Banag, CI; Thrippleton, T; Alejandro, G J; Reineking, B; Liede-Schumann, S: Bioclimatic niches of selected endemic Ixora species on the Philippines: predicting habitat suitability due to climate change, Plant Ecology (2015), doi:DOI 10.1007/s11258-015-0512-6
Stichworte: Climate change, Species distribution modeling, Endemic, Ixora, Maxent, Rubiaceae
Abstract:
The pantropical genus Ixora is highly diverse, with several species endemic to the Philippines. Owing to their endemic nature, many of these species are endangered and little is known about their basic biology. This study aimed to establish baseline information about the bioclimatic niches of Ixora species endemic to the Philippines, determine suitable areas and potential range shifts under future climate conditions, and identify priority areas for conservation and future research. Locality records of 12 endemic Ixora species from the Philippine archipelago were analyzed, with a particular focus on the five mostabundant species I. auriculata, I. bartlingii, I. cumingiana, I. macrophylla, and one island endemic species, Ixora palawanensis. Bioclimatic variables from the WorldClim database at 2.50 resolution were used, with a focus on annual means and seasonality of temperature and precipitation as well as precipitation of the warmest quarter. Analysis of the relationships of the species locations with the bioclimatic variables showed that the bioclimatic niches of the five focal Ixora species generally had narrow temperature and wider precipitation niches. Species distribution modeling with the model Maxent suggested that I. auriculata and I. bartlingii will likely shift their geographic distributions southwards under predicted levels of climate change, while I. cumingiana and I. macrophylla were found to likely expand their ranges. Ixora palawanensis, in contrast, was predicted to decrease its potential distribution with future climate change. Further, results of species distribution modeling for the rare endemic Ixora species I. bibracteata, I. chartacea, I. ebracteolata, I. inaequifolia, I. longistipula, I. luzoniensis, and I. macgregorii were presented, which, however, had much less observation points and therefore only provide a first estimate of potential species distributions. The generated potential habitat suitability maps can assist policy makers in designing conservation strategies for the species and in identifying areas with potential to withstand climate change until at least 2080.
Aktuelle Termine


BayCEER-Kolloquium:
Do. 25.04.2024 aktuell
Perspectives and challenges in the restoration and conservation of two isolated habitats: gypsum and cliffs
BayCEER Short Courses:
Fr. 26.04.2024
Mobile Film Making Workshop (for students of BayCEER)
Ökologisch-Botanischer Garten:
Fr. 26.04.2024
Aktion | Kräuterreich & regional: Backkunst im ÖBG (zus. mit HWK)
Fr. 26.04.2024
Führung | Erdbeer-Minze und Zimmerknoblauch: Gewürzkräuter
So. 28.04.2024
Führung | Den Sängern auf der Spur: Vogelstimmen im ÖBG (zus. mit LBV)
Wetter Versuchsflächen
Luftdruck (356m): 963.3 hPa
Lufttemperatur: 2.7 °C
Niederschlag: 0.1 mm/24h
Sonnenschein: <1 h/d

...mehr
Lufttemperatur: -0.4 °C
Niederschlag: 0.1 mm/24h

...mehr
Diese Webseite verwendet Cookies. weitere Informationen