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Spatially explicit regionalization of airborne flux measurements
using environmental response functions
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Abstract. The goal of this study is to characterize the sen- Bowen ratios are compared between subsequent flights at dif-
sible () and latent (LE) heat exchange for different land ferent locations in the Xilin River catchment. Agreement of
covers in the heterogeneous steppe landscape of the Xilithe land cover specific Bowen ratios to within£® % em-

River catchment, Inner Mongolia, China. Eddy-covariance phasizes the robustness of the presented approach. This study
flux measurements at 50-100 m above ground were conindicates the potential of ERFs for (i) extending airborne
ducted in July 2009 using a weight-shift microlight air- flux measurements to the catchment scale, (ii) assessing the
craft. Wavelet decomposition of the turbulence data enablespatial representativeness of long-term tower flux measure-
a spatial discretization of 90m of the flux measurementsments, and (iii) designing, constraining and evaluating flux
For a total of 8446 flux observations during 12 flights, algorithms for remote sensing and numerical modelling ap-
MODIS land surface temperature (LST) and enhanced vegplications.

etation index (EVI) in each flux footprint are determined.
Boosted regression trees are then used to infer an environ-

mental response function (ERF) between all flux observa-

tions (H, LE) and biophysical (LST, EVI) and meteorologi- 1 Introduction

cal drivers. Numerical tests show that ERF predictions cov-

ering the entire Xilin River catchmem~(3670 kn?) are ac- Measurements of the exchange of heat and moisture between
curate to< 18 % (1o). The predictions are then summarized the land surface and the atmosphere are critical to our un-
for each land cover type, providing individual estimates of derstanding of the role of terrestrial ecosystems in the global
source strength (36 WT? < H < 364 WnT2, 46 WnT2 < climate system. Ground-based eddy-covariance (EC, a sum-
LE < 425 W nT2) and spatial variability (11 W 2 < oy < mary of all notation is provided in Appendix A) measure-
169WnT2, 14WnT2 < o1 < 152Wm‘2) to a precision ments are suited to continuously monitor selected sites for

of <5%. Lastly, ERF predictions of land cover specific 10ng periods and enable the integration in time (Baldocchi
et al., 2001). However, these results might only represent
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) i tative mechanism to extract relationships from, and to con-
bR = i) ' ., dense the information content in a dataset. If sufficiently ac-
~ Mgt e Gl ) curate, the extracted relationships can then be used, e.g. to
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bridge observational scales or to adjust the spatial represen-
tativeness of ground-based flux measurements. In addition,
current methods to spatially resolve surface fluxes are mainly
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oo focused on remote sensing algorithms (e.g. Fan et al., 2007)
ot and process-based land surface models (e.g. Vetter et al.,
MONGOLIAN REPUBLIC ,,-""1005 e 2012). These procedures often demand far-reaching assump-

tions, such as the closure of the energy and water balances
(e.g. Anderson et al., 2012), or are challenging with respect
to the required data basis (e.g. Kaminski et al., 2012; Ziehn
et al.,, 2011). In contrast, accurate ERFs enable inferring
high-resolution surface flux maps directly from observational

Xilin River
Catchment

_____
%

W data with minimal, quantifiable assumptions. However, ERFs
) cannot provide insights, e.g. into ecosystem pools. Conse-
===100km quently, ERFs might be suitable for complementing data as-

similation and remote sensing approaches, e.g. through con-
tributing to the design, constraint and evaluation of flux al-
gorithms.

The forenamed applications require the relation of the air-
borne measured fluxes to land cover properties. To enable
small areas around the immediate measurement locationthis requirement an aircraft is bound to measure close to the
(e.g. Kaharabata et al., 1997; Schuepp et al., 1992). On theurface, where characteristic fluxes from different land cov-
other hand aircraft-based measurements can provide flux iners are not yet fully homogenized (or blended, Mason, 1988;
formation at regional scales (e.g. Desjardins et al., 1995) butWood and Mason, 1991). Moreover, the flux must be mea-
are restricted to short periods of time. Thus the temporalsured at a constant altitude above ground, so as to avoid ar-
and spatial characteristics of ground-based and airborne megificial flux contributions through altitude fluctuations along
surements complement each other (Gioli et al., 2004; Maudevertical gradients (Vickers and Mahrt, 1997). However in-
etal., 2007). Itis desirable to integrate both approaches in anestigation areas are seldom ideally flat, and topography can
effort to provide suitable datasets for the design, constraintyary significantly throughout a domain. To safely follow ter-
and evaluation of mass and energy exchange models at sitain contours at a low and constant altitude above ground,
as well as at regional scales (Chen et al., 1999; Desjardinthe aircraft must possess a low ratio of true airspeed to climb
et al., 1997). In the following we briefly review the require- rate. Only a few airborne platforms fulfil this requirement
ments for spatial scaling of airborne EC measurements, an¢e.g. Bange et al., 2006; Gioli et al., 2004; Thomas et al.,
the applicability of airborne EC measurements over complex2012), with the weight-shift microlight aircraft (WSMA) be-
terrain. ing one of them (Metzger et al., 2011, 2012). In forenamed

Aggregation approaches enable estimating the exchangstudies we describe a WSMA that enables airborne EC flux
over entire landscapes, provided fluxes for characteristic lanagneasurements in remote settings at reasonable cost and min-
cover features or domains are known (Beyrich et al., 2006)imal infrastructural demand. The objectives of the present
Flight path segmentation can be a useful tool to directly re-study are to investigate the possibilities of (i) deriving mean-
late airborne EC measurements to landscape units (e.g. Desigful EC fluxes from WSMA measurements over complex
jardins et al., 1994; Vellinga et al., 2010). It is also possi- terrain, and (ii) scaling the results to a domain of interest.
ble to functionally relate these measurements to land cover We applied the WSMA over the undulating steppe of
properties, which then reflect the effects of vegetation, cli-the Xilin River catchment (XRC), Inner Mongolia, China
mate, soil and topography on the flux strength. For exam+(Fig. 1). On 21 days in the summer of 2009, flights along line
ple, Kirby et al. (2008) propose a method for discerning in- transects were conducted at 50-100 m a.g.l. From boundary
dividual fluxes in a heterogeneous landscape based on sulayer scaling it is found that the vertical flux gradients below
sets of “pure” flux fragments. Another approach is to utilize the flight level satisfy the surface layer definition (constant
quantitative information about the EC measurement’s spatialvithin 5-10%). Hence measured sensit#g @nd latent heat
context, on which basis environmental response functionglux (LE) can be interpreted as surface fluxes (Séd). Be-
(ERFs, Desjardins et al., 1994) can be derived. The generatause of its climate and management practices typical for
idea of ERFs is to establish a relationship between spatiallysemiarid grasslands of China (Butterbach-Bahl et al., 2011),
or temporally resolved flux observations (responses) and corintensive ecological research commenced in the XRC in the
responding environmental drivers. Hence ERFs are a quantiiate 1970s (Jiang, 1985). Besides Tibet, Inner Mongolia is

Fig. 1. Location of the Xilin River catchment in the Inner Mongolia
Autonomous Region, China (modified after Steffens et al., 2008).
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China’s most important province for grassland-based live-respectively, can be reliably distinguished (Metzger et al.,
stock production, and desertification due to overgrazing is2012). In addition, we use for this study slow measurements
a major problem for extensive areas (Meurer and Jiang(< 0.1 Hz) of humidity (TP3 dew point mirror, Meteolabor
2001). In addition, the land cover in the investigation areaAG, Wetzikon, Switzerland), surface temperature (CT in-
varies distinctly in space and time (Ketzer et al., 2008; Schaffrared thermometer, Optris GmbH, Berlin, Germany), and
frath et al., 2011). We postulate that airborne EC flux mea-down-welling shortwave radiation (LI-200 SZ, LI-COR Inc.,
surement is a promising tool to gain new insights into theLincoln, Nebraska, 400—1100 nm, within an error of 5%
spatial variability of heat and moisture exchange across thequal to pyranometer measurements, 300—3000 nm).

XRC.

In the present paper we firstly introduce the WSMA
and the on-board measurements, and give an overview
the climate and physical composition of the study area
(Sects.2.1, 2.2). We then describe a measurement strategyAirborne EC flux measurements were performed in the XRC
(Sect.2.3) which is linked to a novel data processing ap- from 23 June to 4 August 2009. The hilly investigation area
proach (Sect2.4). A wavelet transformation allows us to re- lies south of the provincial capital Xilinhot, Inner Mon-
solve fluxes above each overflown cell of a 90 m land covergolia, China (43.1-43°qN, 116.0-117.2E; 1000-1500 m
raster without neglecting flux contributions on much larger a.s.l., Fig.2). The XRC covers an area ef 3670 knf and
scales. In combination with footprint modelling and a non- is characterized by temperate continental monsoon climate,
parametric machine learning technique, an ERF is computeevith cold and dry winters and warm and wet summers.
between the airborne flux observations and meteorologicaFrom data of the years 1982—2005 at the Inner Mongolia
and land surface drivers (Fi§.provides an overview of the Grassland Ecosystem Research Station (IMGERS, 48163
data flow). In Sect3 we present the results of this func- 116.70 E; 1187 ma.s.l., Fig2), the monthly mean air tem-
tional relationship and evaluate its potential to explain theperature ranges from21°C in January to+19°C in July,
spatial distribution of the heat and moisture exchange alongvith an annual mean of-1°C (Liu et al., 2008). Vari-
the flight lines. We interpret the results in the context of ability in total annual precipitation is high (166-507 mm)
blending scales and statistical errors, and discuss the urwith a mean annual sum of 335 mm. Typically, 60—-80 %
certainty associated with using the ERF to predict fluxes toof the rainfall occurs from June to August (Chen, 1988).
freely selectable domains in the XRC (Seg2.4. Lastly, June 2009 (57 mm) and August 2009 (60 mm) were in the
we give an outlook on potential applications of WSMA usual range, but July 2009 (35mm) only received half of
flux measurements and future improvements of the presentethe long-term average rainfall. Detailed information on the
methodology (Sect). meteorological conditions during the flight campaign is pro-

vided in Appendix B. Chestnut soils are the main zonal
soil types, with a land cover dominated Byipa grandisS.

