Repräsentativität und Unabhängigkeit

Ziel: Bestmögliche Erfassung der Eigenschaften der Grundgesamtheit

Problem: Beurteilung der Repräsentativität ist nur durch umfassende **Information** über die Grundgesamtheit möglich

Ansatz: Vergrößerung des Stichprobenumfangs

aber: "mehr Daten = mehr Information" gilt nicht automatisch!

=> je höher die neuen Daten mit den alten Daten korreliert sind, desto geringer ist der Informationsgehalt (= "Grad der Überraschung", "Grad der Unvorhersagbarkeit")

Korrelation, Regression

Korrelation: **Enge** des (linearen) Zusammenhangs

$$r = \frac{1}{s_{y} \cdot s_{y}} \cdot \frac{\sum_{i=1}^{n} (x - \overline{x}) \cdot (y - \overline{y})}{n}$$

Regression: Art des (linearen) Zusammenhangs

$$\hat{y} = a + b_1 \cdot x_1 + b_2 \cdot x_2 + b_3 \cdot x_3 + \dots$$

Zeitliche und Räumliche **Autokorrelation**

Generelle Beobachtung: Eng benachbarte (zeitlich, räumlich) Messungen liefern tendenziell ähnliche Werte

Autokorrelation: 1-dimensional (Zeitreihenanalyse) Variogramm: 2(n)-dimensional (Geostatistik)

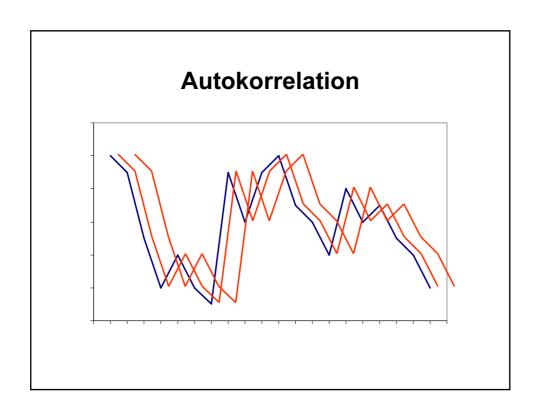
> => Dieselben Prinzipien, aus historischen Gründen allerdings unterschiedliche Begriffe

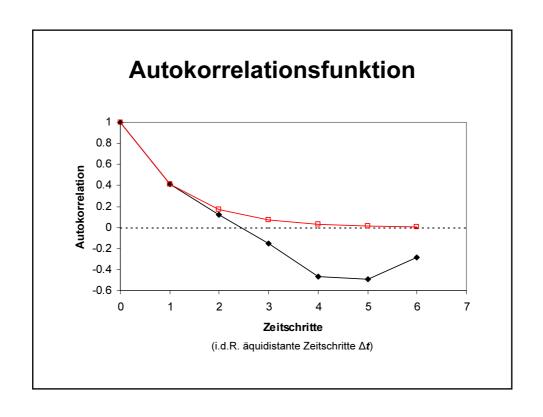
Zeitliche Korrelation

Korrelation:
$$r = \frac{1}{s_x \cdot s_y} \cdot \frac{\sum_{i=1}^{n} (x - \overline{x}) \cdot (y - \overline{y})}{n}$$

Autokorrelation:
$$r_{ac} = \frac{1}{s_x \cdot s_x} \cdot \frac{\sum_{i=1}^n (f(x_i) - \overline{f(x)}) \cdot ([f(x_i + t)] - \overline{f(x)})}{n}$$
 Kreuzkorrelation:
$$r_{cc} = \frac{1}{s_x \cdot s_x} \cdot \frac{\sum_{i=1}^n (f(x_i) - \overline{f(x)}) \cdot ([g(x_i + t)] - \overline{g(x)})}{n}$$

Kreuzkorrelation:
$$r_{cc} = \frac{1}{s_x \cdot s_x} \cdot \frac{\sum_{i=1}^{n} (f(x_i) - \overline{f(x)}) \cdot ([g(x_i + t)] - \overline{g(x)})}{n}$$





Räumliche Abhängigkeit: Variogramm

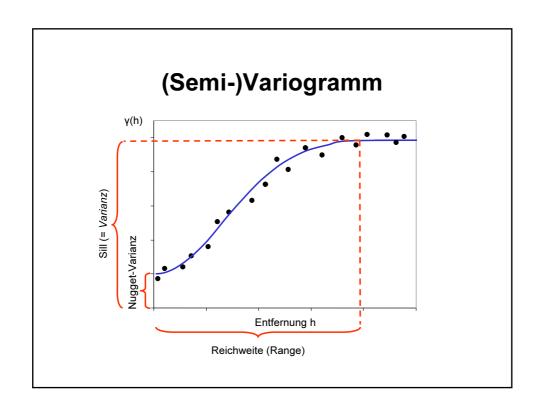
- → Erweiterung des Begriffs der Autokorrelation:
- *n*-dimensionale Zusammenhänge (meist: *n* = 2)
- Äquidistanz der Datenpunkte nicht erforderlich
- inverse Darstellung: Zunahme der Varianz (Unabhängigkeit) als Funktion der Entfernung

