Uni-Bayreuth

Sprungmarken

 

Doktorarbeit

Fluxes of the NO-O<SUB>3</SUB>-NO<SUB>2</SUB> triad above a spruce forest canopy in south-eastern Germany

Anywhere Tsokankunku (03/2008-11/2014)

Betreuer: Thomas Foken

Die Arbeit wurde am Max-Planck-Institut für Chemie angefertigt (Prof. Dr. F.X. Meixner, Dr. Trebs)

Stickstoffmonoxid (NO) und Stickstoffdioxid (NO2) (in der Summe als NOx bezeichnet) sind wichtige Verbindungen für die Regulierung von Ozon (O3) in der Troposphäre. Obwohl sie weniger als ein millionstel der gesamten Atmosphäre ausmachen, spielen sie eine wichtige Rolle für die Zusammensetzung und chemischen Prozesse der atmosphärischen Grenzschicht. Sie beeinflussen die Verteilung von troposphärischem O3 und dessen natürliche Hintergrundskonzentration, was im Zusammenhang mit der Luftverschmutzung von großer Bedeutung ist. Zusammen gehen die drei reaktiven Spurengase eine Reihe von untereinander verbundenen Reaktionen ein und werden daher meist als NO-O3-NO2-Triade bezeichnet. Diese Triade hat in der jüngsten Vergangenheit aufgrund ihrer Rolle bei der Entstehung von Umweltproblemen wie saurem Regen, Eutrophierung von Gewässern oder Luftverschmutzung die besondere Aufmerksamkeit von Wissenschaftlern erlangt.

Im Hinblick auf das globale Vorkommen von troposphärischem O3 werden niedrige NOx-Konzentrationen über großen Waldökosystemen (0.2-10 ppb) als wichtige mögliche Gegenstücke zu den hohen NOx-Konzentrationen über industrialisierten, urbanen Regionen (10-1000 ppb) gesehen. Die Möglichkeit die Spurengaskonzentrationen der Triade direkt und gleichzeitig zu messen sowie deren Biosphären-Atmosphären Austauschflüsse zu bestimmen, kann Umweltschützern und politischen Entscheidungsträgern wichtige Informationen über das NOx-O3-Budget in Waldökosystemen und der Troposphäre liefern.

Die Eddy-Kovarianz-Methode (EC) ist eine etablierte Methode, welche zeitlich hochaufgelöste und verlässliche Austauschflüsse über einen großen sog. „Footprint“ liefert und welche erfolgreich seit über 50 Jahren zur Bestimmung von CO2- und Wasserdampfflüssen herangezogen wird. Allerdings wurden bisher nur wenig EC-Messungen zur Bestimmung von NO und NO2 Flüssen über ländlichen Waldökosystemen durchgeführt, aufgrund eines Mangels an Gasanalysatoren, welche die Genauigkeitsanforderungen zur Messung von geringen NO- und NO2-Konzentrationen an solchen Standorten erfüllen. Die Nachweisgrenze vieler verfügbarer Gasanalysatoren ist im Bereich der gemessenen Konzentrationen, die daher nicht aufgelöst werden können. Zudem hat ein Mangel an schnellen Gasanalysatoren und an geeigneten photolytischen Konvertern zur NO2-Photolyse noch bis in das letzte Jahrzehnt den Fortschritt von Turbulenzmessungen dieser Spurengase für Flussmessungen gehindert. Ein weiteres Problem ist, dass die NO-O3-NO2-Triade aus reaktiven Spurengasen besteht,deren Flüsse durch chemische Umwandlungen während des turbulenten Austausches beeinflusst werden können.

Um diese Probleme zu lösen, wurde ein einzigartiger Ansatz verfolgt, bei dem ein neuer, zeitlich hochauflösender (5 Hz), äußerst genauer und hoch spezifischer Doppelkanal-NO-Analysator zur Messung von NO und NO2-Flüssen mit der EC-Methode verwendet wurde. Dieser Gasanalysator wurde im Sommer 2008 in einem Fichtenwaldbestand des Waldstein-Weidenbrunnen-Forschungsstandortes (DE-Bay) des FLUXNET-Netzwerkes im Fichtelgebirge im Nordosten Bayerns im Rahmen des DFG-Projekts EGER (Exchange Processes in Mountainous Regions) eingesetzt. Eddy-Kovarianz-Flussmessungen von NO, NO2 und auch O3 wurden an einem begehbaren, 32 m hohen Messturm (Höhe entspricht 9 m über dem Fichtenbestand) durchgeführt. . Zum ersten Mal wurden in einem Fichtenbestand in Mitteleuropa zeitgleich die EC-Flüsse der NO-O3-NO2-Triade gemessen. Daneben wurden die Austauschflüsse von Zusammenfassung CO2 and H2O gemessen, da sie wichtig für die Überprüfung der angewandten EC-Methode waren und Erkenntnisse über die biologischen Reaktionen des Fichtenbestandes lieferten.

