Heuck, C; Weig, A; Spohn, M: Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus, Soil Biology & Biochemistry, 85, 119-129 (2015), online: 2015-03-12, doi:10.1016/j.soilbio.2015.02.029
Abstract:
Microbial mineralization and immobilization of nutrients strongly influence soil fertility. We studied microbial biomass stoichiometry, microbial community composition, and microbial use of carbon (C) and phosphorus (P) derived from glucose-6-phosphate in the A and B horizons of two temperate Cambisols with contrasting P availability. In a first incubation experiment, C, nitrogen (N) and P were added to the soils in a full factorial design. Microbial biomass C, N and P concentrations were analyzed by the fumigation-extraction method and microbial community composition was analyzed by a community fingerprinting method (automated ribosomal intergenic spacer analysis, ARISA). In a second experiment, we compared microbial use of C and P from glucose-6-phosphate by adding 14C or 33P labeled glucose-6-phosphate to soil. In the first incubation experiment, the microbial biomass increased up to 30-fold due to addition of C, indicating that microbial growth was mainly C limited. Microbial biomass C:N:P stoichiometry changed more strongly due to element addition in the P-poor soils, than in the P-rich soils. The microbial community composition analysis showed that element additions led to stronger changes in the microbial community in the P-poor than in the P-rich soils. Therefore, the changed microbial biomass stoichiometry in the P-poor soils was likely caused by a shift in the microbial community composition. The total recovery of 14C derived from glucose-6-phosphate in the soil microbial biomass and in the respired CO2 ranged between 28.2 and 37.1% 66 h after addition of the tracer, while the recovery of 33P in the soil microbial biomass was 1.4–6.1%. This indicates that even in the P-poor soils microorganisms mineralized organic P and took up more C than P from the organic compound. Thus, microbial mineralization of organic P was driven by microbial need for C rather than for P. In conclusion, our experiments showed that (i) the microbial biomass stoichiometry in the P-poor soils was more susceptible to additions of C, N and P than in the P-rich soils and that (ii) even in the P-poor soils, microorganisms were C-limited and the mineralization of organic P was mainly driven by microbial C demand.
Upcoming ...

Ökologisch-Botanischer Garten:
Su. 2018-09-02
Darauf fliegen Vögel: Früchte und ihre Ausbreitung
Fr. 2018-09-07
Mit tausend Schritten durch die Erdgeschichte: Gesteine im ÖBG
Su. 2018-09-16
Der ÖBG zum Kennenlernen: Allgemeine Gartenführung
Su. 2018-09-23
Konzert: Matinee im Garten mit dem Blockflötenensemble der Städtischen Musikschule Bayreuth unter Leitung von Heinz-Ulf Hertel
Workshop:
Th. 2018-10-11
BayCEER Workshop 2018
Weather research site
Luftdruck (356m): 976.4 hPa
Lufttemperatur: 15.8 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 17m): 1.8 km/h
Wind (Max.): 5.0 km/h
Windrichtung: SW

...more
Globalstrahlung: 0 W/m²
Lufttemperatur: 14.3 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 32m): 4.7 km/h
Wind (Max.): 8.7 km/h

...more
This site makes use of cookies More information