Kreyling, J; Buhk, C; Backhaus, S; Hallinger, M; Huber, G; Huber, L; Jentsch, A; Konnert, M; Thiel, D; Wilmking, M; Beierkuhnlein, C: Local adaptations to frost in marginal and central populations of the dominant forest tree Fagus sylvatica L. as affected by temperature and extreme drought in common garden experiments, Ecology and Evolution, 4(5), 594-605 (2014), doi:10.1002/ece3.971 [Link]
Abstract:

Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvatica L., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.

Upcoming ...


BayCEER Colloquium:
Th. 2019-12-12
Iron, sulfur and a pinch of antimony - new perspectives on secondary mineral pathways and metalloid mobility
Ecological-Botanical Garden:
Su. 2020-01-05
Auf ins Neue! Winterspaziergang im ÖBG
Su. 2020-01-05
Konzert: Musikalischer Jahresbeginn mit den Rockin`Dinos
Geographisches Kolloquium:
Tu. 2019-12-10
Intensify or diversify? How agriculture affects biodiversity and ecosystem processes in European farmland
Tu. 2019-12-17
The meat of the Anthropocene: Food, capital and the globalisation of industrialised animal killing
BayCEER Blog
24.05.2019
Stoichiometric controls of C and N cycling
07.05.2019
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
07.05.2019
EGU – interesting research and free coffee
16.04.2019
Picky carnivorous plants?
RSS Blog as RSS Feed
Weather research site
Luftdruck (356m): 958.8 hPa
Lufttemperatur: 8.5 °C
Niederschlag: 2.6 mm/24h
Sonnenschein: 5 h/d
Wind (Höhe 17m): 14.7 km/h
Wind (Max.): 25.6 km/h
Windrichtung: SW

...more
Niederschlag: 0.7 mm/24h
Sonnenschein: <1 h/d

...more
This site makes use of cookies More information