Norlund, KLI; Southam, G; Tyliszczak, T; Hu, Y; Karunakaran, C; Obst, M; Hitchcock, AP; Warren, LA: Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia, Environmental Science and Technology, 43(23), 8781-8786 (2009), online: 01.12.2009, doi:10.1021/es803616k [Link]
Abstract:

Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell−cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO2 atmospheric fluxes from H2SO4 carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.

Aktuelle Termine

BayCEER-Kolloquium:
Do. 09.07.2020
Physical constraints and biological controls of plant-environment interactions
Do. 09.07.2020
Presentations W1/W3 Professorship Geoinformatics and Spatial Big Data
Do. 16.07.2020
Verschoben auf WS 2020/21! Investigating communal pathogen defense and its role in social evolution
Ökologisch-Botanischer Garten:
Mi. 01.07.2020 aktuell
Alle Termine im Juli 2020 entfallen!
Fr. 03.07.2020 aktuell
Gewächshäuser ab sofort wieder geöffnet!
BayCEER Blog
13.01.2020
Why Science Communication?
24.05.2019
Stoichiometric controls of C and N cycling
07.05.2019
Flying halfway across the globe to dig in the dirt – a research stay in Bloomington, USA
07.05.2019
EGU – interesting research and free coffee
RSS Blog als RSS Feed
Wetter Versuchsflächen
Globalstrahlung: 792 W/m²
Lufttemperatur: 21.7 °C
Niederschlag: 0.0 mm/24h
Sonnenschein: 7 h/d
Wind (Höhe 32m): 17.3 km/h

...mehr
Diese Webseite verwendet Cookies. weitere Informationen