(Semi-)Variogramm-Funktion

Varianz:
$$var = \frac{1}{n} \cdot \sum_{i=1}^{n} \left((f(x_i) - \overline{f(x)})^2 \right)^2$$

Autokorrelation:
$$r_{t} = \frac{1}{s_{x} \cdot s_{x}} \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} (f(x_{i}) - \overline{f(x)}) \cdot ([f(x_{i} + t)] - \overline{f(x)})$$

Semi-Varianz:
$$\gamma(h) = \frac{1}{2} \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(f(x_i + h) - f(x_i) \right)^2 \right]^2$$



Kreuz-Variogramm

Variogramm: $\gamma(h) = \frac{1}{2} \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} \left[f(x_i + h) - f(x_i) \right]^2$

$$= \frac{1}{2} \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left\{ (f(x_i + h) - f(x_i)) \right\} \cdot \left\{ (f(x_i + h) - f(x_i)) \right\} \right]$$

 $\text{Kreuz-Variogramm:} \quad \gamma_{f,g}(h) = \frac{1}{2} \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left\{ f(x_i + h) - f(x_i) \right\} \cdot \left\{ g(x_i + h) - g(x_n) \right\} \right]$

Vorhersage-Modelle (Schätzer)

zeitlich räumlich

unabhängig von weiteren Variablen:

- Modell: Autoregression Kriging

- Parametrisierung: Autokorrelation Semi-Variogramm

abhängig von weiteren Variablen:

- Modell: lin. Transferfunkt. Co-Kriging

- Parametrisierung: Kreuz-Korrelation Kreuz-Variogramm

Multivariate Verfahren

	Lineare Regression	Hauptkomponentenanalyse	Korrespondenzanalyse	Clusteranalyse	Diskriminanzanalyse
Zweck:					
Vorhersage	Х				
Dimensionsreduktion		х	X		
Klassifizierung				Х	Х
Eigenschaften:					
nicht-linear					
verteilungsfrei			х		
nominal skalierte Var.			Х		Х

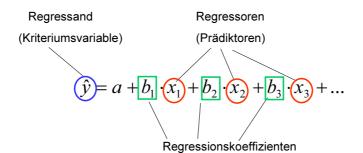
Daten-Transformation

für die einzelnen Verfahren

Verfahren	Box-Cox-Transf.*	z-Transformation
multiple Regression	ja	nein
Hauptkomponentenanalys	e ja	ja
Korrespondenzanalyse	nein	ja (und min > 0)
Clusteranalyse	ja	ja
Diskriminanzanalyse	ja	ja
Selbstorganisierende Karte	e nein	ja

*: falls nicht normalverteilt

Regression



Regressionskoeffizient
$$b_i$$
: $b_{yx} = \frac{\text{cov}(x, y)}{s_x^2}$

Bestimmung der Regressionsfunktion

Minimierung der Abweichungsquadrate (*least squares*):

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \min$$

Standardisierte Koeffizienten

β-Koeffizient:
$$\beta_i = \frac{s_{x_i}}{s_y} \cdot b_i$$

- = *b_r*-Koeffizienten der z-transformierten Variablen
- => Vergleichbarkeit der Koeffizienten verschiedener Regressoren

Güte des Modells

Wie gut ist das Modell?

- Bestimmtheitsmaß, korrigiertes r2, totaler F-Test
- · Konfidenzintervall des Regressanden
- Unkorreliertheit der Residuen (Durbin-Watson-Test)

Wie wichtig sind einzelne Regressoren?

- partieller F-Test
- Signifikanz / Konfidenzintervalle der Regressionskoeffizienten

Güte der Vorhersage

Bestimmtheitsmaß: $B = r^2$ (für lineare Regression)

- = erklärte Varianz/Gesamtvarianz
- = 1 (nicht-erklärte Varianz/Gesamtvarianz)

Gesamtvarianz = erklärte Varianz + nicht-erklärte Varianz $\frac{1}{n-1} \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \frac{1}{n-1} \cdot \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

korrigiertes (adjustiertes) Bestimmtheitsmaß:

$$r_{korr}^2 = r^2 - \frac{k \cdot (1 - r^2)}{n - k - 1}$$
 n: Anzahl der Werte *k*: Anzahl der Regressoren

Standardschätzfehler des Regressanden

$$SE(\hat{y}) = \sqrt{\frac{\sum_{i=1}^{n} (y_{(i)} - \hat{y}_{i})^{2}}{n}}$$

Konfidenzintervall für den Regressanden (k = 1) (df = n - 2):

$$\hat{y}_i - t_{(\alpha/2)} \cdot SE(\hat{y}) \cdot \sqrt{\frac{1}{n} \cdot \frac{(x_i - \overline{x})^2}{n \cdot s_x^2}} \leq \hat{y}_i^* \leq \hat{y}_i + t_{(\alpha/2)} \cdot SE(\hat{y}) \cdot \sqrt{\frac{1}{n} \cdot \frac{(x_i - \overline{x})^2}{n \cdot s_x^2}}$$

