
the past. Also, a lot of the unused wind energy potential
of e.g. Germany and Scandinavia is located in complex
and/or forested terrain (CALLIES, 2015; SIYAL et al.,
2015). Many of these potential sites exhibit a significant
amount of heterogeneity in surface cover and orography.

To avoid the increased turbulence induced by forest
canopies and to make use of the larger wind resources
at greater heights, modern wind turbines at inland sites
now reach hub heights of 160 m and more. The tip
heights of modern wind turbines can reach well above
200 m. Despite this development there is very little
published experimental wind and turbulence data from
∗Corresponding author: Lukas Pauscher, Fraunhofer Institute for Wind En-
ergy and Energy System Technology IWES, Koenigstor 59, Kassel, Ger-
many, e-mail: lukas.pauscher@iwes.fraunhofer.de

forested areas covering the height range relevant for
wind energy applications. This is especially true when
the effects of complex orography and patchy forested
landscape are combined. As a consequence, there is a
lack of validation of models used in wind resource esti-
mation and site assessment in complex and patchy ter-
rain. Therefore, the estimation of the wind resource and
especially the turbulence parameters, which are required
for the site suitability analysis of a wind turbine, are as-
sociated with high uncertainties.

The interest in ecosystem-atmosphere exchange of
trace gases such as carbon dioxide has led to an exten-
sive body of experimental studies of flows within and di-
rectly above plant canopies including complex and het-
erogeneous sites (e.g. BALDOCCHI, 2014). The verti-
cal extension of measurements in these studies is often
limited to twice of the canopy height. Therefore, most
of these experimental results only have limited value
in the context of wind energy applications. One of the
few sites with published experimental results from a tall
tower (135 m) stems from a boreal forest in Sweden
(ARNQVIST et al., 2015). The analysis showed a gen-
eral applicability of Monin-Obukhov similarity theory
(MOST) with a slight deviation for upper heights, but
also indicated the influence of a limited boundary layer
height on the wind profile. Additionally, a detailed anal-
ysis of turbulence statistics was presented. For the same

© 2017 The authors
DOI 10.1127/metz/20xx/xxxx Gebrüder Borntraeger Science Publishers, Stuttgart, www.borntraeger-cramer.com
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site, CHOUGULE et al. (2015) investigated the turbu-
lence spectra in the frame work of the spectral tensor
model of MANN (1994) in near neutral conditions. As
expected, they found strongly increased turbulence lev-
els but could not observe significant differences in the
length scales or anisotropy of the turbulence when com-
pared to flat terrain. Both studies focused on a homoge-
neous wind sector.

If we turn our attention to the combination of orog-
raphy and forested landscape, the lack of experimental
data is even more severe and only a handful of published
experimental field campaigns exist. As for forest in flat
terrain, many studies in complex terrain only employ rel-
atively short masts and thus are not suitable to investi-
gate wind and turbulence statistics at elevated heights
(e.g. ZERI et al., 2010; GRANT et al., 2015). BRADLEY
(1980) published measured wind and turbulence profiles
for neutral conditions from of a measurement tower up
to 124 m over a 10 m tall eucalyptus forest and hetero-
geneous fetch conditions. A limited number of experi-
mental results on the effects of orography covered by
plant canopies is also available from wind tunnel ex-
periments (e.g. KAIMAL and FINNIGAN, 1994; NEFF
and MERONEY, 1998; RUCK and ADAMS, 1991) and
flume experiments (POGGI and KATUL, 2007, 2008).
Besides the experimental evidence gathered, theoreti-
cal modelling studies have had a strong contribution to
our current knowledge of flow over forested hills (e.g.
FINNIGAN and BELCHER, 2004; ALLEN and BROWN,
2002; BROWN et al., 2001; ROSS and VOSPER, 2005;
PATTON and KATUL, 2009).

Although modelling studies have started to turn on
more complex inhomogeneous forests (e.g. SOGACHEV
et al., 2009; BOUDREAULT, 2015), it is still very dif-
ficult for the experimentalist or practitioner from the
wind energy community to relate the observed wind
and turbulence statistics to the surface characteristics
surrounding the site in heterogeneous landscapes. De-
tailed models often require large computer resources as
well as detailed expert knowledge and are thus not a
feasible option in many situations. Recently, remotely-
piloted aircraft have been used to experimentally explore
small scale variations in the turbulent flow over complex
orography in a wind energy context (WILDMANN et al.,
2017).

In this paper we present turbulence and wind speed
measurements from a 200 m tall tower located on a
forested hill surrounded by a patchy and hilly landscape
in central Germany. To analyse the link between the up-
stream surface characteristics and turbulence quantities,
we borrow from the surface flux community and use
footprint modelling (for an overview see e.g. VESALA
et al. (2008) or LECLERC and FOKEN (2014)) to iden-
tify the area influencing the measurement. We thus fol-
low an idea which was recently suggested by FOKEN
(2013) and experimentally investigate the transferabil-
ity of the footprint approach to wind energy applica-
tions. Thereby, this analysis mainly focuses on turbu-
lence quantities which are relevant for the site suitability

assessment of a wind turbine. The influence of surface
cover is described using the classical concept of surface
roughness, while the effects of orography are concep-
tualised using a ruggedness index. Also, the paper dis-
cusses some of the observations made at Rödeser Berg
in relation to standards for the description of the turbu-
lence environment (IEC, 2005a).

2 Methods

2.1 Experimental site and instrumentation

The data analysed in this paper was collected at a 200 m
tall mast at Rödeser Berg in northern Hesse in Ger-
many (51◦21′46′′N,9◦11′43′′E). A brief description of
the site can also be found in KLAAS et al. (2015) and
PAUSCHER et al. (2016). The mast is located at the
south-western edge of a clearing (approx. 280 m north to
south and 200 m east to west) on the ridge of a forested
hill which stretches from approx. SSE to NNW (Fig-
ure 1).

