# Physics of transport processes in undisturbed ecosystems

#### BITÖK-M 5

From 01/1995 to 12/1997**Principal Investigator**: Michael Hauhs

**Staff**: Holger Lange

**Grant**: 0339476 B Vorhersage und Erklärung des Verhaltens und der Belastbarkeit von Ökosystemen unter veränderten Umweltbedingungen

*randomness*and

*complexity*proved to be useful in this context. The filter hypothesis could be confirmed, if filtering means reduction of randomness. The ratio of

*complexities*of input and output, however, depends on the temporal resolution: to extract maximal information at maximal complexity, e.g., precipitation should be measured every couple of hours, whereas runoff is best sampled daily. The measures (e.g., algorithmic complexity, metric entropy) are also a sensitive tool to detect data manipulations. The comparison of different catchments shows similarities w.r.t. the randomness distance between input and output, but clear differences when considering the history of the data sets (recurrence plots, power spectra, Hurst coefficients).

### List of publications of this Project

Lange, H; Lischeid, G; Hauhs, M: Complexity analysis of time series from two headwater catchments in South Germany in European Academy, Bozen: Hydrology, Water Resources and Ecology of Mountain Areas, Tappeiner, U; Ruffini, FV; Fumai, M, 103-106 (1998) |

Hauhs, M; Hornung, U; Lange, H: A Model of Multicomponent Diffusion in a Reactive Acid Soil in Bourgeat,AP; Carasso,C; Luckhaus,S and Mikelic,A (eds.): Proceedings of the Conference "Mathematical Modelling of Flow Through Porous Media" Sant Etienne, World Scientific, Singapore, 231-247 (1995) -- Details |

Lange, H; Hauhs, M; Schmidt, S: Long-Term Sulfate Dynamics at Lange Bramke (Harz) used for testing two Acidification Models, Water, Air and Soil Pollution, 79, 339-351 (1995), doi:10.1007/978-94-011-0261-2_20 -- Details |