Sprungmarken

 
Schaper, J*; Popp, A; Meinikmann, K; Shanafield, M; Banks, E; Putschew, A; Lewandowski, J; Nützmann, G: Fate of polar organic trace compounds infiltrating into an alluvial aquifer from an urban lowland river
Vortrag, AGU Fall Meeting 2016, San Francisco, USA: 12.12.2016 - 16.12.2016

Abstract:
High loads of polar organic trace compounds (TrOCs) are frequently detected in urban surface waters threatening both, ecosystem functioning and local drinking water supply. Here we investigate the fate and turnover rate of 17 TrOCs infiltrating from the urban river Erpe into the adjacent alluvial aquifer. River Erpe is a lowland stream in Berlin, Germany that receives up to 80 % of its discharge from a municipal wastewater treatment plant (WWTP) thus containing TrOCs in the µg/L range. To this end, a horizontal piezometer transect extending into the alluvial plane as well as a vertical piezometer nest in the riverbed were installed and sampled in June and July 2016. Within the horizontal transect, redox condition remained aerobic resulting in attenuation rates of up to 25 % for benzotriazol, Carbamazepine, metoprolol and 4 – formylaminoantipyrin. Concentrations of bezafibrate and acesulfame increased although the concentrations of more persistent compounds such as primidone and gabapentin, remained relatively constant. Within the vertical piezometer nest, Fe(II) concentrations increased with depth, allowing for a more rapid turnover of Sulfamethoxazole, but also inhibiting turnover of other compounds such as, benzotriazol, metoprolol and Valsartan. In contrast to previous studies undertaken in more mountainous settings, alluvial attenuation rates at River Erpe were profoundly different. We attribute these findings to both, hydrological characteristics of lowland rivers as well as to the high amounts of labile organic carbon originating from the WWTP effluent. This work further demonstrates that the fate of TrOCs in gaining aquifers adjacent to urban streams is highly complex and demands much more research.

Letzte Änderung 23.11.2016