O%.Z Study area

2 Materials and methods krylovii, ArtemisiaandLeymus chinensieppe. Throughout
the XRC the abundance of C4 species in the steppe compo-
2.1 The weight-shift microlight aircraft sition is relatively homogeneous (15-25 %, Auerswald et al.,

2009). The growing season usually lasts from the end of May
The structure of a WSMA differs from common fixed-wing to late September (Liang et al., 2001).
aircraft: it consists of two distinct parts, the wing and the Land cover in the XRC had been classified on the ba-
trike, which hangs below the wing and contains pilot, en-sis of a Landsat 7 Thematic Mapper image of 17 August,
gine and the majority of the scientific equipment. This par- 2005 (Wiesmeier et al., 2011). In recent years however the
ticular structure provides the WSMA with exceptional trans- development of settlements sprawled, and irrigated agricul-
portability and climb rate, which qualifies it for applications ture is gaining popularity (Qi et al., 2007). The Bowen ratio
in inaccessible and topographically structured terrain. A de{Bo) of the latter is distinctly different from the land cover
tailed description of the physical properties of the WSMA classes that already exist in the classification of Wiesmeier
used in this study as well as characteristics and manufacet al. (2011). This land cover classification was thus updated
turers of sensors and data acquisition is given in Metzgerand extended by visual reclassification of Advanced Space-
et al. (2011, 2012). In short, most variables are sampled aborne Thermal and Reflection Radiometer (ASTER) images
100 Hz and are block-averaged and stored at 10 Hz, yieldingf 7 and 28 April 2009. The result is a land cover map
a horizontal resolution of approximately 2.5 m. In this study, with a resolution of 90 m, which is dominated by generic
we use the 10 Hz measurements of the 3-D wind spgge  steppe (71 % coverage), intersected by a dune belt (10 %,
0.04ms! precision), temperatures (= 0.04K), humidity Fig. 2). The coverage of bare soil, mountain meadow, marsh-
(0 =0.005gnT3), and the height a.g.lo(= 0.04m). From  land and rainfed agriculture is eaeh5 %, and the cover-
error propagation it was found that changes in friction veloc-age of water bodies, settlements and irrigated agriculture
ity (uy), H and LE of 0.02m3s!, 5Wm 2, and 3WnT2, s sub-per cent. In the context of this study the land cover

www.biogeosciences.net/10/2193/2013/ Biogeosciences, 10, 2932013
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W Arable
Mountain

Fig. 2. Maps of the Xilin River catchment (black boundary), with the IMGERS research station and pairs of flight lines. Left: land cover clas-
sification (modified after Wiesmeier et al., 2011) over a digital elevation model (Shuttle Radar Topography MissionJ%ilel&tx version

4.1, Jarvis et al., 2008). The colour codes are abbreviated for bare soil (Bare), marshland (Marsh), generic steppe (Steppe), mountain meado
(Mountain), settlements (Settle), irrigated agriculture (Irrigated), and rainfed agriculture (Arable). Right: MODIS-enhanced vegetation index
of 20 July 2009 with a colour bar ranging from<©OEVI < 1.

classification represents the longer-term effects of vegetaA ceilometer (LD40 — Vaisala, Helsinki, Finland) was de-
tion, climate, soil and topography. ployed at IMGERS and provided vertical profiles of the at-
The spatial variation of temperature and precipitation inmospheric laser radiation backscatter intensity (Mini light
the XRC follows altitudinal and latitudinal trends (Auer- detection and ranging, originally applied for the detec-
swald et al., 2009; Wittmer et al., 2010). To resolve the effec-tion of the cloud base height). The depth of the con-
tive state of biophysical surface properties over time, we usesective boundary layer (CBL) was inferred from 10 min
Moderate Resolution Imaging Spectroradiometer (MODIS)means of these data, in combination with semi-daily ra-
data. We chose 8-day composites of the daytime land surdiosonde ascends in nearby Xilinhot (World Meteorolog-
face temperature (LST, MOD11A2.5, 1 km resolution), andical Organization station 5410http://weather.uwyo.edu/
16-day composites of the enhanced vegetation index (EVIupperair/sounding.htmlFor this purpose the maximum gra-
MOD13Q1, MYD13Q1, 250 m resolution) for this purpose. dient method is used, which enables the detection of up to
Due to an 8-day overlap of the EVI data products by thefive lifted inversions (Emeis et al., 2008; Helmis et al., 2012;
MODIS Terra and Aqua missions, LST and EVI datasetsMiinkel and Roininen, 2010). It is assumed that the aerosol
could both be acquired for 4, 12, 20, 28 July, and 5 Au- number concentration, size distribution, shape and chemical
gust 2009. The LST and EVI datasets were bi-linearly inter-composition (refractive index, absorption) adapt rapidly to
polated to the 90 m resolution of the land cover classificationthe CBL structure. If there was more than one maximum or
and linearly interpolated in time to yield an individual map layer detected, the lowest one is taken as the CBL depth. The
for each flight day. The spatial gradients in temperature andCBL depth is used in Sec2.4.1for the calculation of atmo-
precipitation throughout the XRC are clearly reproduced byspheric length scales, and in Sez#4.3for the source area
the greenness of the vegetation (Fijj. The spatio-temporal calculation of the airborne flux measurement. In addition,
resolution of the MODIS data enables assessing the actuahe cloud cover during the flight periods was monitored by
state of the biophysical conditions at the land surface. LSTground personnel at IMGERS.
and EVI vary significantly not only throughout the study pe-
riod, but also between the different land cover types (Bjg. 2.3 Measurement strategy
All land cover types follow a similar temporal trend, with
LST and EVI peaking mid-July and end-July, respectively. Advancing into more complex terrain, a flight strategy needs
While open water is the coolest surface, LST and greennesg be derived that considers (i) pilot safety, (ii) vertical
increase from mountain meadow over marshland to irrigatediux gradients, (iii) orographically induced effects on radia-
agriculture, which are likely strong sources of evapotranspi-tive transfer and turbulence generation, (iv) statistical er-
ration. The reverse relationship (increasing LST and decreasors, and (v) the land cover distribution. Such a flight strat-
ing EVI) is found for settlements, rainfed agriculture, dunes, egy was derived for the XRC study region using the ge-
steppe and bare soil, which are likely strong sourced of ographic information system ArcMap 9.2 (Environmental
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Systems Research Institute, Redlands, CA, USA). (i) A min-
imum flight level of 50 m above ground was found to pro-
vide the pilot with sufficient clearance for safe flight even
under buoyancy-driven turbulence. (i) Measuring at a con-
stant pressure level would make a conversion of the measure
temperature and densities into potential quantities (Qe#t.
less important. However, over tilted or undulating terrain the
aircraft would partially travel along the vertical flux gradi-
ents, thus spuriously contaminating the measured flux sig
nal. A correction for the vertical flux gradients over complex .
terrain is not as straightforward and well conditioned as the |
conversion into potential quantities. In order for the fluxes e |
to remain interpretable, the aircraft should thus measure a =~ |
approximately constant height above terrain; i.e. the flight
paths should follow the terrain contours. (iii) We use a digi-
tal elevation model (Shuttle Radar Topography Mission, Tile © 19.|lune
60.04, data version 4.1, Jarvis et al., 2008) to calculate slope¢
angles. In an effort to avoid immediate orographically in-
duced effects on radiative transfer and turbulence generatior
all locations within 500 m radius around slopes exceeding 6
were masked. This radius approximately equals five times the

standard deviation (SD) of the terrain elevation. (iv) To re- _.

o . ig. 3. Change of land surface temperature (top) and enhanced veg-
duce the, statistical errors, the_ ﬂ'gh_t pth should be Ion.g ANGtation index (bottom) for each land cover class throughout the
perpendicular to the mean wind direction. Thus we alignedgy,qy period. The land cover colour code and corresponding ab-
straight flight lines along four wind axes in the areas which previations are identical with Fi@. Vertical dashed lines indicate
were not masked in the previous step. (v) Of the flight linesthe flight dates. The land cover “Water” is not present for the EVI,
that were frequently perpendicular to the mean wind direc-because water absorbs strongly in the near infrared, leading to neg-
tion, those that best represented the land cover distributiomtive EVI values that are not indicative of vegetation greenness.
in the XRC were covered on multiple flight days. This strat-
egy results in a terrain-following flight patterns, with typi-
cal altitude gradients of 100 m vertical on 10 km horizontal. resentative proxies for heat and moisture sources on the sur-
The climb angle of the aircraft rarely excee#l§°, and on  face, respectively (e.g. Glenn et al., 2008; Lyons and Halldin,
average the height above ground is constant to within 12 m2004; Nagler et al., 2007). Because aircraft measurements
(Table1). Each flight line was repeated until a minimum of cover a broad state space, the resulting observations are par-
40 km of data were acquired. ticularly suited to infer ERFs.

The aircraft was operated from IMGERS (Fig). For
the present study we use data from six days in July 2002.4 Data processing
(Table1), which were selected according to the availability
of auxiliary datasets and homogeneity of the down-welling An analysis package for the processing of the airborne EC
shortwave radiatior§ | along the flight tracks (Tabl&1). data was developed in GNU R version 2.13 (R Develop-
On each day measurements were carried out along pairs ahent Core Team, 2012). The analysis package is described
approximately parallel flight lines at a nominal airspeed of in detail in Metzger et al. (2012) and is available upon re-
27 ms1, with eight individual flight lines in total. Each pair quest. Relevant processing steps are: (i) the raw data are
is located across or along the humidity and temperature grascreened for spikes; (ii) humidity from fast response and slow
dients in the XRC (Fig2). This strategy provides two inde- reference sensors are merged using a complementary filter;
pendent datasets for each flight day, and covers the funddiii) the WSMA temperature and densities are transformed
mental climatic gradients in this area. to potential quantities at the mean flight altitude (pressure

The land cover type most frequently observed below alllevel) of each flight line; (iv) the time delay due to separa-
flight lines is steppe (Tabl&). Flight lines with significant tion between the vertical wind measurement and the temper-
surface coverage of marshland or irrigation agriculture tendature and humidity measurements is corrected by maximis-
to be greener (higher EVI) compared to flight lines with sig- ing their lagged correlation; (v) the WPL correction accord-
nificant coverage of dunes or bare soil. In the following, we ing to Webb et al. (1980) is used to correct LE for density
investigate whether spatially resolved land cover informationfluctuations; (vi) correction for spectral artefactsl(+ 1 %,
can be used as predictor féf and LE measured along the —2+4+1%, and—6+2 % for the SDs in the wind compo-
flight lines. At this we hypothesize that LST and EVI are rep- nents along, transverse and vertical to the aircraft coordinate

LST [K]

0.50 300 305 310

5

0.

20

3July  17July  31July 14 August

Date of 2009

Bare Dunes @ Marsh ® Steppe ® Mountain
® Water ® Settle o [rrigated ® Arable
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Table 1. Summary of the WSMA flights selected for analysis and related surface conditions. Shown are date, Chinese standard$ime (CST
coordinated universal time 8), flight identifier (ID), length of each flight ling repetitions rep, cumulated precipitation in a 10-day trailing
window P, most frequently occurring land cover classes LC1-LC3, and the enhanced vegetation index EVI immediately below the flight
lines. A legend with colour codes for LC and EVI is provided at the bottom. The LC colour code and corresponding abbreviations are
identical with Fig.2.