The closer surroundings of the mast are characterised
by forest of varying heights and several clearings. The
distance, up to which the forests stretches, strongly
varies with direction. In the direction NNW the forest
extends approx. 5.8 km, while in ENE the forest edge
is already reached within approx. 400 m from the mast.
The orography of the hill also varies strongly with di-
rection. In general, the terrain is hilly and undulated. To-
wards the NNW-direction a hilly ridge extends for about
5.8 km.

The wider surroundings consist of a patchy landscape
of mainly agricultural land use, forest and some settle-
ments. The immediate surroundings of the forested hill
are mainly characterised by open agricultural areas. In
the east and the west these are bordered by forested hills.
In general, the terrain surrounding Rödeser Berg is very
heterogeneous, which makes a definition of sectors with
a consistent fetch as done in many other studies difficult
if not impossible.

The mast consists of a rectangular lattice structure
with a side length of 1.05 m. The solidity of the mast
structure is 0.220 m2 m−2 for the lower section (be-
low 100 m) and 0.204 m2 m−2 for the upper sec-
tion (above 100 m). Here, solidity is defined accord-
ing to IEC (2005b) as the projected area of all struc-
tural members divided by the exposed area of the mast.
The mast is equipped with a dense array of sensors. An
overview of the sensors used for the analysis is given
in Table 1. Although the mast has opposing boom pairs,
sonic anemometers are only mounted on the side facing
315− 322◦. The analysis in this paper thus focuses on
the analysis of sensors mounted on this side. Since the
mast structure is slightly twisting with height, boom di-
rections vary with height. To minimise the effects of the
mast structure, the wind sensors are mounted on booms
with a length of 5.4 m and meet the recommendations
given in (IEC, 2005b). The sector 100−180◦ is removed
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Figure 1: Left: Landuse map of the area around Rödeser Berg (data source ©GeoBasis-DE / Bundesamt für Kartographie und Geodäsie
(2013) and www.openstreetmap.org); right: map of the terrain elevation around Rödeser Berg (data source ©GeoBasis-DE / Bundesamt für
Kartographie und Geodäsie (2013)). The coordinate system for both maps is centered at the mast location - i.e. the location of the mast is
(0,0).

from the analysis to avoid mast shadow effects. This
choice was made by looking at the wind speed ratio be-
tween two opposing cup anemometers at the height of
191 m. The interval was then chosen conservatively and
a ’safety band’ of 20◦ was put around the sector where
the mast shadow effect was visible.

2.2 Data preparation and quality control

The data analysed in this study comprises a period be-
tween 01.07.2012 and 01.12.2014. After that, several
wind turbines were installed on site and large sectors are
now influenced by wind turbine wakes. The data was
filtered for physically unreasonable values and spiky pe-
riods in the sonic anemometer measurements were re-
moved from the analysis. All analysis is based on 10-
minute intervals, as these are most commonly used in
wind energy applications.

The wind speed measurements from the sonic anemome-
ter are rotated into the mean stream lines for each in-
dividual period (KAIMAL and FINNIGAN, 1994) be-
fore calculation of turbulence statistics from the sonic
data. Compared to the often used planar-fit method
(WILCZAK et al., 2001), the double rotation has been
suggested to be superior at complex sites with varying
slopes (STIPERSKI and ROTACH, 2016). Due to multiple
instrument defects of the sonic anemometers, however,
the number of valid measurements and the periods for
which the instruments were functional vary with height.
Only averaging periods, when no data was missing dur-
ing the averaging interval, were used. Complete profiles
with measurements at all levels are indicated in the text
or the caption of the figure/table.

In Section 3, three different normalisations are used
to present the measured turbulence statistics. First re-
sults are presented in the classical micro-meteorological

framework (Section 3.1). Here, the turbulence statis-
tics are normalised by the local (measured at the same
height) wind speed and friction velocity. This facilitates
the comparison to other measurements in the literature.
A normalisation with the surface value, i.e. the fric-
tion velocity at the lowest measurement height, does not
seem to be reasonable due to the strong variations in the
fetch area with height.

In Section 3.2, the presented turbulence statistics are
normalised by the wind speed measured by the cup
anemometer at 191 m. The aim of this section is the in-
vestigation of the relationship between the surface char-
acteristics and the turbulence statistics. To avoid speed-
up effects in the wind profile to bias this analysis a com-
mon wind speed for the normalisation is necessary here.
Ideally, the normalisation would be done with a wind
speed which is independent of the local surface charac-
teristics (e.g. the geostrophic wind speed). However, this
would involve additional modelling which introduces
additional uncertainties. The wind speed measured by
the cup at 191 m was chosen as it is furthest from the
surface and speed-up effects due to the terrain are ex-
pected to be weaker than at the lower heights.

In Section 3.3, the turbulence statistics are investi-
gated from the ’perspective’ of a wind turbine. There-
fore, the normalisation is made using the wind speed at
120 m (U120), a typical current hub height. This also al-
lows the evaluation of the variation of the variance in
the wind field across the rotor area of a turbine - i.e. how
much the variance of the wind field changes with height.
The top (191 m) and bottom (60 m) heights in this anal-
ysis roughly correspond to these upper and lower tip
height. This means that turbulence intensities in Sec-
tions 3.1/3.2 and 3.3 are collected using different instru-
ments and are expected to differ because of the differ-
ent measurement principles of sonic and cup anemome-
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Table 1: Overview of the anemometers used in this study; heights marked with ? are bearing heated; heights marked with † are fully heated.

Sensor Type height (m) sampling frequency (Hz) wind components

Thies First Class Advanced Cup Anemometer 60?,120?,191 1 U
Thies Ultrasonic Anemometer 3D 80† 20 u, v, w
Gill HS50 Ultrasonic Anemometer 40, 135, 188 50 u, v, w

ters. This is also reflected in the taxonomy used in this
article. The turbulence intensity derived from the cup
anemometers is denoted by IU to indicate that there is
no directional information available. In contrast, the tur-
bulence intensity of the sonics is denoted by Iu to indi-
cate the vector component along the mean stream lines.
In general, the cup anemometers are expected to yield
slightly lower values for the turbulence intensities of the
horizontal component because of their distance constant
of 3 - 3.9 m and their averaging time of 1 s. The data
from the cup anemometers in Section 3.3 is chosen for
two reasons. Firstly, they had a higher availability than
the sonic anemometers. Secondly, cup measurements at
a sampling frequency of 1 Hz still provide the standard
for the wind energy community, which is important if
the measured data is compared to existing standards.

