Gauger, T; Byrne, JM; Konhauser, KO; Obst, M; Crowe, S; Kappler, A: Influence of organics and silica on Fe(II) oxidation rates and cell–mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox – Implications for Fe(II) oxidation in ancient oceans, Earth and Planetary Science Letters, 443, 81-89 (2016), doi:10.1016/j.epsl.2016.03.022 [Link]
Abstract:

Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell–mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

Aktuelle Termine


BayCEER-Kolloquium:
Do. 12.12.2019
Iron, sulfur and a pinch of antimony - new perspectives on secondary mineral pathways and metalloid mobility
Geographisches Kolloquium:
Di. 10.12.2019
Intensify or diversify? How agriculture affects biodiversity and ecosystem processes in European farmland
Di. 17.12.2019
The meat of the Anthropocene: Food, capital and the globalisation of industrialised animal killing
Ökologisch-Botanischer Garten:
So. 05.01.2020
Auf ins Neue! Winterspaziergang im ÖBG
So. 05.01.2020
Konzert: Musikalischer Jahresbeginn mit den Rockin`Dinos
BayCEER Blog
24.05.2019
Stoichiometric controls of C and N cycling
07.05.2019
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
07.05.2019
EGU – interesting research and free coffee
16.04.2019
Picky carnivorous plants?
RSS Blog als RSS Feed
Wetter Versuchsflächen
Luftdruck (356m): 968.4 hPa
Lufttemperatur: 7.1 °C
Niederschlag: 0.2 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 17m): 7.6 km/h
Wind (Max.): 15.1 km/h
Windrichtung: SW

...mehr
Globalstrahlung: 11 W/m²
Lufttemperatur: 3.1 °C
Niederschlag: 0.7 mm/24h
Sonnenschein: <1 h/d
Wind (Höhe 32m): 33.4 km/h

...mehr
Diese Webseite verwendet Cookies. weitere Informationen