Date Time CST ID I[km] rep P[mm] LC1 LC2 LC3 EVI
8July2009  10:20-10:50 010 15 3 14  54% 35% 6% 35+13%
12:00-12:50 012 13 6 32% 30% 21% 35+ 18%
13July 2009 11:30-12:10 08 30 2 50 [59% 11% [32+10%
12:40-13:10 03 21 2 70% 13% [2526%"
15July 2009  11:30-12:20 O11 11 6 50  48% 42% [O%N 33+ 9%
12:30-13:00 07 11 4 79% 16% 4% 21 +6%
17July2009 11:00-11:30 011 11 4 52 [54% 40% 4% [ISCRE2%N
12:20-13:00 07 11 5 82% 10% 5%  21+8%
26July2009 12:50-15:30 C1 60 2 134 [B1% 24% 20%
13:10-15:10 C2 63 2 73% 10% 9%
30July2009 11:00-13:30 C1 60 2 143 [52% 24% 18%
11:10-13:20 C2 63 2 74% 10% 8%

Lc  [AEBE Bare Dunes Irrigated Marsh Steppe

EVI >20%-25%  [[I528%=80% 1 >30%-35%  [HIS88%

system, respectively) and cospectral artefacs+{ 4 %, 0+ measured surface temperatikeat distancef along a flight
1%, and O+ 2% foru,, H and LE, respectively) after Met- line from zero lag to the first crossing with zero at lag
zger et al. (2012); and (vii) calculation of random and sys-
tematic statistical errors after Lenschow and Stankov (1986) L —
T/(d)T.L(d +c)
and Lenschow et al. (1994). Ly = / SIS T e, (1)
T{(d)?
2.4.1 Horizontal mixing between surface and flight level
where overbars denote the mean along a flight line, and

Horizontal mixing between the surface and the flight level re-primes denote the deviations from this meap. can be in-
sults in the spatial integration of fluxes above heterogeneougerpreted as the spatial coherence of surface features along
terrain, a process also referred to as “blending” (e.g. Masonthe flight path (e.g. Strunin et al., 2004). In the following we
1988). Working toward an ERF between surface propertiesassume thatky is isotropic within the flux footprint, i.e. also
(driver) and flux measurement (response), we will test threeepresentative perpendicular to the flight path.
hypotheses related to horizontal mixing. At flight level (i) the  In order to further characterize the mixing reginia,
turbulence is in approximate equilibrium with the land sur- can be compared to atmospheric length scales. These length
face in the flux footprint; (i) the measured turbulence statis-scales inter-relate the transport strengths in the horizontal and
tics are representative of the mechanical setting upwind; (iii)vertical directions, and correspond to the along wind distance
changes in the turbulent flux can be resolved at the horizontafter which the air mass below a reference level is approxi-
scale of surface heterogeneities. mately homogenized. Formulations for atmospheric length

Several analytical formulations have been developed tascales mainly differ in their use of (i) the measures of trans-
characterize a mixing regime (e.g. Mahrt, 2000; Raupachport strengths, and (ii) the vertical or horizontal reference
and Finnigan, 1995; Wood and Mason, 1991). Such formu-scale. Raupach and Finnigan (1995) proposed a length scale
lations are usually based on the comparison of characterist.r (now also referred to as Raupach length), which charac-
tic length scales for surface heterogeneity and CBL mixing.terizes the mixing regime throughout the entire CBL;
Here we use the autocorrelation function to estimate the typi-
cal horizontal scale of surface heterogenéity For this pur- u
pose we integrate the autocorrelation function of the WSMA-LRr = 0.8z T @

*
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with CBL depthz;, average (bulk) horizontal transport veloc- where i is a suitable mother wavelet, a scale parame-
ity u, and convective velocity,. Because: cannot be mea- ter (in frequency domain) a location parameter (in time
sured directly, it is substituted in Eqg. (2) and in the follow- domain), and; = (+ — b)/a a dimensionless coordinate (in
ing investigations with the measured horizontal wind speed atime—frequency space). The convolutign (1), (1) dr of
flight altitude. The influence of surface heterogeneities witha signalx with a daughter wavelet, , yields a wavelet
spatial scaled.y that are small compared tor is confined  coefficient W, (a, b), a wavelet transform being a collec-
below the CBL top. In this case the concept of a “blending tion of such coefficients. We follow the procedure of Tor-
height” within the CBL arises. The blending height corre- rence and Compo (1998), using the continuous wavelet trans-
sponds to a vertical level at which the turbulent flow field form approximation for discrete input. The chosen mother
over heterogeneous terrain approaches equilibrium with thgvavelet is the Morlet wavelety(g) = Y4 piw0q ,—47/2
local vertical gradient. If the blending height is confined with the frequency parametes = 6. The relevant param-

within the surface layer, Monin—Obukhov similarity can be eters are spaced exponentially in frequency and linearly in
applied above the blending height (Mahrt, 2000). Wood andtime, respectivelys; = ap2/% for j =0,..., J andb, = nést

Mason (1991) define the thermal blending height for unstablefor » = 0,..., N — 1, with length of the dataseV, initial

stratification, scale parametetg(8z, ¥) and number of scale increments
oL J(ao,8j,8t, N, ). ap and J are chosen such that the ex-

zB1 = Ly—22 . 323 (3)  treme wavelet scales match the period of the Nyquist fre-
u 6o, v guency, here 0.2s, and the duration of the dataset, respec-

with the buoyancy heat flux from the virtual potential tem- tively. The unit of increment in the time domai, is given
peraturefo,,, and the horizontal wind speedat the blend- by the sampling period of the time series, here 0.1s. The
ing height. This thermal blending height can be rearranged!nit of increment in frequency domaid;, can be set to

as thermal blending length; different values, with smaller values increasing both reso-
lution and redundancy. For the present data, the results of
6 . ... . .
LTBl:Z” 0v 3. 1073, @) Fhe wavelet analyses yvere insensitive to the choicgjof
w'oy, in the range M625< §j < 0.25. Hence we follow the ex-

) ~ample of Torrence and Compo (1998) and dge- 0.125.
now representing the smallest scale of surface heterogeneityne \wavelet scalogram of a signalis defined as the ma-
that significantly influences the turbulent flow at flight level iy of |W.(a, b)|2 for all admissiblea, b. Likewise, the

above ground. An improved version of the thermal blending,,avelet cross-scalogram of two signalsy is the matrix

length was proposed by Mahrt (2000); of W, (a, b)Wy(a, b)*, where* denotes the complex conju-
gate. The global covariance efandy can be estimated by

90, v

Lte2 = LR = -4.3-1073, (5)  weighted averaging;
which considers the SD dfs as a measure for the amplitude _§jdt J N1 We(aj, bp)Wy(a;, by)* 7
of surface heterogeneity. The numeral factors in Egs. (3)—C°V“’b T CsN Z Z aj ’ @)

(5) were estimated from observations by Mahrt (2000). In
Sect.3.1 the results of above formulations are used to testwhereCs is a reconstruction factor specific to each mother

the initial hypotheses related to horizontal mixing. wavelet, here 0.776 for the Morlet wavelet. The covariance
can also be estimated locally for a subinterval of either
2.4.2 Wavelet cross-scalogram n. This is a useful feature for dealing with changes in land

The diff . f land . dds with th cover: the continuous wavelet transform is highly redundant,

| €d ?rt'_entla(tjlon 0 aE?: co:/he ' dtyp?f Ihs at odds V;:'t the ith high correlation between adjacent low-frequency coef-
classical ime-domain metho ) WhICh assumes NOMOY€xiants. Therefore, the covariance for a subinterval in time
neous terrain. However, Parseval's theorem implies that the., 1o timated without neglecting low-frequency, large-

govar{ange of S|_gni':1Is Im_ay Ee fstud|ed n%t °”'¥ |nTLhe iMegcale contributions. The downside of the large low frequency
omain, but equivalently in the frequency domain. There, Wesupport is that edge effects due to the finite overall dataset

haye the wave!et transform family of methods at Our_diSposalincrease with scale. Torrence and Compo (1998) define the
Wh|(_:h are p_artlcularly suited for the spectral analysis of non-. - o« influence (COI) as the boundary where the power of
stationary signals. edge-related artefacts is damped by a factar &t Integra-

A wavelet is a signal that is localized in both time and tion over all scales yields results close to the time-domain

frequency. Different localizations of the same pasic s.hapeEC method (here~7 to —3 % median differences), but also
(daughter wavelets) are constructed as a function of time includes less reliable estimates above the COI (e.g. Strunin

by defining; and Hiyama, 2004). Considering only scales below the COI
t—b 1 rejects those less reliable estimates (e.g. Mauder et al., 2007).
Vap(1) = m‘p a = m‘p(q)’ (6) However, because part of the scale range is excluded, such a
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procedure also systematically increases the discrepancy bt s 5
tween wavelet and time-domain EC methods (her22 to 2
—7 % median differences). Moreover, the COI tapers toward
the centre of the dataset (Fig). Different scales would be

included when estimating the covariance for subintervals a= °%
different positions along the flight path. Hence, for the lo-
calization of flux contributions in space we (i) integrate over
all scales of a subinterval, and (ii) use a correction factor for
each individual flight path to compensate the difference be-
tween wavelet and time-domain EC methods. Such a proce
dure is suited for the derivation of ERFs, because (i) it en- £
ables localization in space, (ii) considers contributions to the £,
local flux from scales that are larger than the subinterval, (iii) .,
is not biased with respect to the global time-domain covari- o0

ance, and (iv) uncertainty arising from edge-effects is propa- % sw WM"‘M—H
0

gated in the ERF and included in the final uncertainty metric £ T . :

i

Scale [km]

[Wm?]

le

(Sect.2.5.1).

Computations were_perfqrmed with a continuous wavelet g |" | sufice sevaion j’-’/‘|
transform package written in GNU R (R Development Core o ; : . . o M
Team, 2012), partially based on the published code of Tor- Distance from W end of track [km]

rence and Compo (1998) available frantp://atoc.colorado. _ .
edu/researchiwavelets,, H and LE (and analogously the Fig. 4. Wavelet cross-scalograms for the sensible he.at flux (top

. - _panel) and the latent heat flux (centre panel) along flight pattern
SDS_ of the wind components) are calcul_ated for overlappin 12 on 8 July 2009, 12:16-12:24 CST. The colour palette changes
subintervals of 1000 m length. The sublnteryals are centreqyom plue (downward fluxes) over white (neutral) to red (upward
above each cell of the land coyeST/EVI grids that was  flyxes). The shaded areas identify the cone of influence. Below each
overflown by the WSMA, principally yielding one flux ob-  cross-scalogram the integrated flux over all scales is shown for each
servation every 90 m. The resulting sample size for all 12overflown 90 m cell of the land cover grid. The surface elevation
flights in Tablel is N = 8446. along the flight pattern is displayed in the bottom panel.