Vertikale Profile der Spurengaskonzentrationen von NO, NO2, O3, CO2 und H2O wurden über (32 m, 25 m) und innerhalb des Fichtenbestandes (1.000 m, 0.005 m) mit einem gleichzeitig aber unabhängig betriebenen Profilsystem gemessen. Aus den Profilmessungen konnten als Vergleich zu den EC-Messungen Austauschflüsse anhand der Konzentrationsdifferenzen zwischen 25 und 32 m mittels der Aerodynamischen Gradienmethode (AGM) und der Modifizierten Bowen-Verhältnismethode (MBRM) bestimmt werden.

Eine Zeitspanne von vier Tagen mit exzellenten meteorlogischen Bedingungen („golden days“) wurde zur Datenauswertung herangezogen. Für jede 30 min Periode wurden die EC-Flüsse mit einem Flussqualitätskriterium belegt, wobei nur die Flüsse mit der höchsten Qualität verwendet wurden. Eine Analyse der Spektralanteile der turbulenten Flüsse zeigte nur einen minimalen Flussverlust im hochfrequenten Bereich des Frequenzspektrums. Allerdings waren die Grenzfrequenzen für NO (1.11 Hz) und NO2 (1.17 Hz) größer als für O3 (0.79 Hz) und die nicht-reaktiven Spurengase – ein Hinweis für Dämpfungen hoher Frequenzen aufgrund der langen Einlassleitung von dem Messturm zu dem NO/NO2-Analysator am Boden. Die Flussverluste für die Zeitperiode von 1100 bis 1330 MEZ waren annehmbar gering (NO: 2.1 %, NO2:7.5 %, O3: 1.8%). Dies ist ein guter Hinweis auf die schnelle Ansprechzeit und gute Qualität der Messtechnik. Die Flussverluste wurden im Rahmen der Datenauswertung korrigiert.

Während der „golden days“ zeigten die Flüsse der reaktiven und nicht reaktiven Spurengase einen deutlichen Tagesgang. Zwischen 0600 und 1200 MEZ war in den Konzentrationen und Flüssen aller Spurengase ein deutlicher Anstieg zu beobachten. Dies war auf externe Spurengasquellen durch Landstraßen in der Umgebung zurückzuführen, von wo Spurengase an den Messstandort transportiert wurden. Tagsüber war der NO-Fluss unerwarteterweise abwärts gerichtet mit Werten zwischen -1.75 und 0.00 nmol m-2 s-1. Der NO2-Fluss war tags positiv und erstreckte sich von 0 bis zu einem Maximum von 20 nmol m-2 s-1 gegen 1100 MEZ. Die hohen NO-Konzentrationen am Morgen nach Sonnenaufgang und die stetige NO2-Deposition über den ganzen Tag waren ein deutlicher Indikator für die Existenz einer externen NOx-Quelle.

Das Verhältnis von turbulenten und chemischen Zeitskalen (Damköhlerzahlen) und die Trennungsintensitäten (Indikatoren für das Ausmaß der Vermischung zwischen chemischen Spezies durch Turbulenzen) lassen darauf schliessen, dass tagsüber ein minimaler Einfluss von chemischen Reaktionen auf die Flüsse der NO-O3-NO2-Triade über dem Bestand gegeben war. Obwohl der Einfluss gering war, ist es möglich, dass chemische Reaktionen für die NO-Senke verantwortlich waren, welche durch die über dem Fichtenbestand gemessenen Flüsse aufzeigt wurde. Es gibt Hinweise für die Umwandlung von biogenem NO, welches aus Böden emittiert wird, zu NO2 bei Nacht sowie für die mögliche Bildung von salpetriger Säure (HONO) und Salpetersäure (HNO3) im Fichtenbestand durch heterogene Prozesse beim Vorhandensein von Tau und Nebel. Die vertikalen Gradienten im Fichtenbestand und die über dem Waldboden abgeschätzten Spurengasflüsse zeigen, dass der abwärtsgerichtete Transport von O3 in den Bestand so stark ist, dass vom Boden emittiertes NO zu NO2 umgewandelt wird bevor es den obersten Teil des Bestandes erreicht. Das gesamte NO, welches über dem Fichtenbestand beobachtet wurde, ist höchstwahrscheinlich auf horizontale Advektion und auch photochemische Produktion zurückzuführen.

Diese Dissertation hat gezeigt, dass zuverlässige und schnelle Messungen von NO und NO2 zur Bestimmung von turbulenten Spurengasflüssen zeitgleich durchgeführt werden können. Ebenso unterstreicht sie die Wichtigkeit der Kontrolle der Datenqualität und der Genauigkeit von Flussmessungen reaktiver Spurengase. Für Waldökosysteme mit geringen Boden NO-Emissionen in Mitteleuropa bei gemäßigter Luftverschmutzung stellt der Waldbestand eine Netto-Quelle für NO2 und Netto-Senke für NO und O3 dar. Probleme wie Advektion machen die Entwicklung der NO-O3-NO2-Triade im Stammbereich zu einem komplizierten Punkt, der ohne zusätzliche, umfassende Feldmessungen und Analysen nicht vollständig verstanden werden kann. Weitere Studien sollten die Möglichkeit der Zerlegung der Spurengasflüsse der Triade in ihre Anteile in und über dem Bestand betrachten sowie sich mit der Berücksichtigung eines Advektionsterms in der Damköhlerzahl beschäftigen.

Zu dieser Arbeit gibt es weitere Dateien zum Download

Passwort

Letzte Änderung 16.12.2014