von Lützow, M; Kögel-Knabner, I; Ludwig, B; Matzner, E; Flessa, H; Ekschmitt, K; Guggenberger, G; Marschner, B; Kalbitz, K: Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptional model, Journal of Plant Nutrition and Soil Science, 171, 111-124 (2008), doi:10.1002/jpln.200700047
Based on recent findings in the literature, we developed a process-oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co-action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo-mineral interactions for OM stabilization in the passive pool is well-known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site- and horizon-specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo-mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo-mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool.
Upcoming ...

BayCEER Colloquium:
Th. 2020-01-30
BayCEER Mitgliederversammlung
Th. 2020-04-23
Physical constraints and biological controls of plant-environment interactions
Ecological-Botanical Garden:
Su. 2020-02-02
Mehr als Sonne und Strand: Pflanzen der Karibik
Geographisches Kolloquium:
Tu. 2020-01-28 now
Adivasis in the Anthropocene - What an Environmental History of Eastern India can tell us about the global agricultural and food crisis
SFB Mikroplastik:
Mo. 2020-02-03
Microplastic effects in terrestrial ecosystems
BayCEER Blog
Why Science Communication?
Stoichiometric controls of C and N cycling
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
EGU – interesting research and free coffee
RSS Blog as RSS Feed
Weather research site
Niederschlag: 3.3 mm/24h
Sonnenschein: <1 h/d

Globalstrahlung: 13 W/m²
Wind (Höhe 32m): 18.4 km/h

This site makes use of cookies More information