Uni-Bayreuth grafik-uni-bayreuth

Sprungmarken

 
Schweiger, JMI; Kemnade, C; Bidartondo, MI; Gebauer, G: Light limitation and partial mycoheterotrophy in rhizoctonia-associated orchids, Oecologia, 189, 375-383 (2019), doi:10.1007/s00442-019-04340-0
Abstract:

Partially mycoheterotrophic (PMH) plants obtain organic molecules from their mycorrhizal fungi in addition to carbon (C) fixed by photosynthesis. Some PMH orchids associated with ectomycorrhizal fungi have been shown to flexibly adjust the proportion of organic molecules obtained from fungi according to the habitat's light level. We hypothesise that Neottia ovata and Ophrys insectifera, two orchids associated with saprotrophic rhizoctonia fungi, are also able to increase uptake of organic molecules from fungi as irradiance levels decrease. We continuously measured light availability for individuals of N. ovata and O. insectifera at a grassland and a forest during orchid flowering and fruiting. We repeatedly sampled leaves of N. ovata, O. insectifera and autotrophic reference species for stable isotope natural abundances (δ13C, δ15N, δ2H, δ18O) and C and N concentrations. We found significant 13C enrichment in both orchids relative to autotrophic references at the forest but not the grassland, and significant 2H enrichment at both sites. The 13C enrichment in O. insectifera was linearly correlated with habitat irradiance levels. We conclude that both species can be considered as PMH and at least in O. insectifera the degree of partial mycoheterotrophy can be fine-tuned according to light availability. However, exploitation of mycorrhizal fungi appears less flexible in saprotroph-associated orchids than in orchids associated with ectomycorrhizal fungi.

Letzte Änderung 01.03.2019