The focus of Sections 3.1 and 3.2 is put on the influ-
ence of the terrain on the variations in turbulence statis-
tics. Therefore, only neutral conditions are considered in
these sections.

2.3 Footprint analysis

Interpretation and understanding of observed wind and
turbulence characteristics in a complex and heteroge-
neous environment like the current site pose a particular
challenge to experimentalists. If the observations are to
be linked to the surrounding surface/terrain, two major
challenges need to be addressed. The surface area influ-
encing the measurement (i.e. the area of effect) must be
identified and appropriate measures for the characteri-
sation of the surface/terrain within this area need to be
found.

For the first problem in this study, a footprint mod-
elling approach is used. Within the flux measurement
community this method is widely used to relate ob-
served scalar fluxes to source areas, which are seen by
the sensor (RANNIK et al., 2012). Here, the footprint
model of KLJUN et al. (2015), which is parametrised
based on a more complex Langrian backward footprint
model (KLJUN et al., 2002), is used to identify the sur-
face area which is seen by the measurements at the dif-
ferent heights. The analysis then concentrates on the
surface cover and the orography within the modelled
foot print. The KLJUN et al. (2015) model is probably
nowadays the best easy-to-use model on a good theoret-
ical basis. This model compared well with a LES foot-
print model (STEINFELD et al., 2008). It thus provides
a good compromise between simplicity and functional-
ity. While the input parameters are easily derived from

Figure 2: Example for a footprint climatology calculated for 135
m for neutral conditions and wind directions between 350− 360◦;
the dashed, dash-dotted and solid lines indicate the 40-, 60- and
80-%-effect levels of the flux footprint (data source ©GeoBasis-
DE / Bundesamt für Kartographie und Geodäsie (2013) and www.
openstreetmap.org).

sonic anemometer measurements it is still valid for a
wide range of atmospheric conditions and elevated mea-
surement heights. MARKKANEN et al. (2009) found that
at heights of 100-200 m there is a good agreement be-
tween the KLJUN et al. (2002) model and a large eddy
simulation for idealised conditions. A sample footprint
climatology for a 10◦ sector is shown in Figure 2.

The analysis in this study is confined to neutral con-
ditions. Therefore, the boundary layer height zi in the
footprint model can be approximated as

zi = cn
u∗
| f | , (2.1)

as recommended in the appendix by KLJUN et al.
(2015). In Equation 2.1 u∗ is the friction velocity, f is the
Coriolis parameter and cn = 0.3 (HANNA and CHANG,
1993). Periods where the estimate zi was smaller than
the measurement height (i.e. very small local friction
velocities) were not considered in the footprint analy-
sis. According to MARKKANEN et al. (2009), for zi of
about 500 m the footprint can be well determined for
heights of about 200 m and less without a significant in-
fluence of the boundary layer height. Due to the wind
speed limit (4 m s−1), which was used, this applies to
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about 94 % of all measurement periods for the highest
sonic anemometer. The influence of zi on the footprint
modelling results is, thus, expected to be small.

While strictly only valid for scalar fluxes, in this anal-
ysis the footprint approach is also used to identify the
area which influences the measured turbulence statistics.
The argument for the appropriateness of this approach
is derived from the fact that the vertical length scales
of the footprint concept and the blending height concept
as well as the internal boundary-layer concept are very
similar (HORST, 2000). Moreover, following PHILIP
(1997), a convection-diffusion equation for shear stress
in analogy to passive scalars can be derived. If the eddy
diffusivity and eddy viscosity are assumed to be equal,
the blending height of scalar fluxes and shear stress are
very similar.

In practical applications, FOKEN and LECLERC
(2004) have suggested to use roughness changes and
isolated obstacles as natural tracers to validate footprint
models. Footprint models have also been used to esti-
mate the averaged roughness representative of the foot-
print area of a measurement (GÖCKEDE et al., 2004,
2006). More recently, the footprint approach has also
been suggested to be used to estimate the area and,
hence, the surface roughness influencing the wind con-
ditions experienced by a wind turbine (FOKEN, 2013).

It should be noted, that the applied footprint model
assumes homogeneous conditions and is thus not suited
for heterogeneous terrain/flow. This is somewhat in con-
trast to the idea of identifying the relevant features in
a heterogeneous environment, but is inherent in most
footprint models. One of the purposes of this paper is to
experimentally explore the applicability and limitations
of the simplified footprint-modelling approach. There-
fore, the footprint approach used in this study can only
serve as a first approximation of the area of effect for
a measurement/wind turbine. More sophisticated foot-
print models based on e.g. large eddy simulations (e.g.
STEINFELD et al., 2008) might lead to more realistic re-
sults. However, this strongly increases the complexity of
the model and therefore removes one of the main advan-
tages of the footprint approach.

2.4 Terrain classification
For wind energy applications mainly the aerodynamic
properties of the surface are of interest. These are
strongly influenced by the surface cover and the drag
which is exerted by the surface form or ruggedness of
the terrain. The first aspect can be addressed by aggre-
gating the roughness of the different land cover types
into a roughness which is representative of the area of
effect - i.e. the effective roughness length z0,e f f .

Here, the logarithmic average (TAYLOR, 1987) of the
footprint weighted roughness length within the 80-%-
effect level of the footprint is used to determine z0,eff:

log(z0,eff) =
n

∑
i=1

pi log(z0,i), (2.2)

Table 2: Roughness lengths (z0) for different surface cover types as
used in this study (slightly modified after FOKEN, 2017).