2.4.3 Footprint modelling

backward Lagrangian reference footprint model, and good
The footprint- or source weight function quantifies the spatial2greement was fogn_d for all considered cases.
contributions to each flux observation (Schmid, 2002; Vesala Turbulence statistics for a 1000-m-long subinterval over
et al., 2008). For this purpose we use the footprint modelthe wavelet scalograms (Se2t4.2 are used to evaluate the
of Kljun et al. (2004, KL04), which is a parameterisation of KLO4+. One evaluation is carried out for each overflown cell

the backward Lagrangian model of Kljun et al. (2002) in the Of the land cover, LST and EVI grids (i.e. every 90 m along
range —200<z/L <1, u, >02ms%, and 1m<z <z. the flight path). With the overflown grid cell as base point, the
The parameterisation depends upgnmeasurement height footprint weightsw,, (3w, = 1) are calculated for each
z, SD of the vertical wind,, and the aerodynamic roughness 9rid cell with positionx, y, relative to the base point. From
lengthzo, of whichu., z ando,, are measured directly by the here the footprint composition is calculated;

WSMA. The roughness length is inferred using the logarith-

mic wind profile with the integrated universal function for LST= way STy, (®)
momentum exchange after Businger et al. (1971) in the form S
of Hogstbm (1988). The KLO4 is a cross-wind integrated EVI =) > wyy-EVl,,, 9)
footprint model; i.e. it does not resolve the distribution per- Xy

pendicular to the main wind direction. In order to account for
cross-wind dispersion, the KL04 was combined with a Gaus
sian cross-wind distribution function (Kljun et al., 2013, in
the following referred to as KLO4+). In addition to above

with the land surface temperature and enhanced vegetation
index for each grid cell, LST;, and EVl,, respectively.

For graphical representation all evaluations of KLO4+ along

. . a flight line are superimposed and normalized to a sum of
variables, the SD of the crosswind from V.VSMA measure'unity. Additional information and references regarding foot-
ments and the depth of the C%_from cellqmeter mea- print calculations along line transects can be found in Hutjes
gurements (Seth.IZ) are used. Th|§ resuljts in a cpmputa— et al. (2010) and Meijninger et al. (2006).

tionally fast footprint parameterisation which considers 3-D

dispersion and is not constrained to applications in the sur-

face layer. Metzger et al. (2012) evaluated KL0O4+ against a
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2. Time—fmueng (wavelet) analysis
Reported:

4. Machine learning ‘ /
Additional inputs:
» Aircraft: H,O mixing ratio,

potential air temperature, down-
lling shortwave radiation. ‘

Fig. 5. Flow chart showing how input and reported data streams are processed along the four principal steps of the LTFM method. Additional
detail is provided in Sect2.4.4and4, and a summary of all notation can be found in Appendix A.

2.4.4 Environmental response function tire observation period and, within the range of the measured
variables, throughout a catchment of interest.
Hitherto, ERFs were determined as the inverse of a linear

We base the development of a catchment-specific ERF ofixing matrix, using either numerical (Chen et al., 1999) or
the works of Chen et al. (1999), Hutjes et al. (2010) andregression methods (Hutjes et al., 2010; Ogunjemiyo et al.,
Ogunjemiyo et al. (2003). The general idea is to establish2003). Such a procedure assumes a linear relationship be-
a functional relationship between spatially or temporally re-tween drivers and responses, which is subject of on-going
solved flux observations (responses) and corresponding enviliscussion and research (e.g. Raupach and Finnigan, 1995).
ronmental drivers. Figurgprovides an overview of the novel Instead, the present approach uses boosted regression trees
approach to ERF presented in the following. (BRTSs), a non-parametric machine learning technique, to es-

Thus far, a suitable number of flux observations was ob-tablish an ERF between drivers and responses. In contrast
tained by either shortening the time-domain EC averagingto parametric approaches, BRTs do not assume a predeter-
interval (Chen et al., 1999; Ogunjemiyo et al., 2003), or by mined form of the response, but construct an ERF accord-
stratifying repeated observation along the same flight lineing to the information in the data. It is for this reason that
on different days (Hutjes et al., 2010). The inherent draw-not the absolute values of the land surface and meteorolog-
backs are the neglect of either long wavelength contributiondcal drivers are important, but rather their spatial variabil-
to the flux measurement, or inter-day variability of ecosys-ity and coherence. In case of the land surface drivers for
tem drivers. Both are overcome using the wavelet crossexample, the only assumption made here is that the spatial
scalogram technique (Seét4.9. patterns of LST and EVI approximate the spatial patterns

Previously, the development of ERFs has solely focusedPf source strength if and LE (e.g. Holmes, 1970; Oke,
on drivers in the footprint of the flux observations, namely 1987). This is a much weaker assumption than a mechanis-
discrete land cover classifications. This procedure ignoredic link, and adds power to the method. BRTs can fit com-
within-class variability across a catchment, e.g. along cli-plex nonlinear relationships, automatically handle interac-
matic or altitudinal gradients, which can be overcome by us-tions between drivers, and provide predictive performance
ing continuous variables such as LST and EVI instead. Inthat is superior to most traditional modelling methods (e.g.
addition, the present approach considers the meteorologicafu et al., 2010). Here we use the BRT work package by Elith
drivers S |, mixing ratio (MR), and potential temperature €t al. (2008), which builds upon the GBM library by Ridge-
(9). This avoids the need for stratifying or pre-selecting data,way (2012). To identify the optimal choice of parameters and
and enables constructing a single ERF that is valid for the envariables for the BRTs, a sensitivity analysis was conducted

www.biogeosciences.net/10/2193/2013/ Biogeosciences, 10, 2932013
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Fig. 6. Flight along pattern O12 on 8 July 2009, 12:16-12:24 CST (white dashed line). The composite flux footprint along the flight line
(30%, 60 %, 90 % contour lines) is superimposed over maps of land cover (left panel), land surface temperature (LST, centre panel), and
enhanced vegetation index (EVI, right panel). The land cover colour code and corresponding abbreviations are identicaPwith Fig.

using the cross-validation (CV) procedure described in Elithsignificantly impact the flux observations. Consequently, the
et al. (2008). During cross validation all available data arefinal BRT model is fitting an ERF té/ and LE as function
divided into 10 random combinations of training (90 %) and of only the five most important predictors. This ERF is then
evaluation (10 %) fractions, which allows assessing and opti-used to predicH and LE throughout the XRC, as a function
mising model performance. The parameter settings that miniof LST and EVI for each grid cell, and the medidn,, MR,
mized predictive deviance for the present dataset were foundndé for the duration of a flight.

to be: absolute (Laplace) error structure, bag fraction (0.7), In the following we will use the term LTFM to re-
tree complexity (5), learning rate (0.1), and number of treesfer to the overall procedure consisting of Low level
(10%. The initial set of variables also included time of the flights, Time—frequency-, Footprint-, and Machine
day, MODIS albedo, atmospheric pressure, land coyer, learning analyses (Fi®).

Zi, U, Ux, Zo, Virtual potential temperature, as well as ele-

vation, topographic wetness index, aspect, and slope of the 5  Uncertainty

footprint modelled source area. We use the variable drop-

ping algorithm by Elith et al. (2008) to reach a compromise Thyoyghout the present study, we use the median and the me-
between predictive deviance and model parsimony. This alyjan absolute deviation as preferred measure of location and
gorithm (i) fits a BRT model, (ii) performs a 10-fold CV, gcgje, respectively (Croux and Rousseeuw, 1992; Rousseeuw
(iif) drops the least important predictor (determined from the ang verboven, 2002). All resulting uncertainty estimates are
improvement to the model and the number of splits, Fried-rgpresentative of one standard deviation. For the purpose of
man, 2001), and (iv) repeats this sequence until a stopPINgetecting systematic differences between observations and
criterion is reached. The mean CV deviance can be used 8 e ictions, we use the maximum-likelihood fitting of a func-
decide how many variables can be removed without signifi-;jq4) relationship (MLFR, Ripley and Thompson, 1987).

cantly affecting predictive performance. Here, we set an up-rhis method assigns a weight to each data couple in the re-
per threshold of 30 W m? for the mean CV deviance, which lationship, which is inversely proportional to its error vari-

equalss< 1/2 the random sampling error in the flux observa- gnces. In our case, the squared random flux errors in the
tions (Tabled). The dropping of variables first stopped for gpservations, and the residuals in the BRT cross-validation
LE at 29.2Wn1? mean CV deviance, yielding a set of the gnsemble are used. This appreciates reliable data and depre-
five most important predictors (LST, EVS, |, MR, and®).  gjates uncertain data couples. The errors in the MLFR co-
For H the same predictor set yields a mean CV deviance ofufficients are determined from a jackknife estimator (Que-
only 22.6\W nT“. Remarkably, atmospheric pressureand  noyille, 1956; Tukey, 1958). If the regression intercepts were
z; were no significant predictors for the observed fluxes. This ¢ significant, the relationships were forced through the ori-
indicates that the chosen flight/analysis strategy effectivelygin, and confidence intervals were determined from the slope
minimizes cross-contamination of the flux observations bygrror. The coefficient of determinatioR? was calculated
vertical qux/prgssure gradients. Analogously the al'gori'[hmin analogy to weighted least-squares regression (Kvalseth,
dropped elevation, aspect, and slope of the footprint mod- ggs: willett and Singer, 1988). It is the proportion of varia-

elled source area as predictors. This shows that slope-induceghp, in the weighted dependent variable that can be accounted
effects on radiative transfer or turbulence generation do nog,, by the weighted independent variable.
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Uncertainty in the LTFM up-scaling procedure originates the combinations of state variables in the evaluation data are
from different sources during measurement and data analyrepresented in the training data. Here we assess the suscep-
sis. Part of these uncertainty terms exhibit random charactetrtibility of the BRT response function and predictive perfor-
istics; i.e. they tend to cease with sample size. Another partnance to missing state variable combinations in the train-
however will systematically bias the results, independent ofing data. For this purpose, 12 incomplete training datasets
sample size. An uncertainty budget for the random and sysare created, each of which omitting a different flight out of
tematic uncertainties in the LTFM procedure will consist of the total of 12 flights in Tabld. For each incomplete train-
uncertainty terms for (i) instrumentation and hardware, (ii) ing dataset, (i) the BRT is trained, (ii) the resulting response
turbulence sampling, (iii) spatio-temporal analysis, (iv) BRT function is used with the state variables along the omitted
residuals, (v) BRT response function, and (vi) BRT state vari-flight for prediction, and (iii) predictions and observations
ables. While uncertainty terms (i), (ii), and (iv) can be quan- are compared.
tified with readily available procedures (Se@s4, 3.3), in
teh following we describe several techniques to assess term®.5.3 State variables
(iii), (v) and (vi).