Totaler F-Test

- Nullhypothese: kein Zusammenhang zwischen Regressoren und Regressanden
- H_0 : $\beta_1 = \beta_2 = ... = \beta_k = 0$; H_1 : $\beta_i \neq 0$ für mindestens ein i
- Testgröße: $F = \frac{r^2}{k} / \frac{1-r^2}{n-k-1}$
- H_0 ablehnen, falls $F > F_{(1-\alpha,k,n-k-1)}$ (i.d.R. α = 0.05 oder α = 0.01)

Partieller F-Test (t-Test)

• Nullhypothese: der Regressor x_i übt keinen Einfluss auf den Regressanden aus, der nicht bereits in anderen Regressoren enthalten wäre:

$$H_0$$
: $\beta_i = 0$, H_1 : $\beta_i \neq 0$

- Testgröße: $F = t^2 = \frac{b_i^2}{SE(b_i)^2}$
- H_0 ablehnen, falls $F > F_{(1-\alpha,1,n-k-1)}$ bzw. $t > t_{(1-\alpha,n-k-1)}$ (i.d.R. $\alpha = 0.05$ oder $\alpha = 0.01$)

Standardschätzfehler des Regressionskoeffizienten: univariat

$$SE(b) = \sqrt{\frac{S_e^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}} = \sqrt{\frac{\frac{1}{n-k-1} \cdot \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

=> Konfidenzintervall für den Regressionskoeffizienten:

$$b_i - t \cdot SE(b_i) \le b_{GG,i} \le b_i + t \cdot SE(b_i)$$
 mit $df = n - k - 1$

Standardschätzfehler des Regressionskoeffizienten: multivariat

- $\mathbf{X} = (n x k)$ -Matrix der Werte der k Regressoren
- Kovarianz-Matrix der Regressionskoefizienten: $\mathbf{V} = SE(\hat{y})^2 \cdot (\mathbf{X}'\mathbf{X})^{-1}$
- Diagonalelemente: $a_{ii} = |(\mathbf{X}'\mathbf{X})^{-1}|_{ii}$
- Stnadardschätzfehler des Koeffizienten: $SE(b_i) = SE(\hat{y}) \cdot \sqrt{a_{ii}}$

Überprüfung der Autokorrelation der Residuen

- => wichtig für Simulation von Zeitreihen
- · Durbin-Watson-Test
- H_0 : die **Residuen** $e_i = y_i \hat{y}_i$ sind nicht autokorreliert (sind unabhängig)

$$d = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$
 (0 \le d \le 4)

• Ablehnung der H_0 für $d < d^*$ (positive Autokorrelation)

bzw. $d > (4-d^*)$ (negative Autokorrelation)

Cooks Distanz (Cooks D)

- = Maß für den Einfluss einzelner Fälle auf das Ergebnis der Regression → **Ausreißer**
- = Differenz der vorhergesagten Werte zwischen dem
 - Regressionsmodell, dass **alle Fälle** berücksichtigt, im Vergleich zu dem
 - Regressionsmodell, dass den jeweiligen Fall nicht berücksichtigt
- ullet starker Einfluss für hohe Werte für D
- Faustregeln: Fälle weglassen, für die D > 1, bzw. D > 4/(n k 1)

Multikollinearinität

= Ausmaß der Korrelationen zwischen verschiedenen Regressoren

Probleme:

- Verringerung der Genauigkeit der Bestimmung der Regressionskoeffizienten (Vergrößerung der Standardfehler)
- 2. Signifikantes Bestimmtheitsmaß trotz nicht-signifikanter Koeffizienten
- 3. Die bestimmten Regressionskoeffizienten sind nicht stabil

Maße der Multikollinearinität

Konditionsindex:

- Wurzel aus dem Verhältnis des größten Eigenwerts zu jedem einzelnen Eigenwert, $d_{\it I}/d_{\it j}$
- 30 bis 100 ist ein Indikator für mäßige bis starke Kollinearität

Toleranz (TOL), Varianzinflation (VIF):

- TOL = 1/VIF = $I r_i^2$ (r_i^2 : Bestimmtheitsmaß für den Regressor x_i mit allen anderen Regressoren)
- TOL-Werte < 0.1, VIF-Werte >10 werden i.d.R. als problematisch angesehen

Voraussetzung: Mehrdimensionale Normalverteilung

- nicht erforderlich für Bestimmtheitsmaß
- erforderlich für Bestimmung der Konfidenzintervalle und Signifikanztests für kleine n und große k

Aufgabe

- Berechnen Sie für einzelne ausgewählte Regressanden multiple lineare Regresssionen mit allen übrigen Variablen mit den Verfahren: Standdard, schrittweise vorwärts, schrittweise rückwärts.
- Inwieweit sind die bestimmten Regressionsfunktionen plausibel bzw. sinnvoll?
- Wie beurteilen Sie das Problem der Multikollinearität?
- Wie sehr ändert sich das Ergebnis, wenn die Fälle hoher Cooks-Distanz nicht berücksichtigt werden?
- Bestimmen Sie das "optimale" Modell.