Land cover z0 (m)

forest 1
settlements 1
agriculture, sports and recreational 0.03
bushes, clearings, swamps 0.2
gravel pit, waste disposal site 0.3
water 0.0005

where pi and z0,i are the footprint weighting and and
the roughness length assigned to each individual pixel;
n is the number of pixels within the footprint.

It is acknowledged that there are more sophisticated
averaging schemes available which also take the spatial
arrangement of the different surface types within the av-
eraging area into account (e.g. HASAGER and JENSEN,
1999; HASAGER et al., 2003). However, for simplicity
reasons the simple logarithmic approch is chosen here.
Also, it can often be used as a good first approximation
(TAYLOR, 1987).

The surface cover and, thus, the underlying rough-
ness map is based on a digital land-use model with
a resolution of 10 m (Figure 1) and dimensions of
60x60 km2. The roughness lengths used in this study are
displayed in Table 2. Other possibilities to characterise
the surface cover include e.g. the enhanced vegetation
index (STOY et al., 2013). This index also captures the
effects of seasonality in vegetation structure (e.g. agri-
culture or forest) and they could be accounted for in the
estimation of z0,eff. Again, for simplicity reasons this is
not done here.

The influence of the surface ruggedness on the drag
is difficult to quantify on the scale of the footprint of a
wind turbine. Tables which directly specify roughness
length for different terrain shapes as in the case of sur-
face cover (e.g. TROEN and LUNDTANG PETERSEN,
1989; WIERINGA, 1992) are not available and exist-
ing classifications are very coarse. In meso-scale mod-
elling the effects of sub-grid orography are sometimes
parametrised using the standard deviation of the eleva-
tion σs (e.g. DOMS et al., 2011). However, this measure
is sometimes misleading, as e.g. constantly sloping ter-
rain has a high σs but exhibits very little ruggedness.

In this study, an index based on the steepness of
the slopes is used to define the ruggedness (rs) within
the footprint. The index is based on the concept of the
ruggedness index (RIX) which is often used in wind re-
source assessment applications to classify sites accord-
ing to their ruggedness and to estimate errors in mod-
elled wind speeds (BOWEN and MORTENSEN, 1996;
MORTENSEN and PETERSEN, 1997). The basic idea of
this index is to identify slopes upstream of the wind mea-
surement or turbine which exceed a critical value (Θcrit).
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Figure 3: Ruggedness around the mast at Rödeser Berg. Yellow in-
dicates areas exceeding the critical slope Θcrit = 0.3. The coordinate
system is centered at the mast location denoted by the red cross.

rs is then defined as:

rs =
Ars

A80
, (2.3)

where Ars is the area inside the 80-%-effect level of
the footprint exceeding the critical slope and A80 is the
total area of the 80-%-effect level of the footprint. As for
the RIX index, the critical slope is defined as Θcrit = 0.3
in this study. This roughly corresponds to the onset of
flow separation (WOOD, 1995).

While the RIX-Index only considers the slope of
the terrain in the direction of the flow, here, the slope
of the terrain is calculated for all directions within a
semicircle (0 to 180◦) in 1◦-steps by shifting the terrain
elevation map by 10 m in the respective direction. Linear
interpolation is applied to derive the shifted map. Pixels
which exceed the critical slope are flagged as ’rugged’.
Using this procedure a ruggedness map of the terrain
surrounding the measurement site is created (Figure 3).
For each sector rs is then calculated as the percentage
of pixels which are flagged as ’rugged’ within the 80-
%-effect area of the footprint climatology. A digital
elevation model with a 10 m resolution (BUNDESAMT
FÜR KARTOGRAPHIE UND GEODÄSIE, 2015) is used
in this analysis.

The procedure described above differs from the
RIX defined by BOWEN and MORTENSEN (1996) and
MORTENSEN and PETERSEN (1997) in two main points.
Firstly, the distance within which the index for the
ruggedness is calculated dynamically varies with the ex-
tend of the footprint. Secondly, the ruggedness is defined
by slopes in all directions rather than just the flow di-
rection and positive an negative slopes both add to the

ruggedness rather than cancelling out.

3 Results and discussion

3.1 Turbulence statistics at Rödeser Berg

To investigate the directional behaviour of the turbu-
lence quantities at the measurement site the data was
binned in 10◦-sectors and the average values were cal-
culated. Since the analysis in this paper is mainly moti-
vated by wind energy applications, periods with U120 <
4 m s−1 were excluded from the directional analysis.
The significance of smaller wind speeds for wind energy
applications - e.g. for the loads exerted on the turbine -
is expected to be small and the threshold is typical for
investigations in the wind energy community. The cup
anemometer at 120 m was chosen as it is close to the
hub height of a modern wind turbine and was available
during the entire measurement period (unlike the sonic
anemometers which suffered multiple failures).

Figure 4 displays the directional dependence of tur-
bulence statistics as measured by the sonic anemome-
ters at the different heights for locally neutral conditions
(|L| > 500m; where L is the Obukhov length). Also, lo-
cal normalisation (i.e. with u∗ at the individual heights)
is used in Figure 4. The approach of using local scaling
is motivated by the fact that we expect the characteristics
of the footprint for the different heights to differ signif-
icantly. Later a common height for the normalisation is
used to compare the turbulence statistics among differ-
ent heights (Sections 3.2 and 3.3).

A clear directional pattern is visible for all heights
(Figure 4) for the turbulence intensity of the stream-wise
component of the wind vector Iu = σu/u. For all heights
a peak in Iu can be observed at roughly 300 to 320◦.
Within this direction the upstream area is characterised
by the forested ridge extending for approx. 5.8 km (Fig-
ure 1). This terrain exhibits high roughness as well as
high ruggedness. Iu for wind directions between approx.
350 and 60◦ is relatively low. Here, the terrain is more
open and shows less variations in elevation. Between
180 and 300◦ the two elevated sonic anemometers (135
and 188 m) show a very similar pattern with a constantly
increasing Iu. The measurement at 80 m shows a decline
between 180 and 210◦. Also, Iu at 80 m is significantly
higher than at the top two levels for 180− 360◦. In this
sector the vicinity of the mast is forested and orograph-
ically complex, while the wider surroundings are more
open. Values are similar at all levels between 0− 90◦.
Here, open agricultural areas are located much closer to
the mast and forested hills are located in a distance of
several km. A similar pattern as for Iu can be observed
for the surface drag (u∗u−1), although the variation be-
tween the top two measurement heights (135 m and 188
m) appears somewhat smaller.