Here, we consider the uncertainty resulting from disregard-
2.5.1 Spatio-temporal analysis in heterogeneous terrain ing part of the natural variability in the state variables that

are used for spatially and temporally explicit BRT predic-
Under the umbrella of spatio-temporal analysis, we quantifytions. For this purpose we quantify the disregarded parts of
in the following the uncertainty contribution from wavelet the natural variability in each state variable and propagate it
analysis, footprint modelling, and the assumption of linearthrough the full BRT model. While explicit in time, the mete-
mixing. The fluxes derived from the wavelet cross-scalogramorological variables measured by the aircraft do not cover the
were adjusted to match the leg-averaged fluxes from timeentire catchment. We estimate a measure of spatial variability
series EC, which avoids bias between both techniques. Alsérom all subsequent pairs of flights that are located in differ-
areas above the wavelet cross-scalogram COIl were used ient areas of the catchment (Talild=ig. 2). The median dif-
the flux calculation to ensure including all scales of turbulentferences throughout the catchmentS$of (—6-£12 W m—2),
transport along the entire transect. However, values above the (—1.14+1.1 K), and MR (-0.5+0.3 g kg™?1) are not signif-
COl are potentially distorted due to edge effects, in particularicant (Wilcoxon rank-sum tesp > 0.18). On the contrary,
close to the beginning and the end of each transect. Thes®lODIS EVI and LST are explicit in space, but not contin-
artefacts propagate in the resulting variances and fluxes, andous in time. The 8-day trends from one scene to the next
consequently into the footprint estimates. Additional spatialare accounted for in the BRT procedure through temporal
uncertainty terms result from the use of an “offline” foot- interpolation between the MODIS scenes (S@c®). How-
print model that does not consider the actual flow field, asever, processes of shorter duration, such as frequent events of
well as from the MODIS EVI and LST data. The use of small-scale convective precipitation, go unaccounted. Hence
BRTs does not expect a linear response between the statge estimate a measure of the natural variability between
variables and the flux signal. However, LTFM still assumestwo MODIS scenes. For this purpose we calculate the me-
the linear mixing of the flux signal with respect to the con- dian change of all grid cells between all subsequent MODIS
tributing surface patches with different biophysical proper- scenes, amounting ta@ + 0.05 for EVI and—0.5+6.2K
ties and source strengths. for LST. The random part of EVI and LST natural variabil-

To quantify the error inherent in the above analysis stepsijty by far exceeds the MODIS data product uncertainty of
we compare maps of LTFM predicted fluxes to airborne flux~ 0.015 (Xiang et al., 2003) ang1 K (Wan and Li, 2008),
observations. (i) The BRT is trained with all available ob- respectively. Hence MODIS data product uncertainty was not
servations § = 8466). (ii) Using the median state variables considered separately.
along each flight legN = 42), the BRTs response function = The correlation matrix between the state variables was
is used to predict a similar number of flux maps (Fid). calculated using all 8446 aircraft observations. A variance-
(iif) The LTFM footprints are superimposed over these flux covariance matrix was calculated from this correlation matrix
maps. (iv) For each flux observation, a predicted flux is cal-and the random part of the state variables’ natural variability.
culated as the footprint-weighted average of all contributingPreserving the variance-covariance relationship, 1000 sam-
cells, and (v) predictions and observations are compared. ples were drawn from a multivariate normal distribution with

zero mean. These represent 1000 combinations of co-existing
2.5.2 Response function natural variability in the state space of the BRT model. The

propagation through the BRT model was performed individu-
BRTs are a non-parametric machine learning technique irally for each combination by (i) superimposing the estimated
which a response function is constructed according to thenatural variability over the measured state variables of all
coherencies in the training data. As a direct consequence th@446 observations, (ii) performing a BRT prediction, and (iii)
predictive performance of BRTs depends on how completecomparing the results to the undisturbed predictions.
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3 Results and discussion to assess the minimum size of surface heterogeneity that sig-
nificantly influences the flow at flight level. Here we use
In the first part of this section, we assess the surface-255m< Lyg2 < 1852 m as a guideline, becausgs; is also
atmosphere mixing regimes. From there wavelet analysisrepresentative of the magnitude of surface heterogeneity. The
footprint modelling and BRTs are used to infer ERFs be- native resolution of the EVI data (230 m) and the land cover
tween land surface properties and the flux measurementslata (90 m) is equal to or better thamg2, and thus sufficient
Lastly, uncertainties in the LTFM up-scaling procedure areto reproduce the variability of the land cover. In comparison,

analysed and discussed. the native resolution of the LST data (1000 m) is coarse, po-
tentially leading to an attenuation of the ERFs.
3.1 Horizontal mixing between surface and flight level Using the wavelet cross-scalogram, long wavelength con-

tributions to the flux do not constrain the spatial resolution

On spatial average energy conservation requires that thef the flux computation along the flight path. Nevertheless,
vertical profiles of H and LE approach their respective the random flux error is inversely proportional to the square
entrainment flux at the top of the CBL (e.g. Deardorff, root of the averaging length (e.g. Lenschow and Stankov,
1974; Sorbjan, 2006). The linear vertical flux gradient of 1986), and propagates directly into the computation of the
H throughout the CBL was calculated-0.21 Wnr2m~1 ERFs. Hence, we consider a trade-off between random error
- —0.06 Wn2m™1), assuming thaH ceases at the stati- (high resolution) and smearing (low resolution) of the result-
cally stable entrainment zone around 0.8 CBL. However, theing flux estimates. The upwind distance (perpendicular to the
entrainment flux of is unknown. Hence we cannot estimate WSMA flight path) where 80 % of the flux contributions are
the vertical flux gradient of, but assume a comparable or- included in the footprintLgge, = 11714314 m, is compara-
der of magnitude as foH. The resulting effect of the ver- ble in magnitude td.y. Thus, a flight path length of similar
tical flux gradient below the flight level is5+2 % of H, extent (1000 m) is a physically meaningful window for the
which falls well within the surface layer definition (e.g. Rau- computation of turbulence statistics and fluxes, because (i)
pach and Finnigan, 1995; Stull, 1988, flux constant within changes in the turbulent flux (response) are resolved at the
5—10%). Thus, it is feasible to assume tlfatand E mea-  same spatial scale as the characteristic surface heterogeneity
sured at flight level are representative of surface fluxes. (driver); (i) the turbulence statistics used for footprint calcu-

The characteristic length scale of surface heterogeneity isations are representative on the same spatial scale as the up-
on the order of several hundred to thousand meters, witlwind extent; and (iii) the random error for each flux estimate
an average of.y = 1012+ 715m (Table2). Along identi-  decreases by 70 % compared to a window length of 90 m.
cal flight pathsLy is comparable between days with differ- ~ The (aerodynamic) roughness length is usually below
ent meteorological settings (e.g. 15 and 17 July 2009, 26 and m, with exception of the low wind speed situation on
30 July 2009). This confirms the usefulness of the surfacel7 July 2009, pattern O11, and the higher flight levels (
temperature measurement as a proxy for surface heterogen87 m) on 26 July 2009 (Tab[®).
ity. Only the longer flight paths C1 and C2 cross the dune
belt in the centre of the catchment (F@). The dune belt 3.2 Flux un-mixing
is the largest continuous land cover after steppe, and con-
sequently the autocorrelation function Bf estimates large The presentation of the flux un-mixing results follows
values of Ly (1458-2615m). During all flightsLy was  the sequence of the LTFM analysis steps. In S8&.1
small compared to the Raupach lengtlg (= 1532-5214 m), the spatially resolved flux observations from the wavelet
and thus the influence of the surface heterogeneity is coneross-scalogram are illustrated. Subsequently, footprint mod-
fined within the CBL ¢, = 1100-2500 m). Here we use the elling is used to infer the biophysical surface properties in
thermal blending heightz{g1 = 40+ 29 m) as an estimate the source area of each flux observation (S8&.2. In
for the vertical level where quasi-equilibrium of the turbulent Sect.3.2.3the ERFs between flux observations and meteoro-
exchange between land surface and atmosphere is reachddgical and land surface drivers are established. These ERFs
At all times the flight level £ = 48-102m) is aboveTg1 are then used to predict the surface fluxes throughout the
and below~ 10% of the CBL depth, a common estimate XRC, which are finally summarized for different land cov-
for the depth of the atmospheric surface layer (e.g. Raupackrs (Sect3.2.4.
and Finnigan, 1995; Stull, 1988). Hence it is feasible to as-
sume that the turbulence measurement at flight level is rep3.2.1  Spatially resolved flux measurement
resentative for the land surface in the flux footprint. The in-
terpretation of the flux observations might be more compli-Here and in the following we use a flight along pattern
cated for measurement heights below the thermal blendin@12 for illustration, which follows a shallow elevation gra-
height (limited spatial representativeness) or above the surdient (Fig.4 bottom panel). This flight pattern is particu-
face layer (vertical flux gradient). The blending length for- larly suitable for this purpose because of its marked land
mulationsLtg1 (16604 723) andL g2 (957+441) are used cover changes over a relatively short distance. The wavelet
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Table 2.Mean length scalesSD between repetitions during the WSMA flights selected for analysis. Shown are CBLzgegthodynamic
roughness lengtty, flight altitudez, thermal blending heightrg1, length scale of surface heterogendity, Raupach lengtlir, the thermal
blending lengthd.tg1 and Ltg2, and the upwind distance from the WSM#gq,, Where 80 % of the flux contributions are included in the
flux footprint.

