Uni-Bayreuth

Sprungmarken

 

Doktorarbeit

Transport processes of reactive trace gases in the atmospheric boundary layer

Jens-Christopher Mayer (04/2005-02/2009)

Betreuer: Thomas Foken

Der Spurengastransport innerhalb der atmosphärischen Grenzschicht spielt eine dominierende Rolle in der Rückkopplung von Erdoberfläche und Atmosphäre. Dadurch kontrolliert er maßgeblich Ökosystembilanzen u.a. von Kohlenstoff und Stickstoff. Um eine quantitative Erfassung der Austauschprozesse zwischen Erdoberfläche und Atmosphäre zu ermöglich, ist ein Verständnis der beteiligten Transportprozesse von großer Bedeutung, ebenso wie Kenntnisse über die Begrenztheit aktueller Messverfahren. Das Ziel sollte die Anwendung eines zu den vorhandenen Transportprozessen passenden Messverfahrens sein. Diese Dissertation konzentriert sich zunächst auf die Auswirkungen verschiedener Mechanismen des vertikalen Stofftransports auf bodennahe Spurengasmessungen. Des Weiteren wird die Möglichkeit einer experimentellen Bestimmung von Messfehlern, die für bewegte Messsysteme spezifisch sind, untersucht. Im dritten Beitrag werden verschiedene Messtechniken zur Bestimmung von Flüssen reaktiver Spurengase analysiert, um den Grad ihrer Übereinstimmung bzw. mögliche Gründe für Abweichungen zu bestimmen. Um den Einfluss vertikaler Transportprozesse auf bodennahe Spurengasmessungen zu ermitteln, wurden umfassende Messungen sowohl bodennah als auch in der atmosphärischen Grenzschicht (mittels Fesselballon) durchgeführt. Dadurch konnte man Ozoneinbrüche, die häufig vormittags an einem Gipfelstandort auftraten, zu einem sehr effizienten Vertikaltransport mittels freier Konvektion zuordnen. Es konnte gezeigt werden, dass sich durch den raschen Transport eine ca. 20 m dicke Schicht in der Gleichgewichtshöhe der freien Konvektion, innerhalb der Residualschicht, bildete. Die chemische Signatur dieser Schicht entsprach jener von bodennaher Luft um diese Tageszeit. Somit entstanden starke chemische Gradienten in der Residualschicht. Es wurden zudem Hinweise gefunden, dass solch ein Transport an mindesten 18 % der Tage im Zeitraum von April bis September auftritt. Nur die Kombination bodennaher Messungen mit in-situ Profilmessungen ermöglichte den Ausschluss sämtlicher weiterer Erklärungsansätze für die Ozoneinbrüche im Gipfelbereich. Um den dynamischen Messfehler eines bewegten (scannenden) Messsystems relativ zu stationären Messungen bestimmten zu können, wurde eine höhere zeitliche Auflösung der Profile benötigt. Wegen technisch bedingter Limitierungen eines Fesselballonsystems wurde hierzu ein aufzuggestütztes Messsystem verwendet. Es ermöglichte eine zeitliche Auflösung der Profile von 10 Minuten bei 100 m maximaler Höhe und 1 m vertikaler Auflösung. Anhand dieser Profile wurde die adäquate Korrektur des sogenannten dynamischen Fehlers des Aufzugssystems unter realen (atmosphärischen) Bedingungen getestet. Der dynamische Fehler tritt aufgrund der Ansprechzeit der eingesetzten Sensoren bei jedem bewegten Messsystem auf. Sowohl bereits existierende Algorithmen als auch ein von den Autoren selber entwickelter Algorithmus konnten den dynamischen Fehler zuverlässig ausgleichen. Darüber hinaus konnte gezeigt werden, dass die Messungen des Aufzugsystems sehr gut mit den stationären Referenzdaten am Mast korrelierten. Die Korrelationen erreichten ein Bestimmtheitsmaß von ≥0.992 in allen Vergleichshöhen (10, 20, 40, 60, 80, 98 m). Zur Untersuchung der Eignung verschiedener Verfahren zur Messung reaktiver Spurengasflüsse wurden drei Messtechniken verglichen. Um bodennahe Spurengasflüsse zu bestimmen wurde zudem eine neue Variante der modifizierten Bowen Verhältnis Methode eingesetzt, bei der die Messungen von fühlbarem Wärmestrom räumlich von den Gradientmessungen getrennt waren. Diese Variante ermöglichte eine zeitgleiche Messung mehrerer Spurengase, ohne durch umfangreiche Einlasssysteme die Luftströmung zu stören. Es konnte gezeigt werden, dass dieser Ansatz in horizontal homogenem Gelände einsetzbar ist. Auf diese Weise gemessene Stickstoffmonoxidflüsse lagen im Bereich von 0.02 – 0.15 nmol m 2 s-1 (Emission, Nacht/Tag), Flüsse von Stickstoffdioxid schwankten um 0.1 nmol m 2 s-1 (Deposition). In den Nachmittagsstunden wurden leicht positive Werte beobachtet. Der Depositionsfluss von Ozon variierte von nahe 0 nmol m 2 s-1 (nachts) bis 6 nmol m 2 s-1 am Tage. Eine Parametrisierung der biogenen Bodenemission von Stickstoffmonoxid, basierend auf inkubierten Bodenproben, ergab Flüsse zwischen 0.025 nmol m-2 s-1 und 0.12 nmol m-2 s-1 unter Bedingungen, wie sie im Feld angetroffen wurden – eine hervorragende Übereinstimmung mit den Feldmessungen. Neben dem Vergleich für Stickstoffmonoxid wurden in einer Fallstudie (1 Nacht) Flüsse von Kohlendioxid und Ozon aus der modifizierten Bowen Verhältnis Methode mit Ergebnissen der integralen nächtlichen Grenzschichtbilanzmethode verglichen. Beide Verfahren ergaben vergleichbare nächtliche Flüsse für Kohlendioxid. Im Gegensatz dazu ergaben sich im Ozonfluss deutliche Abweichungen. Diese Abweichung wurde als Ozonverlust innerhalb der Grenzschicht auf Grund chemischer Reaktionen gedeutet.

Zu dieser Arbeit gibt es weitere Dateien zum Download

Passwort

Letzte Änderung 10.01.2010