The integral turbulence statistics for the u compo-
nent (σuu−1

∗ ) vary between 1.67 and 2.18 for the mea-
surements at 135 m and 188 m, and between 1.90 and
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Figure 4: Directional variation of mean turbulence statistics calculated from 10◦ bins for neutral conditions (|L| > 500 m); top left: Iu,
top right: u∗u−1, middle left: σuu−1

∗ , middle right: σwu−1
∗ , bottom: data availability (n); L was determined locally from the individual

sonic anemometer; only periods when U120 > 4 m s−1 are included in the analysis; the shaded areas indicate the 95-%-confidence intervals
derived using student’s t statistics.



8 L. Pauscher et al.: Relating turbulence statistics to surface characteristics Meteorol. Z., PrePub Article, 2017

2.26 at 80 m. This is lower than the value that is often
given for neutral conditions in flat and homogeneous ter-
rain σuu−1

∗ = 2.4 (e.g. PANOFSKY and DUTTON, 1984)
but slightly higher than roughness sub-layer flows above
canopies given by RAUPACH et al. (1996) (1.7) and the
values reported by ARNQVIST et al. (2015) (approx. 1.7-
1.9) for neutral conditions at a tall profile with a long and
homogeneous forest fetch for most sectors. For a site
with complex orography FRAGOULIS (1997) reported
values of 2.1 - 2.4. The directional variation especially
at 80 m is to some degree anti-cyclic to the variations in
drag and Iu.

σwu−1
∗ is in general slightly higher than 1.25 usually

assumed over homogeneous terrain. Values range from
1.33 to 1.66 for 80 m and from 1.29 to 1.55 for the upper
two heights. Increased values for σwu−1

∗ have also been
observed at other sites with complex orography (e.g.
FRAGOULIS, 1997). σwu−1

∗ also shows a similar anti-
cyclic pattern for 80 m as σuu−1

∗ between 180◦ and 360◦.
For the 0−100◦-sector σwu−1

∗ exhibits relatively strong
variations for 80 m and is larger than the observed values
for 135 and 188 m. Interestingly, this is also the case for
σuu−1

∗ . As a note of caution it should be said here that
especially for 80 m the data availability is quite low for
some of the bins in this sector (the minimum is n = 25).

At this point it should be reiterated, that the turbu-
lence statistics were calculated using averaging inter-
vals of 10 minutes, because this is common practice
in wind energy applications - e.g. FRAGOULIS (1997)
also used 10-minute intervals. Many other micrometeo-
rological studies (including ARNQVIST et al., 2015) use
averaging intervals of 30 minutes (e.g. AUBINET et al.,
2012). Depending on the integral scales of the different
turbulent quantities the choice of the averaging interval
will lead to differences in the observed turbulence statis-
tics (for a detailed discussion see LENSCHOW et al.,
1994). We therefore also derived the turbulence charac-
teristics based on 30-minute intervals. If the mean turbu-
lence statistics are compared over all valid sectors, there
is very little difference (approx. -1 to 3 %) for σwu−1

∗
and u∗u−1. Iu and σuu−1

∗ are increased by approx 7 to
13 % for the 30-minute intervals with increasing gain
for increasing height. Some of the deviation from the
typically reported values for σuu−1

∗ are, thus, likely to be
caused by the 10-minute averaging interval used in this
study. This might to some extend be related to the larger
turbulent length scales of u. However, also the increas-
ing contribution of meso-scale variations might become
visible. At elevated heights the micro-scale turbulence
and the meso-scale variations tend to blend into one an-
other and the spectral gap separating the two can disap-
pear (LARSÉN et al., 2016). As for wind turbine loads
only the micro-scale turbulence is considered (and im-
portant), the choice of a 10-minute averaging interval is
more appropriate here.

3.2 The relation between surface
characteristics within the footprint and
the observed turbulence statistics

The results for the surface characteristics (z0,eff and rs)
derived from the footprint analysis are displayed in Fig-
ure 5. For comparison, also a roughness length which
corresponds to the measured turbulence statistics (z0,m)
is derived using the log-law relationship:

z0,m = exp(ln(z−d)−κuu−1
∗ ), (3.1)

where κ is the von Kármán constant and d is the dis-
placement height. d was estimated from the tree height
and density in the direct vicinity of the met mast. It
varies by direction with a maximum value of 25 m (for
southerly directions with tall and densely spaced trees)
and a minimum value of 5 m (for the direction of the
clearing). Due to the high measurement heights the sen-
sitivity to the value of d is rather small. As only neutral
conditions are analysed, no stability correction of Equa-
tion 3.1 is necessary.

At this point it should be noted that the values of
z0,m, which are displayed in Figure 5 are intended to
facilitate a direct comparison to z0,eff derived from the
surface characteristics of the footprint area. z0,m is also
influenced by orography related effects such as e.g. local
speed-up effects and should not directly be interpreted
as a roughness length. Despite this restriction, z0,m and
z0,eff show similarity in their pattern and magnitudes for
all heights between 180◦ and 360◦. However, between
0◦ and 100◦ the correlation gets worse and especially
for 135 and 188 m, z0,m is significantly higher than z0,eff.

The directional variation of rs is somewhat similar
to z0,eff with relatively low values for wind directions
between 0 and 100◦.