Date Time (CST) ID  z; (M) z0 (M) z(m)  zrei (M) Ly (M) LR (m) Ltgg (M) Ltgz2 (M)  Lgog (M)

8 Jul 2009 10:20-10:50 010 1100 .2@+0.13 59+4 45+7 802+192 1532105 1046+£171 255+5 931452
12:00-12:50 012 1800 .07+0.05 72+6 2442 700+ 58 4093+ 164 2160+ 263 628+ 39 1574+ 147

13Jul 2009 11:30-12:10 O8 1900 .08+0.05 51+0 41+ 4 1055+5 4770+ 3 1330+ 122 999+ 12 1440+ 127
12:40-13:10 O3 2100 .05+0.07 51+2 38+5 858+95 4292+ 236 1134+45 1108+220 1305-64

15Jul 2009 11:30-12:20 ©O11 2200 .06+0.04 55+4 11+2 370£54 52144508 1950+223  1368+-304 147Gk 168
12:30-13:.00 O7 2100 .P6+0.19 57+7 17+6 298+ 76 350782 984+ 117 1204132 1081128

17 Jul 2009 11:00-11:30 O11 1400 .13+0.81 48+1 2240 366+ 37 1589+ 65 788+ 74 440+ 28 720+ 74
12:20-13:00 O7 1400 .05+0.06 52+2 19+8 507+219 3136+ 169 138154 950+ 159 1296+ 150

26 Jul 2009 12:50-15:30 C1 2500 .75+191 97+4 85168  1458+913 2626+284 1974+ 562 752+ 196 991+ 331
13:10-15:10 C2 2500 .20+212 102+5 83+51 14594632 2430+382 19214325 916+ 310 945+ 191

30Jul2009 11:00-13:30 C1 1600 .48+0.34 56+3  46+21 1653£161 3097340 2403:1438 101522 1042+100
11:10-13:20 C2 1600 .01+0.01 5440 51+13 261584  3798:735 2853601 1852+ 51 1206+ 0

cross-scalogram allows a high spatial discretization of tur-following we expand the integration window to overlapping
bulent flux measurements. At the same time it includessubintervals of 1000 m length, while retaining a spatial dis-
flux contributions from wavelength that are significantly cretization of 90 m. Such a procedure significantly reduces
longer than the 1000 m subinterval for each flux observa-the random sampling error (Se6tl), though at the cost of
tion (Fig. 4). The resulting high number of flux observations decreasing the number of resulting observations by one win-
along a flight line leads to previously unachievable resolu-dow size (@&V =~ 10). The resulting turbulence statistics are
tion and coverage of the state space. Spatially coherent fluysed to calculate the source area of each individual flux ob-
contributions are detected on transport scales (eddy sizes) afervation along the flight line, which are superimposed over
500-2000m, that is of similar size as the extent of homo-the land cover grids. Figui&@shows that in general LST and
geneous surface patcheg. Strong local flux contributions EVI follow the land cover patterns, e.g. lower temperature
are confined to scales 500 m, and approximately decay and higher greenness for irrigated agriculture and marshland.
within the lower threshold of the observed blending lengthsHowever, it is also evident that the static land cover clas-
Ltg1 and Ltg2. This confirms a close coupling between at- sification cannot reflect the current surface conditions. For
mospheric turbulence structures with surface patchiness, anexample, the marshland in the north-western quadrant ap-
consolidates the interpretation of the length-scale approactpears dried-out (high LST and low EVI), while the steppe
The less certain flux contributions above the wavelet COIl arearea in the north-eastern quadrant shows large variations in
small (—15 to—4 % median differences for all flights). In the LST. Hence, biophysical surface properties also vary signifi-
present example the COl is confined to relatively small scalesantly within the land cover classes. This is likely a function
(< 4km), which is a direct result of the comparatively short of geomorphological properties such as aspect, slope and soil
flight. In general, more certain flux contributions below the type, but also due to the large variability of convective rain-
COl include transport scales up401/3 of the flight length,  fall events across the study area (e.g. Schaffrath et al., 2011).
and can reach: 16 km for flight patterns C1 and C2. How- Following superimposition of the footprints over the land
ever, this also implies that the maximum considered transportover data, the spatial contributions of different surface prop-
scale differs between the flight patterns, just as it would beerties to each flux observation can be quantified (Biglt is
the case for the time-domain EC method. The wavelet crossevident that measured Bo changes in correspondence with
scalogram reveals strong turbulent transport in the seconthe dominating land cover, i.e. low Bo for marshland and
and fourth quarter of the flight foH, and in the first and irrigated agriculture, and high Bo for bare soil and steppe.
third quarter for LE (Fig4). When integrated over all trans- LST and EVI are stratified between the land covers, al-
port scales for each overflown 90 m cell of the land coverthough in different sequence compared to the regional av-
grid, these patterns correspond to strong upward fluxes.  erage (Fig.3). The variability of LST and EVI within the
land cover classes is equal to or larger than the between-class
3.2.2 Land cover variability, in particular for marshland, irrigated and rainfed
agriculture. While LST and EVI behave inversely for all nat-
ural land covers£0.78 < r < —0.10), the contrary is true

In Sect.3.2.1 turbulence statistics and fluxes were mtegratedfor iigated ¢ — 0.92) and rainfed = 0.30) agriculture.

for each overflown 90 m cell of the land cover grid. In the

www.biogeosciences.net/10/2193/2013/ Biogeosciences, 10, 2932013



2206 S. Metzger et al.: Spatially explicit regionalization of airborne flux measurements

The latter finding appears counter-intuitive, but can be ex-individual responses are positive in sign. The order of the re-
plained by tillage farming in the low-level plains with crops sponses for LE is partially different (MR, LS®#, S |, and
that are not adapted to the semiarid climate, such as poteEVI), and only the responses ¢ and EVI are approxi-
toes. The albedo of these densely vegetated crops can bmately linear (not shown). With exception of MR (concave,
lower compared to the sparsely vegetated steppe land covenaximal response around 10 gkg and LST (convex, min-
(¢ = 0.2, Ketzer et al.,, 2008), resulting in higher foliage imal response arouns 310 K), the signs of the responses
temperatures. Only two natural land covers, marshland andor LE are positive. It appears surprising thétand LE are
mountain meadow, exhibit similarly high EVI values as the only weakly related ta&§ |. This can be explained by using
field crops (Figs2, 3). Nevertheless, the LST of these land only noontime flights in the present study, whér¢ mainly
covers is comparatively low. In case of the marshland this carfulfils the purpose of accounting for varying cloud/radiation
be explained by water-saturated soils with high heat capaceonditions between different measurement days. In addition,
ity. Conversely, lower temperatures in accordance with theduring individual flightsS | was usually constant to within
adiabatic temperature gradient are expected for the mountair 10 % (TableB1). However, when using ERFs to reproduce
meadows at higher altitudes. a diurnal cycle, a much larger dependenceddoéind LE on

In Fig. 8 H and LE observations along the flight line S | would be expected.
are shown together with the LST and EVI in the respec- In Fig. 10 MLFRs are established between BRT fitted
tive source area. Because of the 1000 m integration winvalues forH and LE and the observed fluxe¥ & 8446).
dow over the wavelet cross-scalogram, the results appeddere we use the BRT cross-validation residuals and the ran-
smoother compared to Fid, where a 90 m integration win- dom sampling errors in the observations to determine the
dow is used. It is apparent th& and LE both systemati- MLFR weights of each data point. Uncertainty terms (i),
cally change with LST iy = 0.64, r.g = —0.84) and EVI (i), (v) and (vi) (Sect.2.5 cannot be quantified individu-
(rqy = —0.62, r_Lg = 0.73). However, peaks it/ (3km and  ally for each observation. Hence these terms are not consid-
9km in Fig.8) and in LE (Okm and 7 km) do not manifest ered here, but in the final uncertainty budget (Taldesd
when their respective land surface drivers in the footprint are4). For bothH and LE the agreement between the BRT fit-
maximal. Instead they seem to follow a trade-off function be-ted values and the observed fluxes is excellent. Contrary to

tween LST and EVI. our initial anticipation, the ERFs are not attenuated by the
relatively coarse MODIS LST resolution, as indicated by ap-
3.2.3 Environmental response functions proximately zero MLFR offset and unity slope. The median

absolute deviation in the residuals is smatl X %). How-

Thus far our findings indicate that the interactions betweerever, several outliers are found for moderate to high fluxes
land surface and atmosphere are multi-facetted and potersf H (N = 41) and LE (v = 133), for which the BRTs un-
tially non-linear. Hence we use LST and EVI as topical, derestimate the observed value 150 WnT?2 or more.
spatio-temporal proxies for the source strengthibfand The majority of these cases occur during the flights O8 on
LE, rather than using the land cover classification directly.13 July 2009 and C1 on 26 July 2009, respectively. On
In comparison to earlier flux un-mixing studies (Chen et al., both dates the outliers concur with highly intermittent so-
1999; Hutjes et al., 2010; Ogunjemiyo et al., 2003), this haslar irradiance (200« § | < 1200 W n1?) along a short sec-
the benefit of (i) providing individual source strength rep- tion of the flight paths. For instance an intermittent cloud
resentations for the effects of surface moisture and tempereover can disrupt the functional relation between the irradi-
ature, and (ii) representing the land surface by continuousince (driver) and the flux (response) observations, because,
(LST, EVI) rather than discrete variables (land cover classes)(i) at a flight level of 50-100 m a.g.l., the aircraft irradiance
thus enabling the use of more advanced scaling algorithms.measurement does not represént in the source areas of

Here, we use BRTSs to extract the relationships between alH and LE, and (i) the plant physiological response can vary
(N = 8446) flux observations and land cover (LST, EVI) and substantially on spatio-temporal scales that are small com-
meteorological §, MR, andf) variables. While BRTs are pared to atmospheric transport processes between the land
capable of reproducing complex interactions through multi-surface and the aircraft.
layered branching, the fitted function can be summarized, Our choice of land surface and meteorological drivers ap-
e.g. as partial dependence plots (Fp.These show the ef- pears to work well for describing the noontime surface—
fect of each individual variable on the response after (i) sub-atmosphere exchange of heat and water vapour over a
traction of the offsetllg = 161 W n1 2, LEg = 176 W nT2), moisture-limited landscape. However, it is important to note
and (ii) accounting for the average effects of all other vari- that appropriately describing exchange processes over longer
ables in the model. The partial dependence plots in ig. periods of time, for different landscapes or scalars might re-
are sorted in order of the relative importance of the responseuire finding an entirely different set of predictors.
variables (Friedman, 2001). The most important responses
of H are non-linear (LSTY), followed by linear responses
(S 4, MR, and EVI). With the exception of MR and EVI, the
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Fig. 7. Biophysical surface properties in the footprint of each observatig-(124) along the flight pattern 012 on 8 July 2009, 12:16—

12:24 CST, summarized by land cover. Shown are (clockwise from top right panel) land surface temperature, enhanced vegetation index,
Bowen ratio, and the land cover fraction in the footprint. The dashed lines are land cover averages for LST and EVI, and the spatial trend for
Bo. The land cover colour code and corresponding abbreviations are identical with Fig.
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Fig. 8. Sensible heat flux (left panels) and latent heat flux (right panels) along the flight pattern O12 on 8 July 2009, 12:16-12:24 CST. Also
shown is the random sampling error (error bars) for each observatiea124), and the spatial trend (dashed line). The top and bottom
panels show the land surface temperature and the enhanced vegetation index in the footprint of each observation, respectively.

3.2.4 Extrapolation and summarization land cover classification was never used during the extrapo-
lation process, several landscape units are clearly recogniz-
For the duration of each flight pattern, the trained BRT mod-able in the flux maps. For instance bot, the Xilin River valley
els are used to extrapolafé and LE throughout the XRC. and the mountainous headwater area to the east display low
For this purpose the median meteorological state variableg/ and LE. On the contrary, the non-vegetated basin on the
during each flight pattern as well as topical grids of MODIS northern tip shows consistently low evapotranspiration.
LST and EVI data are used. Grid cells that exceed the state For a given meteorological boundary condition (MR,
space of the BRT training datase¥ & 8446) are excluded S 1), the heat fluxes within several hours of solar zenith
from extrapolation. Figl1 shows the resulting flux grids for can be expressed as a function of LST and EVI (BjgIn
three different days, with a spatial coverage=082 %. Be-  turn, these biophysical surface properties are characteristic
cause of the identical state space ranges for BRT trainingvithin a land cover class (Fig3). Here, we aggregate all
and prediction, also the ranges of the extrapolated turbulen@rid cells of the flux maps according to land cover class,
fluxes are within limits of the observations. Despite that theresulting in sample distributions @ and LE. This allows
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Table 3.Median land cover specific flux estimatesifand LE from the LTFM procedure over all flight patteeasnedian spatial variability
within the respective land cover. Also shown are the corresponding median ensemble random unceggiifiesrend LE) and land cover
specific sample siz&'.

