Drought stress priming in filamentous saprotrophic fungi, transcriptomic/ proteomic responses and the impact on C mineralisation

DFG GU 1818/1-1

From 05/2017 to 08/2019

Principal Investigator: Alexander Guhr

Many microorganisms are often confronted with drought stress, with potentially negative impact on microbial functions or survival. A priming for environmental stressors by retaining information from previous incidents can be essential to safeguard survival in a dynamical changing environment. While stress priming has been intensively studied in plants, saprotrophic filamentous fungi have been mostly neglected so far. Yet, they are major agents of carbon (C) mineralisation in soils and can mineralise C even in very dry soils. Knowledge of the mechanisms regulating stress priming is of great interest for understanding fungal impact on soil biogeochemistry in dry soils. Here, we will investigate, if stress priming influences survival of saprotrophic filamentous fungi. We will analyse how it affects the transcriptional and translational level as well as the mineralisation of organic matter under drought stress.

Upcoming ...


BayCEER Colloquium:
Th. 2023-04-06
Human-Wildlife Conflicts (HWC) in Southern Africa
Dialog:
We. 2023-03-01 now
Main FlussFilmFest 2023
We. 2023-03-22
Workshop Wassersensible Ernährung
Su. 2023-03-26
Aktionstag "Mein Main"
Ecological-Botanical Garden:
Su. 2023-04-02
Führung | Rosen-Seide & Soja-Kaschmir: Textilien von morgen
Weather research site
Luftdruck (356m): 975.7 hPa
Lufttemperatur: 9.5 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 17m): 7.8 km/h
Wind (Max.): 14.8 km/h
Windrichtung: SW

...more
Globalstrahlung: 81 W/m²
Lufttemperatur: 6.3 °C
Niederschlag: 0.4 mm/24h
Wind (Höhe 32m): 9.3 km/h

...more
This site makes use of cookies More information