Figure 6 displays scatter plots of the relation be-
tween different turbulence statistics and surface charc-
teristics. In contrast to Figure 4, turbulence quantities
are normalised using the wind speed at a common height
(191 m) in Figure 6. A direct comparison of the turbu-
lence statistics across different heights might be mis-
leading as in neutral conditions we expect the wind
speed to generally increase with increasing height. On
the other hand, the highest values for rs and z0,eff are ob-
served at the lowest heights. This fact might introduce
some artificial correlation if local scaling is used. The
height of 191 m is chosen as it is far away from the sur-
face and thus expected to be less affected by surface ef-
fects than lower measurements. It should be noted, how-
ever, that the wind speed at 191 m is still influenced by
the surface and will, thus, introduce some de-correlation
for the turbulence statistics at 135 m and especially at
80 m.

A trend of increasing values of σuu−1
191 with increas-

ing rs and ln(z0,eff) can be observed for all heights and
most values cluster around a more or less linear rela-
tionship. Several outliers can be observed, which ex-
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Figure 5: Directional variation of left: lines z0,eff calculated from the footprint climatology (see text) of the 10◦ bins for neutral conditions
(|L|> 500 m); the crosses are z0,m calculated from Equation 2.3; right: rs; note that the left scale is logarithmic, while the right is linear.

hibit high values for σuu−1
191 but low rs and ln(z0,eff).

The outliers for 135 and 188 m are associated with the
60−100◦-bin where a sharp increase in σuu−1

191 but only
a moderate increase in rs can be observed (diamonds
in Figure 6) . For 80 m another group of outliers can
be observed for wind directions between 310− 340◦
where rs for 80 m starts to drop off but the turbulence
intensity remains at a high level (compare also Figure
4). For ln(z0,eff) no outliers are visible within this sec-
tor. However, the scatter for low ln(z0,eff) is generally
slightly higher. The correlation between σuu−1

191 and rs
and ln(z0,eff) is similar (Pearson’s r is 0.62 for rs and
0.60 for ln(z0,eff)).

The correlation for u∗u−1 is weaker than for σuu−1
191

and the scatter increases. r is 0.43 and 0.26 for rs and
ln(z0,eff), respectively. The weakest correlation is ob-
served for σwu−1

191 (r is 0.28 and 0.12). The distribution
of the points in the scatter plot also suggests that the
relationship between rs and σwu−1

191 and u∗u−1 is some-
what stronger than for ln(z0,eff) when the outliers are ex-
cluded.

It is difficult to draw conclusions concerning the rel-
ative importance of the terrain ruggedness vs the for-
est cover within the footprint for the observed turbu-
lence levels, as rs and z0,eff are highly correlated in the
area around Rödeser Berg. Both properties show a high
correlation with especially σuu−1

191. Nevertheless, some
interesting patterns can be observed when the two are
compared.

The ’outliers’ in the σuu−1
191 vs rs relationship are

directed towards a turbulence level but low rs. Points
with high rs and low σuu−1

191 are not observed. This is
also true to some extend for the σwu−1

191 and u∗u−1. This
suggests that the ruggedness is an important factor in
turbulence production but rs does not capture all effects
responsible for turbulence production. For ln(z0,eff) the

outliers are also directed towards high turbulence and
low ln(z0,eff), however, the lower boundary is less clear.

Much of the increased scatter which is found in the
relationship between the turbulence quantities and rs and
ln(z0,eff), respectively, is related to wind sectors between
60− 100◦. It is interesting to note that within this sec-
tor also the turbulence statistics show some differences
when compared to the other wind directions. σuu−1

∗ is re-
duced for the 135 and 188 m measurements and σwu−1

∗ is
increased for 80 m. For these directions the Schrecken-
berg and the Gudenberg start to move into the footprint
of the measurements at Rödeser Berg (Figure 1). With
a maximum elevation of 568 m it is significantly higher
than Rödeser Berg. The presence of this relatively large
orographical obstacle is probably not well represented
in the definition of rs, as it only accounts for the slope
and not the height of the ruggedness elements.

Summarising the observations, especially rs inside
the footprint area seems to be a promising way to ex-
plain the directional variations in σuU−1

191 induced by the
orography. It should, however, be noted that rs is only
an approximation for the surface ruggedness. The results
will depend to some degree on the choice of Θcrit , which
here is motivated by the onset of flow separation. The
critical slope for flow separation will vary with surface
cover i.e. be smaller for forested hills than for bare soil
(FINNIGAN and BELCHER, 2004).

Also due to the categorical nature of rs the calcula-
tion of a footprint-weighted ruggedness is not as straight
forward as for z0,eff and is not attempted here. Neverthe-
less, it is intuitive that the effect of orographic features
will vary according to their location within the footprint
area.
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Figure 6: Scatter plots of different turbulence statistics in relation to surface properties within the simulated footprint climatologies;
left column: normalised turbulence quantities vs the index for ruggedness rs within the footprint; right column: normalised turbulence
quantities vs the effective roughness z0,eff within the footprint; top: σuU−1

191 middle: u∗U−1
191 and bottom: σwU−1

191; only periods with neutral
conditions (|L| > 500 m) have been used; calculations are based on 10◦-bins; diamonds indicate bins which lie within 60− 100◦; periods
when U120 > 4 m s−1 are excluded from the analysis; for colour coding see Figure 4.
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3.3 Turbulence intensity in comparison to
existing design guidelines and the
influence of atmospheric stability

Turbulence intensity of the horizontal wind speed is
one of the key parameters used in the site suitability
analysis for wind turbines (IEC, 2005a). To model the
expected loads during the life time of a wind turbine
the turbulence intensity as a function of wind speed is
required. This section therefore focuses on the analysis
of this quantity.