Land cover HMWm2) LEMWMmM2) oendH) oendLE) N
Bare soil 193+ 32 136+ 38 1% 1% 22049
Sand dunes 188 37 144+ 55 1% 1% 43424
Marshland 125-55 230+ 59 1% 1% 20722
Steppe 20240 138+ 46 <1% <1% 321956
Mountain meadow 114 47 260+ 69 1% 1% 25175
Settlements 17240 155+ 46 3% 5% 1404
Rainfed agriculture 183 35 147+ 40 1% 1% 17024
Irrigated agriculture 11632 224+ 41 5% 5% 1068

Table 4. Median systematic- and random uncertainty terms (in - _ - -
parentheses) for a single flux observation or grid cell throughout; & & a
the LTFM procedure. s € J/“‘} g g |
g [=] (=] & (=] f"-v"-’\M
Source H LE 3 g | s s
Instrumentation and hardware 0% (8%) 0% (7 %) T e o e e o
Turbulence Sampling 0% (57 %) 0% (121 %) LST[K] (21.5%) 0[K] (204%) SL [Wm?] (204%)
Spatio-temporal analysis 2% (40 %) 4% (47 %) _
BRT residuals 0% (5%) 0% (6 %) e 8 g
BRT response function 11% (69%) 18% (77 %) 2 < g |
BRT state variables 13% (77%) 14% (75 %) - Ty - x-\\\
s g
HY H : : 6 8 10 12 0‘.2 013 Oj4 OiS
a formal transition from a mosaic- to a tile representation MR [ghe] @0.1%) VL] (17.7%)

of H and LE over the XRC for the duration of each flight
pattern (Mengelkamp et al., 2006). These sample distribuFig. 9. Boosted regression tree partial response plot& dor all
tions then enable the analysis of land cover specific sourcéve state variables in order of their relative importance (in braces).
strengths (36 Wm2 < H < 364WnT2, 46 Wm 2 < LE < The fitted function (black) shows the variable response of the BRT
425Wm2), as well as the spatial variability within a land ©ver the range of one individual state variable, while the remain-
cover (11Wr’rT2 <oy < 169Wrrr2, 1AWNT2 < OLE < ing state_ var_iables are held at an average, constgnt value. _The red
152Wm‘2). Table3 gives an overview of the median land dashed _Ilne is a smoothed represgntatlon of the fitted function (lo-
cover specificH and LE over all flight patterns, and their cally weighted polynomial regression).
median spatial variability. These results fall well within
the range of summertime ensemble average fluxes during
solar noon observed by ground-based EC measuremenf3uring the afternoon flights, 12 9 % higher Bo values are
over different land covers in this region (100 W< H < observed compared to the morning flights, as expected from
310Wni?2 and 100Wm? < LE <480WnT2; Gao et al.,  aland surface that desiccates in the course of the day. Never-
2009; Hao et al., 2007; Hao et al., 2008; Shao et al., 2008)theless, the 99.9 % confidence interval includes unity slope.
In comparison, the flight-line average heat fluxes are inHence, for several hours within solar zenith Bo does not
the range of 71Wm2 < H < 310Wn12 and 46 WnT2 < change significantly, and can be interpreted as a character-
LE < 300 W n1 2 (TableB2). istic land surface property. On this basis we summarize the
However, the magnitudes @&f and LE are not only func-  regional flux estimates for the duration of the flight campaign
tions of land cover, but also proportional to the available en-as time series of land cover specific Bo ratios (Aig). The
ergy. The available energy changes within, but in particularorder of Bo between the land covers follows the order of the
between flight days. To alleviate this effect and to enableland cover specific EVI approximately inversely, while the
the comparison between different flights, we calculate thetemporal pattern follows the pattern of the land cover specific
Bowen ratio Bo= H/LE between the sample distributions. LST (Fig. 3). High Bo values until mid-campaign indicate
Despite differences in the meteorological drivers (MR, that the land surface dries out. This trend is reversed toward
S 1), the median land cover specific Bo agrees well betweerthe end of the campaign, when the approach of humid air
subsequent flight patterns on all measurement days1Ejg. masses leads to considerable precipitation. The median daily
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Fig. 10. Maximum likelihood functional relationships betweah= 8446 aircraft observation and LTFM predictions of sensible heat flux

(left) and latent heat flux (right). The weight of each data point in the relationship is represented by the size of the circles. The error bars
show the cross-validation residuals for the LTFM predictions, and the ensemble random sampling error for the aircraft measurement. The
99.9 % confidence intervals are too narrow to be displayed properly.
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Fig. 11.Maps of the LTFM predicted fluxes of sensible hedt fop) and latent heat (LE, bottom) on 13, 17 and 26 July 2009 (left to right).

The colour gradient from blue over grey to red represents values that are lower, equal to, or greater than the average of the values, respectivel
(see legend). Percentages in braces after the flight ID indicate the spatial coverage of the prediction throughout the catchment. Meteorologica
state variables from the superimposed flight lines are used in the respective LTFM prediction (illustration identical ®)th Fig.

natural variability of Bo within the land covers ranges from 3.3 Uncertainty

48 % (rainfed agriculture) to 79% (marshland). Water ab-

sorbs strongly in the near infrared, leading to negative EVIMetzger et al. (2012) have shown that turbulent flux mea-
values that are not indicative of vegetation greenness. Hencgurements with the WSMA platform and instrumentation are
EVI values for water surfaces are discarded, and the landinbiased, and precise to within 8 %. Uncertainty due to the

cover “water” cannot be modelled by the present ERFs.

www.biogeosciences.net/10/2193/2013/

limited sampling size of turbulent eddies is estimated using
the methods of Lenschow and Stankov (1986) and Lenschow
et al. (1994). Details on the implementation can be found
in Metzger et al. (2012). For a single flux measurement, the
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in the relationship is represented by the size of the circles. Right: time series of Bo for different land covers throughout the measurement
campaign. In both images the error bars represent the Gaussian sum of the natural variability in each land cover class and the ensembl
random error in the LTFM procedure. The land cover colour code and corresponding abbreviations are identical 2vith Fig.
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Fig. 13.MLFRs of median observed and predicted fluxes along 42 flight lines. The error bars correspond to the variability of the fluxes along
the flight line, and the weight of each data point in the relationship is represented by the size of the circles.

systematic (and random) components of this sampling uncereombinations in the training data. For this purpose one
tainty range from< 1% (57 %) forH to < 1% (121 %) for  flight at a time was omitted from the training data, and
LE. Table4 summarizes above uncertainty sources, as wellthe incompletely trained BRT model was used to predict
as additional sources which are discussed in the following. the missing data. The resulting median differences amount
In order to assess the uncertainty arising from the spatioto 11% (69 %,N = 7311) for H and 18% (77 %,N =
temporal analyses (Se@.5.1), we compare the median ob- 7265) for LE. During prediction, cases where one or more
served and predicted fluxes along all flight legs (Fig). state variables exceed their respective range during training
The LTFM predictions slightly overestimate the observedwere excluded. As a consequence the sample skzeli$%
fluxes (H =5%, LE=5%), but in both cases the 99.9% smaller than the total number of observatioNs=£ 8466).
confidence intervals include unity slope. The median dif- Lastly, we consider the uncertainty resulting from disre-
ferences of & = 2% (40 %), and dLE=4% (47 %) agree garding part of the spatio-temporal variability in the state
marginally more closely. Moreover, the median residuals bevariables during BRT predictions. For this purpose we
tween fitted and observed values emphasize that the BRT fitgquantify the disregarded parts of the natural variability, and
ting technique is unbiased (Tablg propagate it through the full BRT model. The resulting me-
Subsequently, we assess the predictive performance of thdian differences amount to 13% (77 %) and 14 % (75 %)
BRT response function in light of missing state variable for H and LE, respectively, and are dominated by the effect

Biogeosciences, 10, 2193217, 2013 www.biogeosciences.net/10/2193/2013/
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of LST natural variability £ = 0.81, and—0.69). Because
the response of the BRT predictions on LST is non-linear
(Fig. 9), deviations of similar magnitude but opposite sign
in LST do not cancel out in the predictions. This can lead
to a systematic overestimation as a function of the specific
state variable combination in each prediction, and is hence
dependent on the catchment composition. However, in all test

cases the 99.9 % confidence intervals between observed and

predicted fluxes include unity slope. Hence we go without
introducing a non-linearity response factor, but assign an ac-
curacy of< 20 % to the LTFM method.

Assuming normal distribution and independence, the randonziii)

parts of all uncertainty terms (Tablein parentheses) can be
combined to their Gaussian sum. Then, the ensemble random
uncertaintyensconsiders the reduction of the random uncer-
tainty with sample size (e.g. Mahrt, 1998);

- Oran
ens= )
v N

with zero expected valug:.nsand the SDyap Of the popula-
tion with sizeN . While oran is @ measure for the average dis-
persion of a single observation or grid cell,squantifies the
level of confidence we can expect from aggregating multiple
observations or grid cells. The resulting ensemble random
uncertainty for land cover specific flux estimates throughout
the XRC ranges from: 1 % for steppe to 5 % for settlements
and irrigated agriculture (Tabl®.

(10)

4 Conclusions (iv)

The overarching goal of airborne EC flux measurements is
to bridge the gap between observations and data assimilation
approaches on different spatial scales. This study develops
the LTFM procedure to characterize the exchange of sensible
and latent heat for different land covers in a heterogeneous
steppe landscape. The procedure “mines” the information
content of EC flux observations and extracts quantitative re-
lationships with environmental drivers. In the process LTFM
maximises objectivity and data use efficiency — all available
observations are considered. The subsequent steps of LTFM
are (1) low level EC flux flights, (2) time—frequency analysis
of the flux observations, (3) source area modelling of contin-
uous biophysical surface properties, and (4) inferring ERF

2211

(i) Wavelet decomposition of the turbulence data yields un-

precedented spatial resolution of the flux observations.
However, due to edge effects flux observations close
to the start or end of a dataset can contain spectral
artefacts. Using alternative techniques such as empir-
ical mode decomposition (Barnhart et al., 2012a, b) or
structure-parameter methods (Van Kesteren et al., 2013)
might help to further improve the results.

