Dinh, MV; Schramm, T; Spohn, M; Matzner, E: Drying-rewetting cycles release phosphorus from forest soils, Journal of Plant Nutrition and Soil Science, 179, 670-678 (2016), doi:10.1002/jpln.201500577
Drying–rewetting cycles (D/W) occur frequently in topsoils and may mobilize phosphorus (P). We investigated the effect of repeated D/W on the release of dissolved inorganic (DIP) and organic P (DOP) from forest floors and A horizons. Samples were taken from 3 European beech sites and from 3 Norway spruce sites. Soils were desiccated up to pF 6 (–100 MPa) in three D/W cycles in the laboratory, while the controls were kept permanently at 50% water holding capacity. After each drying, P was extracted from the soils in water. D/W caused the release of DIP and DOP especially from O layers. There was no general difference in response to D/W between samples from beech and spruce. The net release of DIP after D/W was largest from the Oe horizons (average 50–60 mg P kg–1) for both beech and spruce forest soils. The net release of DIP from Oi layers was on average 7.8 mg P kg–1 and from spruce Oa layers 21.1 mg P kg–1. In the A horizons, net DIP release was similar in beech and spruce soils with 0.4 mg P kg–1. The release of DOP was less than the release of DIP except for the A horizons. Repeated cycles did not increase the release of DIP and DOP. The release of DIP and DOP was positively correlated with the microbial biomass in Oe and Oa layers but not in Oi layers. Our results suggest that D/W may significantly influence the short term availability of dissolved P in both beech and spruce forest soils.
Aktuelle Termine

Do. 12.04.2018
Diversity and impact of invasive crayfish and crayfish plague: from Czechia to continental scale
Do. 19.04.2018
A new experiment to unravel the Impact of Biodiversity and Climate Variability on the functioning of grasslands
Do. 26.04.2018
Anticipating biome shifts
Ökologisch-Botanischer Garten:
So. 01.04.2018
April, April! Auch Pflanzen täuschen
So. 15.04.2018
Führung: Der ÖBG zum Kennenlernen: Allgemeine Gartenführung
Wetter Versuchsflächen
Globalstrahlung: 13 W/m²
Lufttemperatur: -4.7 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 32m): 12.0 km/h
Wind (Max.): 34.5 km/h