In standard load modelling applications the repre-
sentative turbulence intensity Irep = σrep/U is often de-
scribed by the ’normal turbulence model’ (NTM) ac-
cording to IEC (2005a):

σrep = Ire f (0.75U +5.6 m s−1), (3.2)

where Ire f is a dimensionless constant which depends on
the turbine class (for the different turbine classes see also
Figure 7). In site assessment applications Irep is com-
pared to the 90%-percentile of the measured turbulence
intensity of the horizontal wind speed to see if a turbine
is suitable for a specific site. From measurements this is
usually approximated as IU90 = IU + 1.28σIU , where IU
is the mean turbulence intensity and σIU is the standard
deviation of the turbulence intensity. Stability effects are
not parametrised in this formulation. For the analysis in
this paper IU90 and IU are calculated using wind-speed
bins with a width of 1 m s−1.

As shown in Section 3.2 turbulence statistics strongly
vary with wind direction. To allow for the exploration
of other effects on the turbulence intensity the analysis
in this section is therefore confined to a narrow sector
including the main wind direction (180−220◦).

Also, unlike in the previous sections cup anemome-
ters are used to derive the turbulence intensity. This is
mainly motivated by two facts. Firstly, as mentioned in
Section 2.2, there were multiple instrument failures on
the sonic anemometers. The set of concurrent measure-
ments over the wide height range is rather limited for
the sonics. Using cup anemometers the data base for the
analysis in this section is significantly enhanced. Sec-
ondly, it is common practice in the wind energy commu-
nity to use cup rather than sonic to measure turbulence
intensity. It should be noted again that the standard devi-
ation of the horizontal wind speed between a sonic and
a cup measurement is expected to differ. As the sonic is
able to resolve smaller turbulent scales, it will usually
measure slightly higher turbulence intensities.

Figure 7 displays the standard deviation of the wind
speed measured by cup anemometers (σU ) at 60, 120
and 191 m height normalised by the wind speed at 120 m
(U120) as a function of U120. The heights roughly reflect
the lower tip, hub and upper tip heights of a modern
wind turbine. The somewhat unusual normalisation is
motivated by a better direct comparability of the vari-
ance within the wind field at the different heights. In
load simulations it is common practice to specify a target

variance of the wind field and keep this constant across
the whole modelling domain. This stems from classical
surface layer theory in homogeneous terrain, which is,
however, questionable for heterogeneous surfaces like in
the current setup.

The first striking observation is that there is a rela-
tively strong variation of the turbulence levels at the dif-
ferent heights with strongly decreasing turbulence with
height. Especially the difference between the 60 m and
120 m measurements is large and in the order or even ex-
ceeding the differences between the different standard
turbulence classes for wind turbine design (Figure 7).
The behaviour of σu with height from other experiments
is not entirely clear. While GARRATT (1994) suggests an
almost constant σu throughout most of the atmospheric
boundary layer, ARYA (2001) suggest an exponential re-
duction which is equal to the reduction in σw. Profiles
reported in a high roughness environment over a homo-
geneous forest in Sweden (ARNQVIST et al., 2015) indi-
cate a reduction of σu between comparable heights (60
and 135 m) which is smaller than the reduction in Fig-
ure 7. As demonstrated in Section 3.2, one of the main
reasons for this observation is the variation of the sur-
face characteristics within the footprint of the different
measurement heights (Figure 5).

As the IEC standard (IEC, 2005a) only defines three
different turbulence classes, it is unlikely that the ab-
solute turbulence levels will match one of the defined
classes. It is thus more interesting to compare the shape
of the observed to the empirically derived curve in IEC
(2005a). A prominent feature of Iu as well as IU90 is that
they show a minimum between approx. 8 - 10 m s−1

(Figure 7). For higher wind speeds the turbulence inten-
sities are increasing again. This behaviour is contrary to
the shape of the NTM, which is monotonically decreas-
ing. The pattern of the observed atmospheric stability
at 135 m shows an interesting correlation with the mean
turbulence intensity and IU90. At low wind speeds, where
turbulence intensities are high, unstable conditions are
dominant. With increasing wind speed the percentage
of stable conditions increases and reaches a maximum
at about the same wind speeds as where the minimum
of the turbulence intensities is observed. For the classi-
fication according to the observed Obukhov length see
caption of Figure 7.

If only neutral conditions are considered, no clear
minimum is visible for neither IU90 nor IU . In fact, within
the wind speed range where the maximum number of
stable conditions is found, also the maximum differ-
ence between the overall and neutral statistics can be
observed. For wind energy applications this observation
is highly relevant, as the wind speed range between 6 -
12 m s−1 is very important for fatigue loads on onshore
turbines.

There are different possible mechanisms which might
be responsible for the observation of this correlation be-
tween atmospheric stability and wind speed. The first
is that the influence of the stable stratification damp-
ens the frictional forces which can lead to an increased
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Figure 7: Top left: σU/U120 by wind speed for 180−220◦; the solid lines indicate IU90 as defined by equation 3.2 for all measurements,
dashed lines are only neutral conditions (|L|> 500 m); the black lines show the normal turbulence model; turbulence class A (Ire f = 0.16);
turbulence class B (Ire f = 0.14); turbulence class C (Ire f = 0.12); top right: same as the left panel but the bin-wise mean (rather than the
90-%-percentile) of the observed turbulence intensities is displayed. bottom left: occurrence of atmospheric stability classes for different
wind speeds as observed at 135 m; dark blue denotes stable (0 m < L < 200 m), light blue slightly stable (200 m < L < 500 m), green
neutral (|L| > 500 m), orange slightly unstable (-200 m > L > -500 m) and yellow unstable (0 m > L > -200 m) conditions; bottom right:
data availability for the different wind-speed bins; only bins with more than 20 observations are included.

flow at higher levels and the formation of a low level
jet (LLJ). The LLJ is usually defined by a wind speed
maximum in the first few hundred meters above ground.
It has been studied over several decades (BLACKADAR,
1957; STENSRUD, 1996). More recently, its importance
for resource estimation in wind energy applications in
northern Germany has been suggested (EMEIS, 2014;
LAMPERT et al., 2016). Also in forested low mountain
ranges in Germany the frequent occurrence of LLJs has
been reported (SERAFIMOVICH et al., 2017).