An “offline” footprint parameterization considering 3-D
dispersion is suitable to map the differences in sur-
face properties encountered by a flux measuring aircraft.
However, when adapting LTFM e.g. to ground-based
measurements, the range of surface properties is likely
to shrink significantly. In order to improve the decreased
signal-to-noise ratio, it might become important to also
consider the local flow field, especially when measur-
ing at greater heights. For example, closure models with
terrain-following coordinates (Hsieh and Katul, 2009;
Sogachev and Lloyd, 2004) or “online” Lagrangian dis-
persion modelling (Markkanen et al., 2010; Matross
et al., 2011; Wang and Rotach, 2010; Weil et al., 2012)
could be useful for such a purpose.

Instead of a static and discrete land cover classifica-
tion, the LTFM method uses spatio-temporally con-
tinuous and topical information of biophysical surface
properties. Only the continuous nature of MODIS land
surface data enabled the use of the BRT machine learn-
ing technique. In this combination the climatic and al-
titudinal gradients throughout the XRC are successfully
reproduced. In the interest of further advancing LTFM,
it is desirable to also consider the uncertainty in the ob-
servations during machine learning, and to explore al-
ternative machine learning techniques such as support
vector machines (e.g. Yang et al., 2007).

SThe ERFs resulting from LTFM can aid bridging observa-

tional scales, e.g. by isolating and quantifying relevant land—

(i) The use of a weight-shift microlight aircraft with low atmosphere exchange processes, estimating land cover spe-
airspeed and high climb rate enables low level flights atcific emission factors, extending flux measurements to the
constant height even above topographically structureccatchment scale, assessing the spatial representativeness of
terrain. Masking out slopes during flight planning effec- EC flux measurements, etc. Analogously applying LTFM to
tively minimizes cross-contamination of the flux obser- ground-based EC measurements could aid, e.g. advancing
vations by slope-induced effects on radiative transfer orthe treatment of location bias from diagnostic assessment
turbulence generation. This reduces the degrees of fregle.g. Chen et al., 2012) to prognostic transfer functions, con-
dom in explaining the observed flux responses, albeitstraining local to regional water budgets, distinguishing an-
potentially at the expense of oversimplifying surface— thropogenic and natural sources/sinks in urban environments
air exchange processes. and substantiating process-studies.

from non-parametric machine learning.
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Appendix A b Wavelet location parameter (s)
Bo Bowen ratio (-)
Notation c Lag of autocorrelation function (m)
o CcC Cloud cover (-)
Al Abbreviations Cs Wavelet reconstruction factor (—)
) ) d Distance along a flight line (m)

3-D Three-dimensional DIR Wind direction ()
a.g.l Above ground level 8j Wavelet frequency increment (-)
as.l. Above sea level 8t Wavelet time increment (s)
Arable Rainfed agriculture e Euler's number 2.71828 (-)
ASTER  Advanced Spaceborne Thermal and EVI Enhanced vegetation index (=)

Reflection Radiometer H Sensible heat flux (W)
Bare Bare soil _ i Imaginary uniti® = —1 (=)
BRT Boosted regression tree D Flight identifier ()
CBL Convective boundary layer . Lo
col Cone of influence T J Running index (=) -
oST Chi dard 1 csT J Number of wavelet scale increments (-)

inese standard time ( ! Length of flight line (km)

coordinated universal time 8) I Monin—Obukhov length (m)

cE:g CE::jO dss—valldgtlon Lgoow Upwind distance where 80 % of the flux
y covariance . contributions are included in the footprint (m)

ERF Environmental response function LC Land cover class coverage (%)
IMGERS Inner Mongolia Grassland Ecosystem LE Latent heat flux (W m?)

Research Station LST Land surface temperature (K)

Irrigated  Irrigated agriculture . :
L Horizontal scale of surface heterogeneity (m
KLO4 Footprint parameterisation of Kljun et al. (2004) LH Raulzach length (m)u geneity (m)

KLO4+ Fot(;tprlnt parametéansatlon odegun et al. (2f004t) Thermal blending length (m)
WIth SUPENMPOSed Cross-win 'SperS'on unctio Improved thermal blending length (m)
LTFM Low level flights, time—frequency-, footprint-, o . 1
. . MR Mixing ratio (g kg™™)
and machine learning analyses Do
: ; n Running index (-)
as influenced by stocking rate .
N Sample size (-)
Marsh Marshland " -
MLFR  Maximum likelihood functional relationshi 4 Probability of test statistic (-)
aximu €lihood functional reationship P Cumulated precipitation in a 10-day trailing
MODIS Moderate Resolution Imaging Spectroradiometer window (mm)
Mountain Mountain meadow

- q Dimensionless wavelet coordinate (-)
geDttIe ?:Sg?;g:éwa“on r Pearsqn correlation coefficient (-)
Steppe Generic steppe rep Repetltlons ) : :

WSMA  Weight-shift microlight aircraft res residuals (Dependmg on vana.ble)

XRC Xilin River catchment S| Dpwn-wellmg shortwave radiation (Wn%)
t Time (s)
Ts Surface temperature (K)

A2 Functions 0 Potential temperature (K)

Virtual potential temperature (K)
Horizontal wind speed (nTg)
Friction velocity (ms?)

0
Overbars denote the mean along a flight line, and primes de-0 v
note the deviations from this mean.

Ux
* Complex conjugate w Footprint weigh_t =)
cov Covariance w Wavelet coefficient ()
d Difference Wy Convective velocity (m'st)
o Standard deviation x Wildcard for a signal (-)
W Mother wavelet y Wildcard for a signal (-)
z Measurement height (m)
A3 Parameters and variables 20 Aerodynamic roughness length (m)
o Wavelet frequency parameter (-)
o Albedo (-) zi Convective boundary layer depth (m)
a W_a_velet scale parameter (s) ZTB1 Thermal blending height (m)
ao Initial wavelet scale parameter (s)
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Table B1. Mean meteorological conditionsSD between repetitions during the WSMA flights selected for analysis. Shown are cloud cover
CC, shortwave down-welling radiatiafy,, mixing ratio MR, horizontal wind speead wind direction DIR, virtual potential temperatuig,
surface temperaturgs, and the SD of the surface temperatuye.

Date Time(CST) ID CC S, (Wm2) MR(@kgl) u(ms?l) DIR(E) 0y (K) Ts(°C)  o7s(K)
8Jul2009  10:20-10:50 010 /8 842455 64+00  32+03 221+12 3120+04 408+12 81+04
12:00-12:50 012 /B 773+53 59+02  65+03 32042 3137+03 398+10 88+04
13Jul2009 11:30-12:10 08 /&  810+16 93+01  83+04 29146 3097+0.1 419+03 64+01
12:40-13:10 03 /B 83846 86+01  69+06 29746 3112+0.3 458+02 53408
15Jul 2009 11:30-12:20 O11 /&  796+72 71+01  70+08 253+9 3153402 421411 53+07
12:30-13:.00 07 B  843+56 68+00 58+02 25548 3167402 508+07 40+05
17 Jul2009 11:00-11:30 011 /g 589+ 39 94+01  27+02 10245 3093+0.2 359405 48+03
12:20-13:00 O7 B  682+122 112402 59+04 144+4 3104+0.1 403+25 45409
26Jul2009 12:50-15:30 C1 /8  668+46 96+03  29+01 17445 3128405 364+12 48+07
13:10-15:10 C2 B  747+67 91+01  27+03 178+23 3130+04 365+05 37+07

30Jul2009 11:00-13:30 C1 /8 715482 116+0.3 43+0.7 159+15 3118+09 346+51 41+05
11:10-13:20 C2 /B 567+11 116+£0.0 49+0.9 154+9 3113+12 328+10 27+05

Table B2. Mean turbulence statistickSD between repetitions during the WSMA flights selected for analysis. Shown are friction velocity
ux, sensible heat fluf, latent heat flux LE, Monin—Obukhov length SD of vertical windo,, and convective velocity..

Date Time (CST) ID us(msd HWm?2 LEWM?2 LM opmsd w,ms?

8 Jul 2009 10:20-10:50 010 .31+0.03 154420 194445 —144+3 088+0.03 182+0.08
12:00-12:50 012 @6+0.07 199+ 14 110+ 36 —38+16 097+£0.04 229+0.05

13Jul 2009 11:30-12:10 08 .52+0.09 290+ 47 196443 —40+24 099+0.05 265+0.13

12:40-13:10 O3 @2+0.12 288+ 18 86+ 51 —23+19 095+0.01 270+0.07
15Jul 2009 11:30-12:20 011 .4¥+0.07 176+ 17 138+ 30 —464+23 083+0.05 236=+0.07
12:30-13:00 O7 B2+0.12 310+ 28 65+ 12 —-384+19 107+011 277+0.08
17 Jul 2009 11:00-11:30 O11 .3®+0.07 156+ 26 46+ 67 —-30+15 079+0.04 193+0.09
12:20-13:00 O7 @1+0.07 206+ 18 48+ 45 —274+13 083+0.06 211+0.07
26 Jul 2009 12:50-15:30 C1 .3B+£0.09 1204+ 33 300+ 76 —204+10 094+0.11 225+0.21
13:10-15:10 C2 @37+0.05 117411 227+ 2 —294+8 094+0.04 222+0.06
30Jul2009 11:00-13:30 C1 .4B+0.13  107+76 194427  —574+14 0754012 1784041
11:10-13:20 C2 @38+0.05 71+ 4 223+ 11 —-50+£19 068+0.04 165+0.02
Appendix B
A4 Subscripts Meteorological conditions

In general, subscripts follow the parameter and variable defryg miggay flights are usually accompanied by a thin layer
initions in Appendix A3. Instances with differing use of sub- ¢ ¢irrys clouds, interspersed with local convective cumuli,

scripts are defined in the following. resulting in a cloud cover betweeri&and 78 (TableB1).
The down-welling shortwave radiation decreases over the du-

ens Ensemble ration of the campaign, with minima on 17 and 30 July 2009.
ran Random - e . X :
X These minima coincide with the advection of comparatively
v Cross-wind component T ) . o ;
. . moist air, as evident from the higher mixing ratids| also
w Vertical wind component : L .
- . correlates with the precipitation history (Taldle: = —0.40).
o Longitudinal coordinate The wind speed at flight level decays from up to 8.3ths
y Latitudinal coordinate P 9 y b '

at the beginning down to 2.7 m$ towards the last quarter
of the flight campaign. All wind sectors with the exception

www.biogeosciences.net/10/2193/2013/ Biogeosciences, 10, 2932013
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of northerlies occur. Both the virtual potential air tempera- The service charges for this open access publication
ture and the surface temperature peak during the middle ofiave been covered by a Research Centre of the
the flight campaign. As a result of several convective pre-Helmholtz Association.

cipitation events, the mixing ratio increases over the flight

campaign, accompanied by a dampening of the surface tenf=dited by: P. Stoy

perature variability.

The ranges of the flight line average turbulent fluxes References

are 03 <u, <05ms?!, 71Wm?2< H <310Wn1? and
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