An often used definition of the LLJ is a wind maxi-
mum which is at least 2 m s−1 higher than the minimum
aloft (STULL, 1988). However, only very few profiles
fulfill this criterion within the first 200 m above ground
at Rödeser Berg. Although there are more profiles where
the wind speed is decreasing with height at the top mea-

surement height(s), a clear identification of LLJ-events
with the mast data is difficult. In fact, the reported typ-
ical heights of LLJ reported from other sites vary from
between 100 - 200 m (e.g. BANTA et al., 2002; BAAS
et al., 2009) up to several hundred meters (e.g. BONNER,
1968; ZHANG et al., 2006). EMEIS (2014) found that the
persistence of a LLJ is limited by a critical shear below
the jet, which is dependent of the Richardson number
(EMEIS, 2017). This can also set a lower limit to the
height of the jet core. The typical height of the LLJs at
Rödeser Berg might thus be too high to be reliably de-
tected by the mast measurement.

The second possible reason for increased wind
speeds in stable conditions at Rödeser Berg is the in-
teraction between stability and orographic effects. The
speed-up over hills and ridges can be significantly in-
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creased in stable conditions (e.g. CARRUTHERS and
CHOULARTON, 1982; BRADLEY, 1983; COPPIN et al.,
1994). Moreover, if the boundary layer is very shallow,
the flow might be forced around the hill in diverging
flow lines (SNYDER et al., 1985). In a shallow bound-
ary layer the mast measurements might even be above
the turbulent boundary layer. A more detailed investi-
gation of the flow over the hill and speed-up effects is
currently done using a spatial network of profiling and
scanning lidars in the framework of the New European
Wind Atlas Project (MANN et al., 2017).

There are only few studies reporting explicitly on the
distribution of atmospheric stability and σu as a function
of wind speed. SATHE et al. (2013) investigated the
influence of atmospheric stability on wind turbine loads.
Their analysis also showed a clear reduction of σu with
increasing stability (they used the Obukhov length) for a
homogeneous site.. The stability conditions over several
different coastal sites generally indicated a decreasing
occurrence of stable conditions with increasing wind
speed. However, the stability distributions were derived
from either eddy co-variance measurements close to the
ground or profile measurements.

For a mildly complex site in the western USA
WHARTON and LUNDQUIST (2012) reported similar
observations as found at Rödeser Berg. The lowest wind
speeds and highest turbulence intensities were found in
unstable conditions. Their observations even indicated
the highest wind speeds for stable conditions at their
site. At Rödeser Berg for wind speeds above approx.
12 m s−1 neutral conditions begin to dominate and the
mean wind speed during neutral conditions is larger than
during stable conditions. This is in line with the fact that
for high wind speeds in stable conditions the formation
of low level jets is limited to greater heights as mechani-
cal mixing will be induced if the shear exceeds a critical
value (EMEIS, 2014) and the stable stratification will not
longer persist. Also, the occurrence of the diverging flow
lines is dependent on the wind speed and is more likely
to be observed in lower wind speed conditions (SNYDER
et al., 1985).

4 Conclusion and outlook

Linking surface properties to observed turbulence statis-
tics provides a difficult task in complex and patchy ter-
rain. At Rödeser Berg a directional analysis of turbu-
lence statistics in relation to the surface characteristics
within the modelled footprint was carried out. Especially
the normalised standard deviation of the wind velocity
in the direction of the flow lines (σuU−1

191) showed a high
correlation with the ruggedness and the effective rough-
ness for all heights and most wind-direction sectors.

These results indicate that, despite the simplicity of
the approach, footprint modelling, as frequently used
in the flux community, can provide a valuable tool for
relating measured turbulence statistics to observations.
In wind energy applications footprint modelling can be

used to e.g. identifying wind sectors for which high
turbulence levels are to be expected. In combination
with simple surface metrics its main benefit lies in the
simple evaluation and possible classification of wind
turbine sites.

The conclusion regarding the effects of terrain rugged-
ness vs high roughness areas within the footprint on tur-
bulence quantities are less conclusive as ruggedness and
roughness are strongly correlated in the area surround-
ing the measurement site.

Effective roughness length (z0,eff) and the ruggedness
index (rs) as used in this study are simplifications and the
limit of the explanatory power for the variation of the
turbulence levels was visible in the wind direction sec-
tor where a large orographical obstacle is present. Be-
sides experimental campaigns, further validation studies
of footprint tools for wind energy applications should
include comparison with more complex models such as
large eddy simulations. Within the simulation environ-
ment the range of the validity of simple analytical foot-
print approaches can be evaluated by switching certain
terrain features in the modelling environment ’on’ and
’off’.

The observed behaviour of the turbulence intensity
showed significant deviations from the normal turbu-
lence model suggested in IEC (2005a) for the investi-
gated sector. The reason for this is likely to be the distri-
bution of atmospheric stability. The differences between
the normalised standard deviation of the horizontal wind
speed for all stability conditions and only neutral cases
are significant compared to design guidelines of wind
turbines. They exceed the difference between the differ-
ent turbulence classes specified in the current standard
for wind turbine design (IEC, 2005a). From an applied
point of view it is interesting to note that this effect oc-
curs within a wind speed range which is highly relevant
for the fatigue loads experienced by a wind turbine. Un-
fortunately, at higher wind speeds this effect vanishes
and periods with high wind speeds and high turbulence
result. This suggests that in the next generation wind
farm design tools and models for estimating the site spe-
cific turbulence conditions should include the effect of
atmospheric stability in addition to the terrain effects.
While some first progress to include atmospheric stabil-
ity in load simulations (e.g. SATHE et al., 2011; PARK
et al., 2014) and wake modelling (e.g. ÖZDEMIR et al.,
2013) has been made, the inclusion of atmospheric sta-
bility in site assessment still remains a difficult issue.

The strong variation of the standard deviation of the
horizontal wind speed (σU ) with height suggests that the
assumption of a turbulence field with a constant variance
across the modelling domain might not be adequate for
wind turbines with large rotors in heterogeneous terrain.
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